首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The major earthquake measuring 8.1 on the Richter scale which struck the west coast of Mexico on Thursday 19 September 1985, generated a small tsunami. A major aftershock on 21 September, with a magnitude of 7.5 also produced a small tsunami. Both tsunamis propagated across the Pacific and were recorded by several tide stations in Central America, Colombia, Ecuador, French Polynesia, Samoa, and Hawaii. No reports of damage were received from any of the stations, and only minor damage due to the first tsunami was reported from the source region.A survey was made by the International Tsunami Information Center (ITIC) of the coastal area affected, from Manzanillo to Zihuatanejo. Tsunami runup measurements were taken and interviews with local residents in the coastal areas were conducted.A source mechanism study of the tsunamis was undertaken using seismic and geologic data and empirical relationships. Earthquake and tsunami energies were estimated and the tsunami genertion areas defined.The earthquake energies were estimated to be 5.61 × 1024 erg for the 19 September event and 9.9 × 1023 erg for the 21 September event. Tsunami energies were estimated to be 0.7 × 1020 erg for the first event and 0.56 × 1020 erg for the second event. The source area of the first tsunami was determined to be approximately one-half of the earthquake source area, or approximately 7500 km2, while the source area of the second tsunami was estimated to be equal to the earthquake area.The relatively small tsunamis generated by these large earthquakes are attributed to the shallow angle of subduction of the Cocos plate underneath the North American plate for this particular region, and to the small vertical component of crustal displacements. However, the angle of subduction increases further south and local earthquakes from that area have the potential of producing large tsunamis on the west coast of Mexico.This paper was presented at the 4th International Symposium on Natural and Man-made Coastal Hazards held in Ensenada, Mexico, August 1988.  相似文献   

2.
Awareness about the threats posed by different types of coastal disasters has increased throughout the world, as people are exposed to the nature of these hazards through media reports on events in distant countries. This has resulted in coastal residents being aware about the destructive power of tsunamis, despite no such events having taken place in their country in recent times. Regardless of this increased awareness, it has been hypothesized that there is still need for local governments to enact adequate policies to raise the awareness of local residents, for example, by holding regular evacuation drills. The present research presents a comparative assessment of tsunami awareness in two tourist destinations in Japan and the USA, which was derived through structured questionnaire surveys of beach users in the city of Kamakura and various coastal cities in Florida. The results show how despite relatively high level of awareness tsunamis still pose a considerable risk to each of the communities, for example, due to shortcoming in evacuation knowledge and infrastructure.  相似文献   

3.
Over the past 200 years of written records, the Hawaiian Islands have experienced tens of tsunamis generated by earthquakes in the subduction zones of the Pacific ‘Ring of Fire’ (for example, Alaska–Aleutian, Kuril–Kamchatka, Chile and Japan). Mapping and dating anomalous beds of sand and silt deposited by tsunamis in low-lying areas along Pacific coasts, even those distant from subduction zones, is critical for assessing tsunami hazard throughout the Pacific basin. This study searched for evidence of tsunami inundation using stratigraphic and sedimentological analyses of potential tsunami deposits beneath present and former Hawaiian wetlands, coastal lagoons, and river floodplains. Coastal wetland sites on the islands of Hawai΄i, Maui, O΄ahu and Kaua΄i were selected based on historical tsunami runup, numerical inundation modelling, proximity to sandy source sediments, degree of historical wetland disturbance, and breadth of prior geological and archaeological investigations. Sand beds containing marine calcareous sediment within peaty and/or muddy wetland deposits on the north and north-eastern shores of Kaua΄i, O΄ahu and Hawai΄i were interpreted as tsunami deposits. At some sites, deposits of the 1946 and 1957 Aleutian tsunamis are analogues for deeper, older probable tsunami deposits. Radiocarbon-based age models date sand beds from three sites to ca 700 to 500 cal yr bp , which overlaps ages for tsunami deposits in the eastern Aleutian Islands that record a local subduction zone earthquake. The overlapping modelled ages for tsunami deposits at the study sites support a plausible correlation with an eastern Aleutian earthquake source for a large prehistoric tsunami in the Hawaiian Islands.  相似文献   

4.
Sugimoto  T.  Murakami  H.  Kozuki  Y.  Nishikawa  K.  Shimada  T. 《Natural Hazards》2003,29(3):587-602
This study presents a tsunami human damage prediction method employing numerical calculation and GIS (Geographical Information System) for Usa town, Tosa City, Shikoku Island, Japan. Sometime near the end of the first half of the twenty-first century, a huge earthquake is predicted to occur along the Nankai trough and costal areas facing the Pacific ocean of Shikoku Island. Much damage due to the resultant tsunamis will be caused, therefore, it is necessary to predict the extent of human damage for every town in high-risk areas.The number of tsunami victims was estimated by population in areas of maximum inundation. The number of deaths as a result of tsunami was estimated by a method which employed accumulated death toll of every area in terms of time and space, taking into account consideration of time necessary to begin to seek refuge after an earthquake, tsunami inundation depth on land, flow velocity and evacuation speed. As a result of this study a rapid decrease in death toll by early evacuation was shown quantitatively for the first time.Thus, with the method presented here, it is possible to estimate the extent of tsunami human damage on coastal regions, and may be useful as a tsunami human damage countermeasure.  相似文献   

5.
Many breakwaters have collapsed in the past due to earthquakes and subsequent tsunamis, resulting in considerable devastation as the breakwaters failed to prevent the tsunami from entering the coastal plain areas. Breakwater failures are mainly caused by damage to its foundation ground. However, the damage mechanism of breakwater foundation during earthquakes and tsunamis remains unclear. This study focuses on the breakwater failure mechanism due to collapse of its foundation under the action of an earthquake and subsequent tsunami. In addition, reinforcing countermeasures for breakwater foundation to mitigate damage due to compound geodisasters triggered by earthquakes and tsunamis are proposed. Sheet piles and gabions were used in the breakwater foundation as reinforcing countermeasures. To evaluate the effectiveness of the reinforced foundation, a series of shaking table tests and hydraulic model tests were performed. The tsunami overflow tests were conducted on the same model after the earthquake loadings, and comparisons were made between the conventional and reinforced foundations. It was observed during the tests that the reinforced foundation could effectively reduce the damage to the breakwater caused by earthquake and tsunami-induced forces. Numerical analyses were performed to clarify the mechanism of the soil–breakwater–reinforcement–fluid system. Overall, this study is useful in practical engineering, and the reinforcing foundation model could be adopted for offshore structures to reduce damage from earthquakes and tsunamis in the future.  相似文献   

6.
Historical tsunami records in the South China Sea are collected and analyzed in this paper. There have been about 54 tsunamis in the South China Sea since 1076. The impacts of the transoceanic tsunamis on the southeast coast of China are weak. However, the regional tsunamis in the South China Sea bring varying degrees of influence to the south coast of China, which occurred about 18 times. By the analysis of the potential tsunami sources in the South China Sea, numerical simulations of tsunami induced in the Manila Trench are carried out. It is found that the tsunami wave height is small near Haikou if the general earthquake tsunami occurred. But the tsunami wave height is large when a giant earthquake of M9.3 occurred. If this extreme situation arises, the impacts to the coast of Haikou will be serious.  相似文献   

7.
Landslide-generated tsunamis are lesser-known yet equally destructive than earthquake tsunamis. Indeed, the highest tsunami wave recorded in recent history was generated by a landslide in Lituya Bay (Alaska, July 9, 1958) and produced run-up in excess of 400 m. In this paper, we review the state of the art of landslide tsunami analytical modelling. Within the framework of a linearised shallow-water theory, we illustrate the dynamics of landslide tsunami generation and propagation along beaches and around islands. Finally, we highlight some intriguing new directions in the analytical modelling of landslide tsunamis to support early warning systems.  相似文献   

8.
Among the coastal districts of mega city Istanbul, Bakirkoy is one of the most critical one with the importance of air and marine transportation and presence of many other coastal facilities and structures that are prone to suffer from marine hazards. In the history, the Sea of Marmara has experienced numerous earthquake and landslide events and associated tsunamis. Therefore, tsunami risk assessment is essential for all coastal districts of Istanbul, including Bakirkoy district. In this study, a further developed methodology for tsunami human vulnerability and risk assessment Metropolitan Tsunami Human Vulnerability Assessment (MeTHuVA) is applied for Bakirkoy district of Istanbul, considering earthquake generated tsunamis. High-resolution tsunami hazard analysis is performed with the integration of coastal inundation computation with tsunami numerical tool NAMI DANCE and tsunami human vulnerability assessment with GIS-based multi-criteria decision analysis methods (MCDA). Using analytical hierarchy process method of MCDA, a hierarchical structure is established, composed of two main elements of tsunami human vulnerability: Vulnerability at Location and Evacuation Resilience. Tsunami risk assessment for Bakirkoy district is calculated by integrating result of hazard and vulnerability assessments with a risk relation that includes a parameter (n), which represents the preparedness and awareness level of the community. Tsunami simulations revealed that the maximum inundation distance is over 350 m on land and water penetrates almost 1700 m along Ayamama stream. Inundation is observed in eleven neighborhoods of Bakirkoy district. In the inundation zone, maximum flow depth is found to be over 5.7 m. The inundated area forms 4.2% of whole Bakirkoy district, and 62 buildings are located in the inundation zone. Hazard, vulnerability and risk assessment results for different neighborhoods of Bakirkoy district are presented and discussed.  相似文献   

9.
Major earthquakes that trigger tsunamis are great natural hazards. The devastations caused by the December 26, 2004 Sumatran earthquake, and the March 11, 2011 Japan earthquake, and associated tsunamis will remain in our memories for a long time. Such events reaffirm the need for studying the cause and effects of large earthquakes of the past and to prepare the world better for the future. In such an effort, to understand the pattern of earthquakes and their effects on the geomorphic evolution, we have studied deformation history in the Andaman and Nicobar Islands, located in one of the most active convergent margins of the world. Focusing on tectonically formed coastal terraces and determining the timing of their formation from the exposed dead corals, we have been able to reconstruct the history of major earthquakes in these islands for the last 40 kyr. Our results in conjunction with the existing radiocarbon age data from coastal terraces of these islands appear to suggest that the frequency of major earthquakes (M > 7) in the region has increased during the last 9 kyr. In confirmation with some earlier work, we find evidences for a major earthquake and a tsunami between 500-600 cal yr BP and possibly 4 others during 6–9 cal kyr BP. Our results also indicate that there has been a continuous subsidence of the south Andaman Islands.  相似文献   

10.
《International Geology Review》2012,54(12):1462-1470
The Pacific coast of Mexico has repeatedly been exposed to destructive tsunamis. Recent studies have shown that rock magnetic methods can be a promising approach for identification of tsunami- or storm-induced deposits. We present new rock magnetic and anisotropy of magnetic susceptibility (AMS) results in order to distinguish tsunami deposits in the Ixtapa–Zihuatanejo area. The sampled, 80 cm-deep sequence is characterized by the presence of two anomalous sand beds within fine-grained coastal deposits. The lower bed is probably associated with the 14 March 1979 Petatlán earthquake (M W = 7.6), whereas the second one formed during the 21 September 1985 Mexico earthquake (M W = 8.1). Rock magnetic experiments discovered significant variations within the analysed sequence. Thermomagnetic curves reveal two types of behaviour: one in the upper part of the sequence, after the occurrence of the first tsunami, and the other in the lower part of the sequence, during that event and below. Analysis of hysteresis parameter ratios in a Day plot also allows us to distinguish two kinds of behaviour. The samples associated with the second tsunami plot in the pseudo-single-domain area. In contrast, specimens associated with the first tsunami and the time between both tsunamis display a very different trend, which can be ascribed to the production of a considerable amount of superparamagnetic grains, which might be due to pedogenic processes after the first tsunami. The studied profile is characterized by a sedimentary fabric with almost vertical minimum principal susceptibilities. The maximum susceptibility axis shows a declination angle D = 27°, suggesting a NNE flow direction which is the same for both tsunamis and normal currents. Standard AMS parameters display a significant enhancement within the transitional zone between both tsunamis. The study of rock magnetic parameters may represent a useful tool for the identification and understanding of tsunami deposits.  相似文献   

11.
While earthquakes generate about 90% of all tsunamis, volcanic activity, landslides, explosions, and other nonseismic phenomena can also result in tsunamis. There have been 53 000 reported deaths as a result of tsunamis generated by landslides and volcanoes. No death tolls are available for many events, but reports indicate that villages, islands, and even entire civilizations have disappeared. Some of the highest tsunami wave heights ever observed were produced by landslides. In the National Geophysical Data Center world-wide tsunami database, there are nearly 200 tsunami events in which nonseismic phenomena played a major role. In this paper, we briefly discuss a variety of nonseismic phenomena that can result in tsunamis. We discuss the magnitude of the disasters that have resulted from such events, and we discuss the potential for reducing such disasters by education and warning systems.  相似文献   

12.
Geomorphic features associated with earthquakes and tsunamis have received wide attention in estimating uplift and subsidence after the tectonic event. Although various techniques are in vogue in estimating the uplift and subsidence after the 2004 Andaman-Sumatra earthquake and subsequent tsunami, remote sensing techniques have been proved to be quite handy to study the geomorphic changes. In the present study, geomorphic changes associated with the destructive event of December 2004 have been analyzed. The emergent and subsident coasts around the smaller islands in the Andaman region have been identified. The coral reef area that has been subjected to uplift or subsidence in some of the islands of the Andaman and Nicobar region is delineated, and the net areal extents of these coral beds have been computed. Of the six islands studied in Andaman region, coral reef of four islands was subjected to uplift, and around two islands the area was subsided. The uplifted area varied from 0.10 to 11 km2, and subsidence was about 0.50 km2. In Nicobar region, the subsidence of coral reefs was recorded. This study helps to monitor the coastal environments and the destruction due to natural hazards.  相似文献   

13.
De Lange  W. P.  Healy  T. R. 《Natural Hazards》2001,24(3):267-284
The Hauraki Gulf is a semi-enclosed sea next to the largest population centre in New Zealand, the Auckland metropolitan region. The potential tsunami hazard is of concern to regional and local planners around the Hauraki Gulf. The Hauraki Gulf has recorded 11 tsunamis and one meteorological tsunami (rissaga) since 1840.The historical tsunami data are relatively sparse, particularly for the largest events in 1868 and 1883. Moreover, local sources may produce damaging tsunamis but none has occurred during recorded history. Therefore numerical modelling of potential tsunami events provides a powerful tool to obtain data for planning purposes. Three main scenarios have been identified for numerical modelling:1. A teletsunami event from an earthquake off the West Coast of South America. Historically this region has produced the largest teletsunamis in the Hauraki Gulf.2. A tsunami generated by a local earthquake along the Kerepehi Fault. This fault bisects the Gulf, has been active during the last century at the southern inland end, and is overlain by a considerable thickness of soft sediment that may amplify the seismic waves.3. A tsunami generated by a volcanic eruption within the Auckland Volcanic Field. This field has involved a series of mainly monogenetic basaltic eruptions over the last 140,000 years. Many of these eruptions have involved phreatomagmatic eruptions around the coastal margins, or within the shallow waters close to Auckland.  相似文献   

14.
中国东海、南海等近海临近琉球海沟、马尼拉海沟等俯冲带,地震频发。过去的海啸研究主要关注历史文献分析、海啸数值模拟等,据此评估中国近岸海啸灾害的历史和风险。历史时期是否引发了海啸,特别是具有特大致灾风险的大海啸记录,目前还不明确。近年来,本课题组通过对海岛、海洋沉积和海岸带及其岛屿的沉积过程、海啸遗迹和历史记录研究,阐述了确定古海啸的系列研究方法。首先通过对南海西沙群岛东岛湖泊沉积序列、大量砗磲和珊瑚块在海岛分布的特征分析,识别出距今千年的一次海啸事件。以此为标志,根据湖泊沉积结构作为识别海岛海啸沉积的特征。同时提出了确定海岛海啸发生时代的样品采集和定年方法,其中包括根据事件沉积层顶部和底部植物残体14C年龄定年和历史文献记录的印证。首次确定在过去1 300年中,南海发生过一次海啸,其发生时间为公元1076年。为了寻找更古老的海啸记录,结合对东海闽浙沿岸过去两千年海洋泥质沉积的分析,发现南海海啸在沉积序列中留下记录,但除此之外沉积记录中并无更强的扰动,因此东海在过去两千年中受到海啸的影响较小。1076年的海啸同时冲击了南海沿岸,通过对广东南澳岛考察发现,岛屿东南海岸保存着距今约1 000年的海啸沉积层,其中夹杂着宋代陶器瓷器残片。对遗迹数量变化的分析显示,岛上的文化受海啸破坏出现了长达500年的文化中断,直至明代中后期设镇之后才逐渐恢复。根据海啸层植物残体、贝壳14C测年、覆盖海啸层的海砂光释光定年以及瓷器碎片的年代鉴定了海啸的发生时代,并据此提出了海岸带古海啸沉积的定年方法。此外,不同环境下海啸沉积的特征也存在较大区别,需要结合地形、沉积物来源以及地球化学特征等多种指标进行识别。有迹象表明海南岛东侧海岸带有海啸破坏的明显证据,需要进行深入的研究。  相似文献   

15.
Earthquakes and tsunamis along Morocco’s coasts have been reported since historical times. The threat posed by tsunamis must be included in coastal risk studies. This study focuses on the tsunami impact and vulnerability assessment of the Casablanca harbour and surrounding area using a combination of tsunami inundation numerical modelling, field survey data and geographic information system. The tsunami scenario used here is compatible with the 1755 Lisbon event that we considered to be the worst case tsunami scenario. Hydrodynamic modelling was performed with an adapted version of the Cornell Multigrid Coupled Tsunami Model from Cornell University. The simulation covers the eastern domain of the Azores-Gibraltar fracture zone corresponding to the largest tsunamigenic area in the North Atlantic. The proposed vulnerability model attempts to provide an insight into the tsunami vulnerability of building stock. Results in the form of a vulnerability map will be useful for decision makers and local authorities in preventing the community resiliency for tsunami hazards.  相似文献   

16.
Tsunamis are reconstructed on the basis of distribution of tsunamigenic sediments in coastal lowland sections. Reflections of anomalous tsunamis are recorded in detail in the lacustrine–boggy sections of the Lesser Kuril Ridge, while only fragments of these sediments have been found on the islands of the Greater Kuril Ridge. The distribution and composition of the sediments left by recent large-scale tsunamis (locally documented 1994 and 1894 Shikotan tsunamis and transoceanic 2011 Tohoku tsunami) are analyzed for the purpose of understanding deposition features during large and megatsunamis. Interregional correlation of the events during the last ~2.5 kyr is carried out with estimation of their scales. It is established that large events took place in the 17th and 18th centuries and approximately at 1.0, 1.4–1.6, 1.7–1.8, and 2.0–2.1 ka ago. New data on large tsunami chronology since the Middle Holocene are presented. A unique natural peatland section with abundant tsunamigenic sand layers is studied on the Pacific side of Zelenyi Island (Rudnya Bay), where deposition continued through the entire Holocene. The largest tsunamis which happened on the South Kuril Islands during the last ~7.5 kyr and can be classed as megatsunamis are revealed.  相似文献   

17.
Efforts to characterize population exposure to near-field tsunami threats typically focus on quantifying the number and type of people in tsunami-hazard zones. To develop and prioritize effective risk-reduction strategies, emergency managers also need information on the potential for successful evacuations and how this evacuation potential varies among communities. To improve efforts to properly characterize and differentiate near-field tsunami threats among multiple communities, we assess community variations in population exposure to tsunamis as a function of pedestrian travel time to safety. We focus our efforts on the multiple coastal communities in Grays Harbor and Pacific Counties (State of Washington, USA), where a substantial resident and visitor population is threatened by near-field tsunamis related to a potential Cascadia subduction zone earthquake. Anisotropic, path distance modeling is conducted to estimate travel times to safety, and results are merged with various population data, including residents, employees, public venues, and dependent-care facilities. Results suggest that there is substantial variability among communities in the number of people that may have insufficient time to evacuate. Successful evacuations may be possible in some communities assuming slow walking speeds, are plausible in others if travel speeds are increased, and are unlikely in another set of communities given the large distances and short time horizon. Emergency managers can use these results to prioritize the location and determine the most appropriate type of tsunami risk-reduction strategies, such as education and training in areas where evacuations are plausible and vertical-evacuation structures in areas where they are not.  相似文献   

18.
We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources.To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths that range from 40 to 80 km, maximum thicknesses of 400–800 m, and maximum widths of 10–40 km. We also evaluate tsunami generation by volcanic debris avalanches associated with flank collapse, at four locations (Makushin, Cleveland, Seguam and Yunaska SW volcanoes), which represent large to moderate sized events in this region. We calculate tsunami sources using the numerical model TOPICS and simulate wave propagation across the Pacific using a spherical Boussinesq model, which is a modified version of the public domain code FUNWAVE. Our numerical simulations indicate that geologically plausible mass flows originating in the North Pacific near the Aleutian Islands can indeed generate large local tsunamis as well as large transoceanic tsunamis. These waves may be several meters in elevation at distal locations, such as Japan, Hawaii, and along the North and South American coastlines where they would constitute significant hazards.  相似文献   

19.
A layer of Mesoproterozoic tsunami deposits from the North China Craton was recently discovered and investigated in the Xingcheng area, Liaoning Province, China. They occur at the bottom of the Dahongyu Formation of the Changcheng Group (1.8–1.6 Ga). The tsunami deposits are identified based on the analysis of the sedimentary facies. They are markedly different from the normal deposits of shore‐shallow sea siliciclastics, and are characterized by rip‐up clasts, poorly sorted gravels, fining‐upward sequences, redeposited underlying materials, complex sources of underlying strata and erosional bases at the bottom of beds. They are compelling features of tsunamiites when they occur together. During the Mesoproterozoic, the Xingcheng area was in an active tectonic belt, the Yanshan Taphrogenic Trough. The origin of the tsunami was probably triggered by the earthquake, which resulted from the the activities of the Luanxian–Jianchang Fault in early Mesoproterozoic times. The deposition of tsunamiites occurred in a coastal environment and involved several stages, from the origin, propagation, inundation, and deposition to the backwash flow. The geodynamic backgrounds of the tsunami event in the North China Craton are consistent with the breakup event of the Columbia supercontinent in the Mesoproterozoic. Some events, such as tsunamis and volcanism, are all controlled by extensional rift systems and should be recognized as effects of the breakup of the Columbia supercontinent in the North China Craton. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
We discuss issues related to a recognised shortcoming in existing tsunami hazard assessments for Pacific Island Countries and Territories (PICTs), that of tsunamigenic slope failures (TSFs). Currently, TSFs are most likely underrepresented as sources in existing tsunami databases for two key reasons. First, relatively low magnitude earthquakes associated with subduction zones are generally assigned as the tsunamigenic source, as opposed to the TSFs they generate. A reassessment of such ‘anomalous tsunamis’ may yield clues that serve to reassign their tsunamigenic source. Second, there are thousands of oceanic islands and seamounts scattered across the Pacific and flank collapse of volcanic edifices such as these is a largely unquantified tsunamigenic threat. However, while it is now possible to model such TSFs, this is unlikely to happen in the near future because of the lack of detailed bathymetry and landslide mass data. Recent developments in the identification of past tsunamis in the Pacific Islands have developed a unique range of indicators that can be used for identifying such events. These are geological, oral tradition and archaeological components that include, but are not limited to, a modified Darwinian model of atoll formation, coastal megaclasts, oral traditions of vanished islands and giant waves, and the abandonment of prehistoric coastal sites. As such, the most logical way forward is to use the multiple indicators available to us to identify evidence of past tsunamis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号