首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

2.
The concentrations of fifty trace elements, including relatively volatile elements and transition metal elements, in fused glasses of Geological Survey of Japan rock reference materials GSJ JR-2, JA-1, JA-2, JB-1a, JB-3, JGb-1 and JF-1 were determined by particle (proton) induced X-ray emission (PIXE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The fused glasses were prepared by rapid fusion and subsequent quenching in welded platinum capsules and were found to be homogeneous for major elements and for trace elements with concentrations of more than 1 μg g-1 within the observed precision (± 10% mean) on a 70 μm sampling scale. The values obtained by PIXE and LA-ICP-MS for the transition elements (Cr, Mn, Fe, Ni and Cu), the relatively volatile elements (Zn, Ga, Rb and Pb) and the refractory elements (Y, Zr, Nb and Th) with concentrations greater than a few μg g-1 showed good agreement (within 10 % relative difference). The values for almost all the elements detected at concentrations higher than 1 μg g-1 as determined by LA-ICP-MS also agreed well with the reference values (mean relative difference < ± 10%), except for B and Cu. The good agreement confirmed the appropriateness of the NIST SRM 600 series glass calibration reference material for LA-ICP-MS analysis of glasses with variable major-element compositions for almost all elements. The concentrations of Cu in all the samples were lower than the reference values, which was attributed to adsorption of the transition metals onto the platinum capsule during preparation.  相似文献   

3.
The microanalytical capability of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to determine ultra trace elemental concentrations has been demonstrated by the analysis of two low concentration glass standard reference materials, NIST SRM 614 and 616. Results for fifty two elements at concentrations in the low ng g-1 range are compared with those determined using secondary ion mass spectrometry (SIMS). Both techniques provide results at these concentrations that generally agree within 95% confidence limits, demonstrating the accuracy for ultra-trace level of in situ determinations by the two techniques. At concentrations of less than 20 ng g-1 in NIST SRM 616, an accuracy and precision of better than 10% has been obtained for most mono-isotopic rare earth elements, when a spot size of 50 μm is used. Limits of detection for selected elements were as low as 0.5 ng g-1.  相似文献   

4.
A new technique for the in situ analysis of Re, Au, Pd, Pt and Rh in natural basalt glass by laser ablation (LA)-ICP-MS is described. The method involves external calibration against NIST SRM 612/613 or 614/615 glass certified reference materials, internal standardisation using Ca, and ablation with a 200 μm wide beam spot and a pulsed laser repetition rate of 50 Hz. Under these conditions, sensitivities for Re, Au, Pd, Pt and Rh analyte ions are ˜ 5000 to 100,000 cps/μg g-1. This is sufficient to make measurements precise to ˜ 10% at the 2-10 μg g-1 level, which is well within the range of concentrations expected in many basalts. For LA-ICP-MS calibration and a demonstration of the accuracy of the technique, concentrations of Re, Au, Pd, Pt and Rh in the NIST SRM 610/611 (˜ 1 to 50 μg g-1), 612/613 (˜ 1 to 7 μg g-1), 614/615 (˜ 0.2 to 2 μg g-1) and 616/617 (˜ 0.004 to 2 μg g-1) glasses were determined by solution-nebulisation (SN)-ICP-MS. Using the 612/613 or 614/615 glasses as calibration standards, LA-ICP-MS measurements of these elements in the other NIST glasses fell within ˜ 15% of those determined by SN-ICP-MS. Replicate LA-ICP-MS analyses of the 612/613 and 614/615 glasses indicate that, apart from certain anomalous domains, the glasses are homogeneous for Re, Au, Pd, Pt and Rh to better than 3.5%. Two LA-ICP-MS analyses of natural, island-arc basalt glasses exhibit large fractionations of Re, Au and Pd relative to Pt and Rh, compared to the relative abundances in the primitive mantle.  相似文献   

5.
Fifty-two trace elements in NIST SRM 614, 616 and MPI-DING BM90/21-G glass reference materials as well as in NIST SRM 612, USGS BCR2-G and other MPI-DING reference glasses (KL2-G, GOR132-G, GOR128-G, ATHO-G, Tl-G, StHs6/80-G and ML3B-G) were determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Accurate ultra-low trace element abundances in the NIST SRM 614, 616 and BM90/21-G reference glasses down to lower ng g−1 levels were determined with relative standard deviations (RSD) of less than 10%. Limits of detection using He as carrier gas were up to two times lower than with Ar and were 0.004 to 0.12 μg g−1 for elements of lower mass numbers (amu < 85) and 0.002 to 0.06 μg g−1 for elements having amu < 85. The measured concentrations generally agree within 15% with previous studies except for B in NIST SRM 614 and 616, which appears to be heterogeneously distributed, and Co, Zn, Ga and Ag in NIST SRM 616 for which the existing data set is too small to evaluate the discrepancies. New values for As (0.593 μg g−1), Ag (0.361 μg g−1) and Cd (0.566 μg g−1) in NIST SRM 614 and new values for Na (94864 μg g−1) and As (0.276 μg g−1) in NIST SRM 616 are reported.  相似文献   

6.
Procedures for sampling, sample preparation and ICP-MS analysis of endemic sponges from Lake Baikal have been developed. Sample decomposition was carried out using an open acid decomposition with ultrasound treatment. The distribution of nineteen elements (Mg, Al, P, Ca, Ti, Mn, Co, Ni, Cu, Rb, Sr, Y, Cd, Ba, La, Ce, Pb, Th and U) in different parts of a sponge's body (outer and inner layers and layers adjacent to the substratum) was studied. Detection limits were determined; these ranged from 0.013 to 4.12 μg g-1 for trace elements and from 23 to 130 μg g-1 for biogenic elements. The degree of elemental uptake by living substances is discussed with regard to the environment.  相似文献   

7.
Three new certified reference materials (CRM), certified for the platinum-group elements (PGE), GPt-8, GPt-9 and GPt-10 were developed based on the previous CRMs IGGE GPt-1 to GPt-7. The PGE concentration of GPt-8 is about 1 ng g-1. GPt-9 and GPt-10 are ore samples with PGE concentrations of more than 1 μg g-1. A multi-laboratory collaborative analysis scheme was adopted in the certification procedure, in which nine highly-experienced institutes and laboratories participated. The samples were analysed for the six platinum-group elements by nickel sulfide mini fire assay, with Te coprecipitation, and were determined by ICP-MS. Osmium was determined by isotope dilution.  相似文献   

8.
A simple and accurate method to determine fluorine and chlorine contents in small amounts (∼ 30 mg) in rock has been developed using ion chromatography after extraction by alkaline fusion. Powdered sample was mixed with sodium carbonate and zinc oxide at a mass ratio of 1:3:1, and was fused in an electric furnace at 900 °C for 30-40 minutes. An aqueous solution obtained by dissolving the fused silicate rock was diluted to the appropriate concentration of sodium carbonate (< ∼ 24 mmol l-1) to minimise the tailing effect on F- during ion chromatography caused by the large amount of carbonate species originating from the flux. Fluorine and chlorine contents were then determined by a standard additions method. Based on the relative standard deviation of the backgrounds, detection limits of both fluorine and chlorine were ∼ 4 μg g-1, when 30 mg test portions were fused and diluted by a factor of 1200. We also report new fluorine and chlorine contents in nine GSJ (Geological Survey of Japan) reference materials, including peridotite (JP-1), granite (JG-1a), basalts (JB-1b, 2 and 3), andesites (JA-1 and 2) and rhyolites (JR-1 and 2). Fluorine and chlorine contents in the reference materials in this study were consistent with previously reported values. Reproducibilities were < 10 % for samples with F and Cl concentrations of > 20 μg g-1 and < 20 % with F and Cl < 20 μg g-1.  相似文献   

9.
We found that the suppression of signals for 88Sr, 140Ce and 238U in rock solution caused by rock matrix in ICP-MS (matrix effects) was reduced at high power operation (1.7 kW) of the ICP. To make the signal suppression by the matrix negligible, minimum dilution factors (DF) of the rock solution for Sr, Ce and U were 600, 400 and 113 at 1.1, 1.4 and 1.7 kW, respectively. Based on these findings, a rapid and precise determination method for Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U using FI (flow injection)-ICP-MS was developed. The amount of the sample solution required for FI-ICP-MS was 0.2 ml, so that 1.8 mg sample was sufficient for analysis with a detection limit of several ng g-1. Using this method, we determined the trace element concentrations in the USGS rock reference materials, DTS-1, PCC-1, BCR-1 and AGV-1, and the GSJ rock reference materials, JP-1, JB-1, -2, -3, JA-1, -2 and -3. The reproducibilities (RSD %) in replicate analyses (n=5) of BCR-1, AGV-1, JB-1, -2, -3, JA-1, -2, and -3 were < 6 %, and typically 2.5%. The difference between the average concentrations of this study for BCR-1 and those of the reference values were < 2%. Therefore, it was concluded that the method can give reliable data for trace elements in silicate rocks.  相似文献   

10.
The platinum-group elements (PGE) and gold have been determined in twenty international rock reference materials by inductively coupled plasma-mass spectrometry (ICP-MS) after pre-concentration by a nickel sulfide fire assay. It was possible to achieve determination limits for a 50 g sample that ranged from 1 pg g-1 (Rh) to 23 pg g-1 (Au). Compared to published certified and recommended values for rock reference materials, the trueness of the method was found to be good. However, in some cases we observed large deviations for all elements in the sub 10 ng g-1 range within individual reference sample splits. Our results show that the PGE and Au are inhomogeneously distributed in the reference materials analysed here, where they are present in low concentrations, using 50 g test portions.  相似文献   

11.
The USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G were investigated by different analytical techniques. All these materials have a geological (basaltic) matrix and are therefore useful in igneous geochemistry as matrix-matched reference materials for microanalytical techniques. The new GS glasses have trace elements in groups at concentration levels of about < 0.01, 5, 50 and 500 μg g-1. Their major element compositions have been determined by EPMA, and trace elements have been analysed by LA-ICP-MS and two isotope dilution techniques using TIMS and ICP-MS. EPMA and LA-ICP-MS analyses indicated that the USGS reference glasses are homogeneous at the μm to mm scale with respect to major (variations < 1-2%) and most trace elements (variations 1-4%). Trace element data obtained from the different analytical techniques agreed within an uncertainty of 1-5%, indicating that between method results are comparable. Therefore, the preliminary working values for the four USGS GS glasses calculated from these data have a low level of uncertainty.  相似文献   

12.
The paper presents preliminary results of the use of a high resolution double-focussing, magnetic sector inductively coupled plasma-mass spectrometer (HR-ICP-MS) with ultraviolet laser ablation (LA) for the bulk analysis of geological materials fused with Li2B4O7. Detection limits are based on data from precision measurements of a fused SiO2 sample of high purity, and sensitivity data (cps/μg g-1) obtained on the Reference Material (RM) Syenite SY-2. For many trace elements, the detection limits are better than 0.05 μg g-1 using a sample to flux weight ratio of 1:7.
Calibration curves, which are based entirely on RMs, are established for Hf, Ta, Tb, Tm and Lu. They indicate that, even at this early stage in the development of the technique, data accurate to ˜ 25% can be collected. It is concluded that the method may prove to be a valuable supplement to XRF for low level element concentration measurements; it is also very practical, as the same sample discs can be used for both XRF and LA-ICP-MS analyses.  相似文献   

13.
The oxidation states of chromium in GSJ JSO-2 (artificially contaminated soil) and three other geochemical reference materials (GSJ JSO-1, JLS-1 and JMS-1) were observed using X-ray near edge structure (XANES). For comparison, other artificially contaminated soil materials (mimic-JSO-2) were prepared by adding Cr(VI) into JSO-1. Their oxidation states of chromium were determined using XANES. The chromium contents were 1118 μg g-1 for JSO-2, 1352 μg g-1 for mimic-JSO-2 and 69-113 μg g-1 for the other reference materials. Most chromium was present as hexavalent in mimic-JSO-2. No hexavalent species were detected in other samples. These results for chromium oxidation state in JSO-2 and mimic-JSO-2 obtained with XANES resembled those obtained from a chemical extraction method. The present JSO-2 has no trace of Cr(VI), although Cr(VI) was added as a major species during preparation. On the other hand, the content of Cr(VI) obtained in mimic-JSO-2 agreed with the original Cr(VI) content. A time-elapse study showed that Cr(VI) contents in mimic-JSO-2 decreased gradually to 70% of the original abundance during 240-day preservation in dry conditions. Moreover, the abundance of Cr(VI) decreased markedly to 15% after 240 days in the wet mimic-JSO-2 containing 20% m/m of water. These experiments suggested that soil humidity enhanced the reduction of Cr(VI) and that Cr(VI) was reduced even in dry conditions. Consequently, it is reasonable to infer that Cr(VI) doped into JSO-2 was completely reduced to Cr(III) during the preservation period of 5 years. The certification of the long-term stability of the chemical form in reference materials will be much more important in future.  相似文献   

14.
The beryllium and zirconium contents of 45 geochemical reference samples have been determined by inductively coupled plasma after fusion of the samples with lithium metaborate and dissolution of the melt in dilute nitric acid. The method described here is rapid and sample preparation straightforward. Good agreement is shown with previously published results for these two elements. A correction has to be made for an interference due to vanadium in determining the beryllium content, and there is a slight interference due to yttrium in the determination of zirconium. The detection limit for beryllium is about 0.2 μg g-1 and for zirconium about 15 μg g-1 in the sample.  相似文献   

15.
New concentrations for Au, Ir and Ag obtained by instrumental neutron activation analysis are presented for seventy geochemical reference materials. Results in agreement with literature values for Au and Ir down to concentrations of a few ng g−1 were obtained. For Au and Ir concentrations above 10 ng g−1, the repeatability of replicate analyses of reference materials was mostly better than 10%. For concentrations between 1 and 10 ng g−1 the RSD for Ir was 10–30%, whereas for Au it was higher and more variable (20–50%). In addition, concentrations for Cd and Hg are presented for some of the same reference materials. The high RSD at relatively high concentrations seen in gold for some RMs (e.g., WMG-1, WMS-1) did not exist for Ir and suggests homogeneity for this platinum-group element at the sub-sample size used in this study. For the following eight RMs, mostly ultramafic rocks (CHR-Pt+, OREAS-13P, OREAS-14P, PCC-1, UMT-1, WMG-1, WMS-1, WPR-1), Ir measurements agreed within ± 10% of mostly certified or recommended concentrations, which ranged from 2 ng g−1 to 6 μg g−1. For the reference material UB-N, iridium concentration compared favourably to published results obtained by isotope dilution ICP-MS methods and a previously unrecognised heterogeneity is inferred for Au, Hg and Sb, but not for the other measured elements.  相似文献   

16.
The analysis of granitic pegmatites still remains a challenge because suitable natural reference materials are scarce or not available. Two new reference materials were prepared at the Smithsonian Institution, to provide an avenue to pursue the geochemical analysis of micas and feldspars in granitic pegmatites: STL-1, the Stewart lepidolite (NMNH 174041) and ZA-1, the Zapot amazonite (NMNH 174042). STL-1 was prepared from lepidolite collected from the lithium-rich Stewart pegmatite, San Diego County, California (33°22'52'N, 117°03'41'W). ZA-1 was prepared from an amazonite from the topaz-bearing Zapot pegmatite, Mineral County, Nevada, (38° 41'N, 118 °33'W). The results of this study indicated that STL-1 and ZA-1 are homogeneous and could be used as reference materials that would allow the expansion of calibration curves in XRF analysis up to 16000 μg g−1 for Rb, 2000 μg g−1 for Cs and 100 μg g−1 for Tl. STL-1 and ZA-1 also contain unusually high concentrations of Ga and Tl, and STL-1 of Nb.  相似文献   

17.
Inductively coupled plasma-atomic emission spectrometry in conjunction with an ultrasonic nebulizer was employed for the determination of Sr and Ba in river waters at parts per billion (μg l−1) levels without pre-concentration. The ultrasonic nebulizer, equipped with a desolvation system, enhanced the analytical sensitivity by ten to twenty fold compared to conventional pneumatic nebulizers. The detection limits for Sr and Ba, ascertained from blanks and reference samples made in 0.05% NaCl solution, were 0.045 μg l−1 and 0.16 μg l−1 respectively. The accuracy of measurements, based on analyses of solutions of reference materials (G-2 and W-1) and multielement commercial standards (Merck®), was ± 10%. Replicate analyses of samples and reference samples showed measurement precision to be to be better than ± 5%, which is adequate considering that the concentration of Sr and Ba in river waters varies by one to two orders of magnitude.  相似文献   

18.
Total sulfur is an analyte for which there are few determinations published, despite the fact that it is a very important element (e.g., a major element in most ores, an important gas constituent in global warming, an active participant in acid drainage). Most geological reference materials have very poor quality sulfur results, that is with relative standard deviations (RSD) in the range of 30–50%, even for concentrations over 100 μg g−1 S, which compromises their use as calibrators. In order to provide modern results with low RSD, sulfur was determined in twenty-nine geological reference materials with a state-of-the-art elemental S/C analyser using metal chips (certified reference materials with a traceability link) and analytical grade sulfur for high concentration samples. Analytical parameters (sample mass, crucible degassing, calibration strategy, etc.) were optimised by testing. Our results agreed with reference material values provided by issuing bodies. Results for CCRMP SY-2 (129 ± 13 μg g−1 S), which has been proposed as a sulfur reference material, were in agreement with the proposed modern value of 122 ± 3.7 μg g−1 S.  相似文献   

19.
We present new concentration data for twenty four lithophile trace elements in NIST certified reference material glasses SRM 610-SRM 611 in support of their use in microanalytical techniques. The data were obtained by solution ICP-MS and isotope dilution TIMS analysis of two different sample wafers. An overall assessment of these new results, also taking into account ion probe studies that have been published in the literature, shows that these wafers can be considered to be homogeneous. Therefore, individually analysed wafers are believed to be representative of the entire batch of the SRM 610-611 glasses. Possible exceptions are the alkali metals (and a few volatile or non-lithophile trace elements). The analysed concentrations range between 370 μg g−1 (Cs) and 500 μg g−1 (Sr) and agree well with published values. On the basis of our new data and data recently published in the literature we propose "preferred average" values for the elements studied. These values are, within a few percent, identical to those proposed by other workers.  相似文献   

20.
A method for the selective separation of Ag, Cd, Cr, Cu, Ni, Pb and Zn in traces from solutions of calcite (CaCO3), dolomite (CaMg(CO3)2) and gypsum (CaSO4.2H2O) before their determination by inductively coupled plasma-atomic emission spectrometry (ICP-AES) is presented. The expected interferences of Ca and Mg on intensities of trace analytes were removed by collecting the elements of interest with cobalt(III) hexamethylenedithiocar-bamate, Co(HMDTC)3. The flotation of aqueous solutions (1 l) of calcite, dolomite and gypsum was performed at pH 6.0, by 1.5 mg l−1 Co and 0.6 mmol l−1 HMDTC. To minimise the effect of the reaction between Ca/Mg, which restrains the function of the surfactant, careful selection of the most suitable foaming reagent was necessary. The accuracy of the method was established by analysing natural alkaline-earth minerals by the standard addition method as well as using the dolomite reference materials GBW 07114 and GSJ JDo-1. The ICP-AES limits of detection following flotation on different minerals were found to be 0.080 μg g−1 for Cd, 0.105 μg g−1 for Ag, 0.142 μg g−1 for Cu, 0.195 μg g−1 for Cr, 0.212 μg g−1 for Ni, 0.235 μg g−1 for Zn and 0.450 μg g−1 for Pb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号