首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—?The empirical Green's function deconvolution technique is used to retrieve the source time functions from the records of P waves of seven seismic events that occurred at the Rudna copper mine in 1996 and were located in the middle of the underground network. Their moment magnitudes ranged from 2.1 to 2.9. The records of smaller events from the same area and with similar source mechanism, with moment magnitudes ranging from 1.5 to 2.0, were accepted as empirical Green's functions. The relative source time functions were successfully retrieved at a number of stations for six events. Directivity effects, implying unilateral rupture propagation, were observed in five cases. The azimuth of rupture propagation direction and the rupture velocity were estimated from the distribution of pulse widths and pulse maximum amplitudes as a function of the cosine of station azimuths. The rupture propagated approximately either from south to north or from north to south. The rupture velocity was low, ranging from 0.25 to 0.54 of the shear-wave velocity. The source dimensions, represented by the fault length, were also small in comparison with those estimated in the frequency domain and ranged from 80 to 250?m.  相似文献   

2.
Fault network of the Upper Silesian Coal Basin (USCB) is built of sets of strike-slip, oblique-slip and dip-slip faults. It is a typical product of force couple which acts evenly with the parallel of latitude, causing horizontal and anti-clockwise movement of rock-mass. Earlier research of focal mechanisms of mine tremors, using a standard fault plane solution, has shown that some events are related to tectonic directions in main structural units of the USCB. An attempt was undertaken to analyze the records of mine tremors from the period 1992–1994 in the selected coal fields. The digital records of about 200 mine tremors with energy larger than 1×104 J (M L >1.23) were analyzed with SMT software for seismic moment tensor inversion. The decomposition of seismic moment tensor of mine tremors was segmented into isotropic (I) part, compensated linear vector dipole (CLVD) part and double-couple (DC) part. The DC part is prevalent (up to 70%) in the majority of quakes from the central region of the USCB. A group of mine tremors with large I element (up to 50%) can also be observed. The spatial orientation of the fault and auxiliary planes were obtained from the computations for the seismic moment DC part. Study of the DC part of the seismic moment tensor made it possible for us to separate the group of events which might be acknowledged to have their origin in unstable energy release on surfaces of faults forming a regional structural pattern. The possible influence of the Cainozoic tectonic history of the USCB on the recent shape of stress field is discussed.  相似文献   

3.
On May 2, 1993 more than 200 seismic events from an underground mine in Tyrol/Austria were recorded with short-period seismometers of a local seismic network which was introduced in the late 1980s to monitor the tectonic seismicity in Tyrol in greater detail. The cause of this series of mining-associated events has become the subject of intensive investigations — as it was associated with a subsidence affecting an area of 10.000 m2. Underground observations revealed a number of discontinuities along which the rock mass was able to move. Seismic recordings of the close-by seismic stations revealed two types of mechanisms: One mechanism seems to be associated with pure block-sliding along several discontinuities, while other signals indicate additional collapse. The consideration and combination of several seismological principles made possible the construction of a model of the mine collapse.  相似文献   

4.
垂直向地震作用对节理岩体失稳破坏的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
基于线弹性断裂力学理论分析了垂直向地震作用对节理岩体地震动力破坏的影响。在仅考虑峰值时,最不利的单向地震动加速度方向是水平倾向坡外,双向则依据破裂机制是拉剪或压剪,加速度分别是水平倾向坡外与向下或向上的组合。地震动的幅值、作用方向及双向地震动的组合都可使岩体的破坏机制发生转化,并且是突变的、不可逆的。较低峰值的双向地震动产生的应力强度因子可能大于较高峰值的单向地震动所产生的应力强度应子。在岩体节理分布特征和静态应力场一定的初始条件下,第一个导致岩体中产生破裂的地震动加速度幅值及其方向的组合唯一地决定了岩体不可逆破坏发展的方向、机制及最终的破坏特征,其复杂性远大于静力作用时的情况。对岩体地震动力破坏问题的认识应充分考虑垂直向地震动的重要影响。  相似文献   

5.
Rockbursts and mining-induced seismic events have serious socio-economic consequences for the Canadian mining industry, as their mines are extended to greater depths. Automatic multichannel monitoring systems (Electro-Lab MP250s) are routinely, used to detect the arrival times of seismic waves radiated by mining-induced events and sensed on an array of single component transducers installed throughout a mine. These arrival times are then used to locate the events and produce maps of areas of high activity for use in mine planning and design. This approach has limitations in that, it does not allow a detailed analysis of source mechanisms, which could be extracted if whole waveform signals are recorded and analyzed.A major research project, sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC) with the collaboration of the Canadian mining industry, is aimed at enhancing existing mine seismic monitoring technology in Canada, in order to carry out more advanced processing of data to obtain fundamental scientific information on mining-induced seismic events This paper describes preliminary results from seismic monitoring experiments carried out in a hard rock nickel mine in Sudbury, Canada. Existing seismic monitoring instrumentation was enhanced with a low cost microcomputer-based whole waveform seismic acquisition system. Some of the signals recorded during this experiment indicate anisotropic wave propagation through the mine rock masses, as observed by the splitting of shear waves and the relative arrival of two shear waves polarized in directions which may be related to the structural fabric and/or state of stress in the rock mass. Analysis of compressional wave first motion shows the predominance of shear events, as indicated by focal mechanism studies and is confirmed by spectral analysis of the waveforms. The source parameters were estimated fro typical low magnitude localized microseismic events during the initial monitoring experiments. The seismic moment of these events varied between 106 N.m and 2.108 N.m. with a circular source radius of between 1 m and 2 m with an estimated stress drop of the order of 1 MPa.  相似文献   

6.
The paper presents the method and results of calculating the increment of macroseismic intensity at seismic stations of Kamchatka. Calculation is based on measurement of the relative level of maximum accelerations of intense earth vibrations in the phase of S-waves of comparatively strong regional earthquakes and the root-mean-square deviation of acceleration in the phase of P-waves of a strong distant earthquake. In the latter case, records of an earthquake with a magnitude of 9.1, which occurred in Japan on March 11, 2011, were used. The Petropavlovsk seismic station was used as the reference station. At the foundation of this station rests on rocky soil composed of siliceous shales. An estimate of the increment for the majority of digital stations is presented. Anomalously high intensity values were noted at a number of stations. The data obtained are used to assess the properties of soils in the investigated area. At several stations, the intensity of the horizontal component of soil vibrations above the intensity of the vertical component is much greater than the corresponding design value, which is probably due to the presence of resonant soil layers under these stations. The discrepancy in the incremental intensity estimates from records of intense oscillations from regional earthquakes and from records of a very strong remote earthquake obtained from sensors located in basements of heavy-frame concrete structures is revealed. To avoid distortion in recording ground vibrations, it is desirable to place seismic instruments far from such structures. The results obtained in the study can be used for seismic microzoning of construction sites in the investigated territory.  相似文献   

7.
裂缝诱导的双相具有水平对称轴的横向各向同性(HTI)介质模型是由一组平行排列的垂直裂缝嵌入到统计各向同性的流体饱和多孔隙岩石中而组成的,它综合考虑了裂缝型储层岩石的各向异性和孔隙性.高精度的地震波场数值模拟技术是研究该介质中地震波传播规律的主要方法.本文结合错格伪谱法和时间分裂法,求解描述该介质中地震波传播的一阶速度-应力方程.模拟了单层和双层模型中的地震波场,并对其进行了特征分析.研究结果表明:错格伪谱法能有效消除标准网格伪谱法波场模拟结果中出现的数值伪影现象,与时间分裂法结合能够获得稳定的、高精度的模拟结果;裂缝诱导双相HTI介质中的地震波场兼具裂缝各向异性介质和双相介质中传播的地震波的波场特征.  相似文献   

8.
On the retrieval of moment tensors from borehole data   总被引:5,自引:0,他引:5  
The complete moment tensors of seismic sources in homogeneous or vertically inhomogeneous isotropic structures cannot be retrieved using receivers deployed in one vertical borehole. The complete moment tensors can be retrieved from amplitudes of P‐waves, provided that receivers are deployed in at least three boreholes. Using amplitudes of P‐ and S‐waves, two boreholes are, in principle, sufficient. Similar rules also apply to transversely isotropic media with a vertical axis of symmetry. In the case of limited observations, the inversion can be stabilized by imposing the zero‐trace constraint on the moment tensors. However, this constraint is valid only if applied to observations of shear faulting on planar faults in isotropic media, which produces double‐couple mechanisms. For shear faulting on non‐planar faults, for tensile faulting, and for shear faulting in anisotropic media, the zero‐trace constraint is no longer valid and can distort the retrieved moment tensor and bias the fault‐plane solution. Numerical modelling simulating the inversion of the double‐couple mechanism from real data reveals that the errors in the double‐couple and non‐double‐couple percentages of the moment tensors rapidly decrease with increase in the number of boreholes used. For noisy P‐ and S‐wave amplitudes with noise of 15% of the top amplitude at each channel and for a velocity model biased by 10%, the errors in the double‐couple percentage attain 25, 13 and 6% when inverting for the double‐couple mechanism from one, two and three boreholes.  相似文献   

9.
The design of a monitoring system for detecting explosions is a very topical problem, both for routine data processing at seismological observatories as well as for the monitoring of a Comprehensive Test Ban Treaty. In this framework it is desirable to have the possibility to quantify the presence of the isotropic component in the seismic source. For this purpose a method is presented, which is based on waveform inversion for the full moment tensor retrieval. The method inverts either full waveforms or separate seismic phases and returns the mechanism and time history of a point source. Moreover, it allows to redefine the hypocentral depth of the event and, in a simplistic way, to optimize the structural model as well. In order to model strong laterally heterogeneous structures, different pairs of structural models can be used for each source-receiver path. The source is decomposed into a volumetric part (V), representing an explosive or implosive component, and into a deviatoric part, containing both the double couple (DC) and the compensated linear vector dipole (CLVD) components. The method is applied to an area in central Switzerland and to the network of the Swiss Seismological Service. The events of interest include both earthquakes and explosions. Despite some modelling inadequacies of the source-time function, the explosions can be well identified with the inverted isotropic component in the source, as long as the number of stations used for the inversion is larger than three. The results of the inversion are better for large epicenter-station distances of the order of 40–90 km.  相似文献   

10.
地震噪声异常实时监测   总被引:4,自引:0,他引:4  
本文采用福建省85个测震台站2012年全年噪声资料的垂直向记录作为研究对象,将噪声记录以每5min为单位进行分段,求出每小段的功率谱,应用概率分布函数方法绘出台站的PDF图,之后利用网格概率法确定出台站的高低噪声参照线。另外,根据85个台站的PDF图异常,将噪声异常分成四类:缺数异常、低噪处异常、高噪处异常、中噪处异常。依据四类异常的特征分别研究出四类异常的挑选方法,再将这四种挑选方法结合形成地震噪声实时监测系统。选取福建省85个测震台站2013年7月份的噪声记录进行验证,结果表明:85个台站应用地震噪声实时监测系统识别出来的异常正确率都达到90%以上,挑选效果很好,并可应用于台站噪声实时监测。  相似文献   

11.
We use the finite difference method to simulate seismic wavefields at broadband land and seafloor stations for a given terrestrial landslide source, where the seafloor stations are located at water depths of 1,900–4,300 m. Our simulation results for the landslide source explain observations well at the seafloor stations for a frequency range of 0.05–0.1 Hz. Assuming the epicenter to be located in the vicinity of a large submarine slump, we also model wavefields at the stations for a submarine landslide source. We detect propagation of the Airy phase with an apparent velocity of 0.7 km/s in association with the seawater layer and an accretionary prism for the vertical component of waveforms at the seafloor stations. This later phase is not detected when the structural model does not consider seawater. For the model incorporating the seawater, the amplitude of the vertical component at seafloor stations can be up to four times that for the model that excludes seawater; we attribute this to the effects of the seawater layer on the wavefields. We also find that the amplification of the waveform depends not only on the presence of the seawater layer but also on the thickness of the accretionary prism, indicating low amplitudes at the land stations and at seafloor stations located near the trough but high amplitudes at other stations, particularly those located above the thick prism off the trough. Ignoring these characteristic structures in the oceanic area and simply calculating the wavefields using the same structural model used for land areas would result in erroneous estimates of the size of the submarine landslide and the mechanisms underlying its generation. Our results highlight the importance of adopting a structural model that incorporates the 3D accretionary prism and seawater layer into the simulation in order to precisely evaluate seismic wavefields in seafloor areas.  相似文献   

12.
基于台阵记录的土层山体场地效应分析   总被引:1,自引:1,他引:0       下载免费PDF全文
卢育霞  刘琨  王良  魏来  李少华 《地震学报》2017,39(6):941-954
选取2008年5月25日至8月7日期间由甘肃省文县上城山地形效应台阵获取的12次汶川地震余震事件(MS≥4.0),在分析其地震动基本参数的基础上,采用参考场地谱比(RSSR)法和水平-竖向谱比(HVSR)法,研究了不同地震作用下上城山地形台阵的场地效应.分析结果显示:随着高程和覆盖层的增加,记录台站地震动的PGA呈增大趋势,地震频谱形状由宽变窄;上城山台阵记录到的地震波在地形基阶频段(2—4 Hz)和浅部土层频段(7—9 Hz)的幅值明显放大,RSSR曲线显示山顶NS向的土层频段谱比大于山体地形频段谱比;由于土层山体竖向地震动在中高频段放大,使得HVSR方法谱比结果在中高频段较RSSR方法所得结果明显偏低,而在山体基阶频段附近两种方法的谱比值接近.松散土层山体的台阵记录特征体现了地形和土层对地震动的联合作用,揭示了强震区起伏地形场地震害加重及地震滑坡集中发生的原因所在.   相似文献   

13.
Certain crack-influence parameters of Sayers and Kachanov are shown to be directly related to Thomsen's weak-anisotropy seismic parameters for fractured reservoirs when the crack/fracture density is small enough. These results are then applied to the problem of seismic wave propagation in polar reservoirs, i.e., those anisotropic reservoirs having two axes that are equivalent but distinct from the third axis), especially for horizontal transversely isotropic seismic wave symmetry due to the presence of aligned vertical fractures and resulting in azimuthal seismic wave symmetry at the Earth's surface. The approach presented suggests one method of inverting for fracture density from wave speed data. A significant fraction of the technical effort in the paper is devoted to showing how to predict the angular location of the true peak (or trough) of the quasi-SV-wave for polar media and especially how this peak is related to another angle that is very easy to compute. The axis of symmetry is always treated here as the x 3-axis for either vertical transversely isotropic symmetry (due, for example, to horizontal cracks), or horizontal transversely isotropic symmetry (due to aligned vertical cracks). Then, the meaning of the stiffnesses is derived from the fracture analysis in the same way for vertical transversely isotropic and horizontal transversely isotropic media, but for horizontal transverse isotropy the wave speeds relative to the Earth's surface are shifted by  90o  in the plane perpendicular to the aligned vertical fractures. Skempton's poroelastic coefficient B is used as a general means of quantifying the effects of fluids inside the fractures. Explicit Biot-Gassmann-consistent formulas for Thomsen's parameters are also obtained for either drained or undrained fractures resulting in either vertical transversely isotropic or horizontal transversely isotropic symmetry of the reservoir.  相似文献   

14.
Summary The paper is intended as a contribution to the quantitative analysis of travel-time curves of seismic events recorded in the Ostrava-Karviná District (OKD). The input data represent a set of 2621 seismic events, recorded by the local seismological network of 26 mine stations DSLA and a regional diagnostic polygon consisting of five surface Lennartz stations. All the events were processed automatically in the Operational Seismological Centre of the Czechoslovak Army Mine in Karviná and stored in the seismological data base. The results are presented in the form of graphs of arrival times versus distance for the whole OKD, for two mines and one tectonic block.Travel-time curves of direct P and S waves, as well as of reflected and refracted waves are given. The direct P and S waves propagate well practically throughout the whole region studied, but their apparent velocities of propagation are affected by the properties of the rock medium.As a result of the complicated geological conditions, the recorded wave image is quite complicated. Methods of mathematical modelling, using kinematic and dynamic parameters of seismic waves, will have to be applied to identify the separate wave groups uniquely.  相似文献   

15.
The following criteria for selection of doublets at Polish coal mines were accepted: the difference in magnitude (based on seismic moment) of two events not larger than 0.15, the distance between their hypocenters not greater than 150 m, and the time interval between their occurrence not longer than 10 days. Similarly, the criteria for seismic events at copper mines are: the difference in magnitude not exceeding 0.15, the distance not greater than 200 m, and the time interval not longer than 20 days. Seismic events from the Wujek and Ziemowit coal mines that occurred between 1993 and 1995, and seismic events from the Polkowice copper mine that occurred between 1994 and 1996 and from the Rudna copper mine that occurred between 1994 and 2004 were considered. Their source parameters and focal mechanisms were known in most cases from previous studies. Altogether 108 seismic pairs from coal mines and 118 pairs from copper mines were found, forming doublets, triplets and quadruplets, within the magnitude range from 0.7 to 3.5. The distance and time intervals between two events forming pairs are not dependent on magnitude of these events. The focal mechanism of seismic events forming pairs is similar in over 60 percent of pairs at coal mines and in about one third of pairs at copper mines. Spatial distributions of doublets in particular sections of coal and copper mines display dominant linear trends, characteristic for a given area, which are often in conformity with the direction of nodal planes determined by fault plane solution of one or both the events forming a doublet. In such cases, the rupture plane can be discriminated among the nodal planes.  相似文献   

16.
Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which make the medium anisotropic on the scale of seismic wavelength. Applying the linear‐slip theory, we investigate seismic signatures of the effective medium produced by a single set of ‘general’ vertical fractures embedded in a purely isotropic host rock. The generality of our fracture model means the allowance for coupling between the normal (to the fracture plane) stress and the tangential jump in displacement (and vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine independent effective parameters and possesses several distinct features which help to identify the physical model and estimate the fracture compliances and background velocities. For example, the polarization vector of the vertically propagating fast shear wave S1 and the semi‐major axis of the S1‐wave normal‐moveout (NMO) ellipse from a horizontal reflector always point in the direction of the fracture strike. Moreover, for the S1‐wave both the vertical velocity and the NMO velocity along the fractures are equal to the shear‐wave velocity in the host rock. Analysis of seismic signatures in the limit of small fracture weaknesses allows us to select the input data needed for unambiguous fracture characterization. The fracture and background parameters can be estimated using the NMO ellipses from horizontal reflectors and vertical velocities of P‐waves and two split S‐waves, combined with a portion of the P‐wave slowness surface reconstructed from multi‐azimuth walkaway vertical seismic profiling (VSP) data. The stability of the parameter‐estimation procedure is verified by performing non‐linear inversion based on the exact equations.  相似文献   

17.
-- The seismic records from significant earthquakes are profoundly affected by 3-D variations in crustal structure both in the source zone itself and in propagation to some distance. Even in structurally complex zones such as Japan and Mexico relatively coherent arrivals are found associated with different classes of propagation paths. The presence of strong lateral variations can disrupt the arrivals, and impose significant variations in propagation characteristics for different directions from the source as illustrated by observations for the 1995 Kobe and 2000 Tottori-ken Seibu earthquakes in western Japan. Such effects can be modelled in 3 dimensions using a hybrid scheme with a pseudospectral representation for horizontal coordinates and finite differences in depth. This arrangement improves parallel implementation by minimising communication costs. For a realistic 3-D model for the structure in western Japan the 3-D simulations to frequencies close to 1 Hz provide a good representation of the observations from subduction zones events such as the 1946 Nankai earthquake and the 2000 Tottori-ken Seibu earthquake. The model can therefore be used to investigate the pattern of ground motion expected for future events e.g., in current seismic gaps.  相似文献   

18.
Excavation induced seismic events with moment magnitudesM<0 are examined in an attempt to determine the role geology, excavation geometry, and stress have on scaling relations. Correlations are established based on accurate measurements of excavation geometry and methodology, stress regime, rock mass structure, local tectonics, and seismic locations. Scaling relations incorporated seismic moments and source radii obtained by spectral analysis, accounting for source, propagation, and site effects, and using Madariaga's dynamic circular fault model. Observations suggest that the interaction of stresses with pre-existing fractures, fracture complexity and depth of events are the main factors influencing source characteristics and scaling behaviour. Self-similar relationships were found for events at similar depths or for weakly structured rock masses with reduced clamping stresses, whereas a non-similar behaviour was found for events with increasing depth or for heavily fractured zones under stress confinement. Additionally, the scaling behaviour for combined data sets tended to mask the non-similar trends. Overall, depth and fracture complexity, initially thought as second order effects, appear to significantly influence source characteristics of seismic events withM<0 and consequently favour a non-similar earthquake generation process.  相似文献   

19.
To estimate the parameters of ground motion in future strong earthquakes, characteristics of radiation and propagation of seismic waves in the Kamchatka region were studied. Regional parameters of radiation and propagation of seismic waves were estimated by comparing simulations of earthquake records with data recorded by stations of the Kamchatka Strong Motion Network. Acceleration time histories of strong earthquakes (M w = 6.8–7.5, depths 45–55 km) that occurred near the eastern coast of Kamchatka in 1992–1993 were simulated at rock and soil stations located at epicentral distances of 67–195 km. In these calculations, the source spectra and the estimates of frequency-dependent attenuation and geometrical spreading obtained earlier for Kamchatka were used. The local seismic-wave amplification was estimated based on shallow geophysical site investigations and deep crustal seismic explorations, and parameters defining the shapes of the waveforms, the duration, etc. were selected, showing the best-fit to the observations. The estimated parameters of radiation and propagation of seismic waves describe all the studied earthquakes well. Based on the waveforms of the acceleration time histories, models of slip distribution over the fault planes were constructed for the studied earthquakes. Station PET can be considered as a reference rock station having the minimum site effects. The intensity of ground motion at the other studied stations was higher than at PET due to the soil response or other effects, primarily topographic ones. At soil stations INS, AER, and DCH the parameters of soil profiles (homogeneous pyroclastic deposits) were estimated, and nonlinear models of their behavior in the strong motion were constructed. The obtained parameters of radiation and propagation of seismic waves and models of soil behavior can be used for forecasting ground motion in future strong earthquakes in Kamchatka.  相似文献   

20.
—?The aim of our study consists of analyzing potentially non-double-couple seismic events recorded at regional distances. In order to define the nature of the seismic source, a moment tensor inversion is carried out as this method is general enough not to initially constrain the source mechanism. In this paper we present an application to a seismic event induced by a mine collapse which occurred near the town of Halle in Germany. Because of its induced nature, many parameters such as the location and geometry of this seismic source are known. This information allows us to test the influence of inadequate propagation modeling on the moment tensor obtained from the inversion. Green's functions have been computed with the reflectivity method in a flat layered medium, using the European model EurID (Du et? al., 1998; Dufumier et al., 1997). From the inversion of P-wave seismograms recorded by the German Regional Seismic Network will, we obtained a source time function which can be decomposed into two subevents. The first one has a large isotropic part and a deviatoric mechanism with near vertical nodal planes. No volume change is observed for the second subevent, but a deviatoric component opposite of the first one. The addition of S-waves does not change the results of the inversion which are stable. Surface waves were not used because of their poor dispersion curves. Based on the moment tensor obtained from these inversions, the physical process at the source is compatible with a large cavity collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号