首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Source parameter scaling relations are examined for microseismic events (–2.4M–0.3) occurring within higyly and moderately stressed and fractured rock masses at Strathcona mine, Sudbury, Canada. Insight into scaling is provided by waveform complexities, calculated rupture velocities, and maximum shear stresses based onin situ and numerical modelling data. The importance of normal stress on the failure process is also considered. Our results show that a strong dependence exists between stress release and seismic moment. An observed positive scaling in excess stress release (/2– a ) is consistent with the concept of overshoot. Rupture velocities ranging from 0.2 to 0.5 and waveform complexities less than 1.5 suggested that overshoot was related to healing behind a slowly advancing rupture front. Scaling in seismic efficiency paralleled that in apparent stress, implying that seismic stress release estimates are quasi-independent of the maximum shear stress. High levels of normal stress further supported the importance of high resisting stress in the observed overshoot behaviour and its role in the failure process.  相似文献   

2.
Extensive data comprising about 1500 seismic events with the moment magnitudes MW from–3.5 to 9.2 have been analyzed for identifying the implications of the event size, the type of faulting in the source, and tectonic situations for the efficiency of the radiation. It is shown that there are several hierarchy levels with different patterns of scaling relationships describing the changes in the parameters of seismic events with the event size. This is due to the specificity of the hierarchy in the macroscopic characteristics of the rock mass. The size and mechanism of the earthquake determine the general trends in the variations of its radiation efficiency. The role of the macroscopic parameter controlling the efficiency of a seismic source is played by the stiffness of a fault or a fracture. The scaling relationship of this parameter determines several hierarchical levels within which the changes in the characteristics of the earthquakes follow the different laws. The huge scatter in the values of the scaled energy (the ratio of the radiated seismic energy to the seismic moment, energy-to-moment ratio) about the average requires additional study. Quite probably, the value of the scaled seismic energy is determined by the mesostructure and physicomechanical characteristics of the fault’s core. Small variations in these factors may lead to drastic changes in the stress drop amplitude and in the rupture propagation velocity up to the emergence of different regimes of deformation.  相似文献   

3.
A 3D relocation technique permits precise locations of induced earthquakes. Geostatistical processing using the data of 87 boreholes provides the basis of a precise 3D structure, with a dome geometry. Conventional laboratory mechanical tests performed on deep rock samples (1000 m to 5000 m) define the rock properties at depths similar to those of the seismic events (1<M L<4.2) that range from 1 to 7 km.In the studied period, most (85%), of the events were located above the gas reservoir, with very few located in the reservoir itself. Because the production parameters (50 MPa depletion of the gas pressure reservoir) are homogeneous throughout the gas field, the lateral inhomogeneity of the seismic rupture locations are a consequence of variations in the rheological response of the dome to the deformation induced by gas production.Here a ratio of two is found between the elastic modulus of the seismic rock matrix and the elastic modulus of the aseismic rock matrix. The contrast in strength is at least as great, if not greater. Repeated measured surface deformations involve the whole structure. Spatial and temporal deformations indicate that aseismic deformation is quantitatively the main process of this structural deformation. The heterogeneous stress pattern inferred fromP-axes of induced earthquakes disagrees with the tectonic regional stress field. The radial distribution ofP-axes towards the gas reservoir probably reflects the production induced deformation. The inferred deformation of the dome occurs in response to weak induced stresses.  相似文献   

4.
Intrinsic and scatteringS-wave quality factors (Q ) were estimated using the Multiple Lapse Time Window Analysis (MLTWA) for microseismic events (M<–1) with source-sensor distances of 45 to 120 m, associated with an excavation at 630 m depth in Strathcona Mine, Sudbury, Canada. Additional information on the rock mass was provided by underground structural mapping data. IntrinsicQ values, at 800 Hz, were on the order of 140, similar to quality factor values obtained in previous studies using Spectral Decay and Coda-Q methods (120 to 170). The scattering quality factor at this frequency was about 520. An observed frequency dependence of the scattering attenuation suggested that a decrease in the density of scatterers, with scale lengths on the order of 2 m, exists at the site. Characteristic fracture scale lengths were considered to range from 4 to 6 m as identified in the mapping data. These observations were supported by the increase in scattering found for seismic waves with frequencies less than 1000 Hz. By assuming that the identified scatters are characteristic faults, these scatterers can then be considered to increase nonsimilar behavior in source scaling. Overall, our results suggest that MLTWA provides a practical method for remotely characterizing the quality of a rock mass when visual observations are not attainable.  相似文献   

5.
—?The potential for large excavation-induced seismic events may be recognised, even if the timing of an event may be inherently unpredictable. In this case, modelling the wave propagation from a potential event could allow the dynamic motions around an excavation to be projected, and for areas of danger to be anticipated. However, the above and other potential applications require accurate models of wave interaction with the openings, as well as with the fractured rock which surrounds such excavations. This paper considers real recorded waveforms and how well these waveforms are modelled by explicit mechanical models of the source, the medium and the excavation. Models of experiments at three different scales of the problem are presented: small and large amplitude waveforms recorded around a deep-level mining tunnel in a synthetic rockburst experiment; waveforms from laboratory experiments of waves through plates of steel representing fractures; waveforms from active pulses in an acoustic emission experiment in a small volume of fractured rock at the surface of an underground excavation. The results show that elastic wave propagation around an excavation was a first approximation for small amplitude waves, but was less successful for modelling large amplitude waves and more fractured rock. Fractures in the models were represented explicitly with displacement discontinuities. Waveforms through known fracture geometries were particularly well-reproduced, and indicate the importance of fracture stiffness, the in situ stress state, and stress-dependence of the fractures in such models. Overall, the models are sufficiently successful at representing recorded behaviour, to be encouraging for the goal of representing accurate wave motions around excavations.  相似文献   

6.
A collection of ground‐motion recordings (1070 acceleration records) of moderate (5.1⩽ML⩽6.5) earthquakes obtained during the execution of the Taiwan Strong Motion Instrumentation Program (TSMIP) since 1991 was used to study source scaling model and attenuation relations for a wide range of earthquake magnitudes and distances and to verify the models developed recently for the Taiwan region. The results of the analysis reveal that the acceleration spectra of the most significant part of the records, starting from S‐wave arrival, can be modelled accurately using the Brune's ω‐squared source model with magnitude‐dependent stress parameter Δσ, that should be determined using the recently proposed regional relationships between magnitude (ML) and seismic moment (M0) and between M0 and Δσ. The anelastic attenuation Q of spectral amplitudes with distance may be described as Q=225 ƒ1.1 both for deep (depth more than 35 km) and shallow earthquakes. The source scaling and attenuation models allow a satisfactory prediction of the peak ground acceleration for magnitudes 5.1⩽M⩽6.5 and distances up to about 200 km in the Taiwan region, and may be useful for seismic hazard assessment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A polyaxial (true‐triaxial) stress‐loading system, developed originally for determining all nine components of P‐ and S‐wave velocities and attenuation and fluid permeability for 50.8 mm‐side cubic rock specimens tested to failure, has been modified to permit the measurement of acoustic emission events associated with the failure process. Results are reported for Crosland Hill sandstone tested to failure under loading conditions leading to the formation of sets of aligned microcracks, achieved by maintaining the minor principal stress at a low value while increasing the two other principal stresses until failure of the rock. An ultrasonic survey associated with the test has been employed to map the transversely‐isotropic velocity structure created by through‐going parallel fractures resulting from the sets of aligned microcracks. This velocity structure has then been employed to locate acoustic emission events recorded during the test by four acoustic emission sensors located in each of the six specimen loading platens. A selection of acoustic emission events associated with one of the fractures has been processed for moment tensor analysis information, in order to determine the source type and orientation of microcracking as the fracture grows. The mechanisms indicate tensile behaviour during initial fracture propagation. Shear failure, however, appears to dominate as the fracture finally approaches the opposite face of the cubic specimen. The work presented here has, in part, led to the development of new rock testing systems and geophysical monitoring and processing technologies that will enable laboratory study of rock behaviour under conditions better resembling those experienced in situ.  相似文献   

8.
The rapid release of strain energy is an important phenomenon leading to seismic events or rock failures during the excavation of deep rock.Through theoretical analysis of strain energy adjustment during blasting and mechanical excavation,and the interpretation of measured seismicity in the Jin-Ping Ⅱ Hydropower Station in China,this paper describes the characteristics of energy partition and induced seismicity corresponding to different energy release rates.The theoretical analysis indicates that part of the strain energy will be drastically released accompanied by violent crushing and fragmentation of rock under blast load,and this process will result in seismic events in addition to blasting vibration.The intensity of the seismicity induced by transient strain energy release highly depends on the unloading rate of in-situ stress.For mechanical excavation,the strain energy,which is mainly dissipated in the deformation of surrounding rock,releases smoothly,and almost no seismic events are produced in this gradual process.Field test reveals that the seismic energy transformed from the rock strain energy under high stress condition is roughly equal to that coming from explosive energy,and the two kinds of vibrations superimpose together to form the total blasting excavation-induced seismicity.In addition,the most intense seismicity is induced by the cut blasting delay; this delay contributes 50% of the total seismic energy released in a blast event.For mechanical excavation,the seismic energy of induced vibration(mainly the low intensity acoustic emission events or mechanical loading impacts),which accounts only for 1.5‰ of that caused by in-situ stress transient releasing,can be ignored in assessing the dynamic response of surrounding rock.  相似文献   

9.
The method of relative seismic moment tensor determination proposed byStrelitz (1980) is extended a) from an interactive time domain analysis to an automated frequency domain procedure, and b) from an analysis of subevents of complex deep-focus earthquakes to the study of individual source mechanism of small events recorded at few stations.The method was applied to the recovery of seismic moment tensor components of 95 intermediate depth earthquakes withM L=2.6–4.9 from the Vrancea region, Romania. The main feature of the obtained fault plane solutions is the horizontality ofP axes and the nonhorizontal orienaation ofT axes (inverse faulting). Those events with high fracture energy per unit area of the fault can be grouped unambiguously into three depth intervals: 102–106 km, 124–135 km and 141–152 km. Moreover, their fault plane solutions are similar to ones of all strong and most moderate events from this region and the last two damaging earthquakes (November 10, 1940 withM W=7.8 and March 4 1977 withM W=7.5) occurred within the third and first depth interval, respectively. This suggests a possible correlation at these depths between fresh fracture of rocks and the occurrence of strong earthquakes.  相似文献   

10.
Characteristicsofambientstressvaluesformicro-earthquakesequencesinWesternYunnan Earthquake Prediction Experimental FieldJia-Z...  相似文献   

11.
中国大陆主要地震活动区中小地震震源参数研究   总被引:31,自引:3,他引:28       下载免费PDF全文
本文利用中国大陆几个主要地震活动区近几年积累的大量ML≥2.5数字地震观测记录,在分别反演得到13个不同构造研究区域的介质衰减模型、348个台站的场地效应的基础上,自0.1~20 Hz的SH观测波形数据中逐步消除了仪器、噪声、几何扩散、传播路径的介质衰减、台站场地效应等影响后,恢复了2573次3.0≤ML≤6.0地震的...  相似文献   

12.
ComprehensiveanalysesofseismicsourcelayerinXingtaiandTangshanseismicregionsandtheconditionsofmediaaboveandbelowthisLayerTONG...  相似文献   

13.
We estimate corner frequencies and stress drops for 298 events ranging from M w 3.2–7.0 in 17 inland crustal earthquake sequences in Japan to investigate the source scaling and variation in stress drops. We obtain the source spectral ratio from observed records by the S-wave coda spectral ratio method. The advantage of using the S-wave coda is in obtaining much more stable source spectral ratios than using direct S-waves. We carefully examine the common shape of the decay of coda envelopes between event pair records. The corner frequency and stress drop are estimated by modeling the observed source spectral ratio with the omega-square source spectral model. We investigate the dependences of stress drops on some tectonic effects such as regionality, focal mechanism, and source depth. The principal findings are as follows: (1) a break in self-similar source scaling is found in our dataset. Events larger than M w 4.5 show larger stress drops than those of smaller events. (2) Stress drops of aftershocks are mostly smaller than those of mainshocks in each sequence. (3) There are no systematic differences between stress drops of events occurring inside and outside the Niigata-Kobe Tectonic Zone in Japan. (4) Clear dependence of the faulting type on stress drops cannot be seen. (5) Stress drops of aftershocks depend on their source depth. (6) The crack size obtained from the corner frequency corresponds to the total rupture area of heterogeneous slip models for large events.  相似文献   

14.
Abstract Stress measurement is performed to estimate the states of in situ rock stress at the Torigata open‐pit limestone mine in Japan using the compact conical‐ended borehole overcoring (CCBO) technique. A set of back and forward analyses are then carried out to evaluate the states of regional and local in situ rock stresses and the mine‐induced rock slope stability using a 3‐D finite element model. The maximum horizontal local in situ rock stress measured by the CCBO technique acts in the northeast–southwest direction. The horizontal regional tectonic stresses obtained by the back analysis are in good agreement with those of the horizontal local in situ rock stress measured by the CCBO technique. However, the horizontal regional tectonic stress is more compressive than the horizontal local in situ rock stress. This is because the horizontal regional stress due to gravity is not considered in the back‐analyzed horizontal regional tectonic stress, but it is included in the local in situ rock stress measured by the CCBO technique. The local stress obtained by the forward analysis, especially its horizontal components, is in good agreement with the horizontal local in situ rock stress measured by the CCBO technique, and the magnitude of the vertical normal stress increases more rapidly than those of the horizontal normal stresses with depth. As a result, the ratio of the horizontal normal stress to the vertical normal stress is largest at the nearest excavation level and decreases with depth. This means that the stress field within the mine‐induced rock slope is affected by the horizontal components of the local in situ rock stress.  相似文献   

15.
EstimationofseismicstresdropfromthepeakvelocityofgroundmotionJIAZHENGQIN(秦嘉政)ZUYINLIU(刘祖荫)XIAODONGQIAN(钱晓东)QINGYINXIE(谢庆...  相似文献   

16.
利用“十五”数字化后山西地震台网记录的612次 ML ≥2.0地震,使用中国地震局地震预测研究所推广的中小地震新参数计算软件,计算其中148次事件的震源新参数,对地震矩、矩震级、震源破裂尺度、应力降、拐角频率等参数间的定标关系做初步研究,得出 ML 震级与地震矩、矩震级间存在较好的线性正相关;震级与震源尺度间存在多项式关系;与应力降的对数呈显著正相关,当大于 ML 4.0后,随着震级的增大,释放的应力降略有变缓;与拐角频率的对数呈负相关。  相似文献   

17.
Fractures: Finite-size scaling and multifractals   总被引:1,自引:0,他引:1  
The distributions of contact area and void space in single fractures in granite rock have been determined experimentally by making metal casts of the void spaces between the fracture surfaces under normal loads. The resulting metal casts on 52 cm diameter core samples show a complex geometry for the flow paths through the fracture. This geometry is analyzed using finite-size scaling. The spanning probabilities and percolation probabilities of the metal casts are calculted as functions of observation scale. Under the highest stresses of 33 MPa and 85 MPa there is a significant size-dependence of the geometric flow properties for observation scales smaller than 2 mm. Based on this data, the macroscopic percolation properties of the extended fracture can be well represented by relatively small core samples, even under normal stresses larger than 33 MPa. The metal casts also have rich multifractal structure that changes with changing stress.  相似文献   

18.
19.
岳晓媛  武安绪  冯刚  李红  武敏捷  李腊月 《地震》2016,36(2):119-131
选用首都圈数字遥测地震台网地震波形资料,利用近震源Brune模式计算首都圈地区2002年至今ML≥2.0地震的视应力值,探讨了震源参数的标度关系,最终选取2.0≤ML≤2.9地震对首都圈地区2002年以来中强地震前视应力的时空异常变化特征进行详细分析。研究结果表明:首都圈中强地震前,多次地震出现显著的视应力高值异常,且地震多发生在视应力高值异常区域附近。同时与波速比计算结果进行了对比分析,印证了异常存在具有一定的客观性。由此可见,分析识别首都圈地区的应力状态可以为该地区中强震的危险性提供判定依据。  相似文献   

20.
A generalized chi-square regression approach to establishempirical relations between different types of seismic strengthparameters with uncertainties in all input data is presented anddiscussed in comparison with standard least-squares techniques.The chi-square technique can consider errors of individual entriesbut can also be applied when errors are not exactly known and onlyweaker quantitative constraints can be made. It can preserve thesymmetry of the derived relations and is preferred for complexregression models. Results for three types of regression modelsare presented for (1) a linear relation between M Sand m bfor events in the North Atlantic Ocean; (2) a quadratic relationbetween M w and M L forevents in central Europe; (3) linearrelations between M L and I 0,with logarithmic dependency ofthe focal depth, for several regions in central and northernEurope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号