首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
The study presents composition data of 87 surface water samples from high alpine catchments of the Zermatt area (Swiss Alps). The investigated area covers 170 km2. It was found that the surface runoff acquires the dissolved solids mostly by reaction of precipitation water with the minerals of the bedrock. Total dissolved solids (TDS) vary from 6 to 268 mg L?1. All collected water shows a clear chemical signature of the bedrock mineralogy. The contribution of atmospheric input is restricted to small amounts of ammonium nitrate and sodium chloride. NH4 is a transient component and has not been detected in the runoff. Evaporation is not a significant mechanism for TDS increase in the Zermatt area. The chemical composition of the three main types of water can be related to the mineralogy of the dominant bedrock in the catchments. Specifically, Ca-HCO3 (CC) waters develop from metamorphic mafic rocks and from carbonate-bearing schists. Mg-HCO3 water originates from serpentinites and peridotites. Ca-SO4 (CS) waters derive from continental basement rocks such as pyrite-rich granite and gneiss containing oligoclase or andesine. The collected data suggest that, together with reaction time, modal sulfide primarily controls and limits TDS of the waters by providing sulfuric acid for calcite (CC waters) and silicate (CS waters) dissolution. If calcite is present in the bedrock, its dissolution neutralizes the acid produced by sulphide weathering and buffers pH to near neutral to weakly alkaline conditions. If calcite is absent, the process produces low-pH waters in gneiss and granite catchments. The type of bedrock and its mineral assemblage can be recognized in water leaving very small catchments of some km2 area. The large variety of water with a characteristic chemical signature is an impressive consequence of the richly diverse geology and the different rock inventory of the local catchments in the Zermatt area.  相似文献   

2.
《Applied Geochemistry》2002,17(3):285-300
Strontium and particularly 87Sr/86Sr ratios in stream water have often been used to calculate weathering rates in catchments. Nevertheless, in the literature, discharge variation effects on the geochemical behavior of Sr are often omitted or considered as negligible. A regular survey of both Sr concentrations and Sr isotope ratios of the Strengbach stream water draining a granite (Vosges mountains, France) has been performed during one year. The results indicate that during low water flow periods, waters contain lower Sr concentrations and less radiogenic Sr isotope ratios (Sr=11.6 ppb and 87Sr/86Sr=0.7246 as an average, respectively) than during high water flow periods (Sr= 13 ppb and 87Sr/86Sr=0.7252 as an average, respectively). This is contrary to expected dilution processes by meteoric waters which have comparatively lower Sr isotopic ratios and lower Sr concentrations. Furthermore, 87Sr/86Sr ratios in stream water behave in 3 different ways depending on moisture and on hydrological conditions prevailing in the catchment. During low water flow periods (discharge < 9 l/s), a positive linear relationship exists between Sr isotope ratio and discharge, indicating the influence of radiogenic waters draining the saturated area during storm events. During high water flow conditions, rising discharges are characterized by significantly less radiogenic waters than the recession stages of discharge. This suggests a large contribution of radiogenic waters draining the deep layers of the hillslopes during the recession stages, particularly those from the more radiogenic north-facing slopes. These results allow one to confirm the negligible instantaneous incidence of rainwater on stream water chemistry during flood events, as well as the existence in the catchment of distinct contributive areas and reservoirs. The influence of these areas or reservoirs on the fluctuations of Sr concentrations and on Sr isotopic variations in stream water depends on both moisture and hydrological conditions. Hence, on a same bedrock type, 87Sr/86Sr ratios in surface waters can be related to flow rate. Consequently, discharge variations must be considered as a pre-requisite when using Sr isotopes for calculating weathering rates in catchments, particularly to define the range of variations of the end-members.  相似文献   

3.
The relationship between subglacial chemical weathering processes and the Sr isotope composition of runoff from Robertson Glacier, Alberta, Canada, is investigated. This glacier rests on predominantly carbonate bedrock of Upper Devonian age, but silicate minerals are also present. The provenance of solute in meltwaters is found to vary systematically with solute concentration and, by inference, subglacial water residence time. In dilute waters, the principal process of solute acquisition is calcite dissolution fueled by protons derived from the dissolution of CO2 and subsequent dissociation of carbonic acid. At higher solute concentrations, dolomite dissolution coupled to sulfide oxidation is more important. Sr concentration is found to increase with total solute concentration in two separate meltwater streams draining from the glacier, but 87Sr/86Sr only increases in the eastern melt stream. Carbonate and K-feldspar sources are shown to dominate the Sr content of the western stream, irrespective of concentration. They also dominate the Sr content of the eastern stream at low and intermediate concentrations, but at higher concentrations, muscovite (with high 87Sr/86Sr) is also an important Sr source. This reflects the outcrop of muscovite-bearing lithologies in the catchment of the eastern stream and an increase in the rate of weathering of K-silicates relative to that of carbonates as more concentrated solutions approach saturation with respect to carbonates. Nonstoichiometric release of 87Sr/86Sr and preferential release of Sr over K from freshly ground K-silicate surfaces may also occur. This may help to explain the radiogenic nature of runoff from distributed subglacial drainage systems, which are characterized by long water:rock contact times and water flow through environments in which crushing and grinding of bedrock are active processes.Although the exchangeable Sr in tills has higher 87Sr/86Sr than local carbonate bedrock, only the more concentrated meltwaters from the eastern stream display similarly high values. The most dilute waters, which probably transport the bulk of the dissolved Sr flux from the glacier, have 87Sr/86Sr characteristic of local carbonate bedrock. Thus, the results suggest that although enhanced weathering of silicate minerals containing radiogenic Sr (such as muscovite) does occur in glaciated carbonate terrains, it is unlikely to contribute to any enhanced flux of radiogenic Sr from glaciated continental surfaces to the oceans.  相似文献   

4.
Determining the relative proportions of silicate vs. carbonate weathering in the Himalaya is important for understanding atmospheric CO2 consumption rates and the temporal evolution of seawater Sr. However, recent studies have shown that major element mass-balance equations attribute less CO2 consumption to silicate weathering than methods utilizing Ca/Sr and 87Sr/86Sr mixing equations. To investigate this problem, we compiled literature data providing elemental and 87Sr/86Sr analyses for stream waters and bedrock from tributary watersheds throughout the Himalaya Mountains. In addition, carbonate system parameters (PCO2, mineral saturation states) were evaluated for a selected suite of stream waters. The apparent discrepancy between the dominant weathering source of dissolved major elements vs. Sr can be reconciled in terms of carbonate mineral equilibria. Himalayan streams are predominantly Ca2+-Mg2+-HCO3 waters derived from calcite and dolomite dissolution, and mass-balance calculations demonstrate that carbonate weathering contributes ∼87% and ∼76% of the dissolved Ca2+ and Sr2+, respectively. However, calculated Ca/Sr ratios for the carbonate weathering flux are much lower than values observed in carbonate bedrock, suggesting that these divalent cations do not behave conservatively during stream mixing over large temperature and PCO2 gradients in the Himalaya.The state of calcite and dolomite saturation was evaluated across these gradients, and the data show that upon descending through the Himalaya, ∼50% of the streams evaluated become highly supersaturated with respect to calcite as waters warm and degas CO2. Stream water Ca/Mg and Ca/Sr ratios decrease as the degree of supersaturation with respect to calcite increases, and Mg2+, Ca2+, and HCO3 mass balances support interpretations of preferential Ca2+ removal by calcite precipitation. On the basis of patterns of saturation state and PCO2 changes, calcite precipitation was estimated to remove up to ∼70% of the Ca2+ originally derived from carbonate weathering. Accounting for the nonconservative behavior of Ca2+ during riverine transport brings the Ca/Sr and 87Sr/86Sr composition of the carbonate weathering flux into agreement with the composition of carbonate bedrock, thereby permitting consistency between elemental and Sr isotope approaches to partitioning stream water solute sources. These results resolve the dissolved Sr2+ budget and suggest that the conventional application of two-component Ca/Sr and 87Sr/86Sr mixing equations has overestimated silicate-derived Sr2+ and HCO3 fluxes from the Himalaya. In addition, these findings demonstrate that integrating stream water carbonate mineral equilibria, divalent cation compositional trends, and Sr isotope inventories provides a powerful approach for examining weathering fluxes.  相似文献   

5.
Atmospheric deposition of S in Sweden has decreased by some 80% over the last 15 a, resulting in a general reduction of SO4 concentrations in ground and surface water. This project, however, shows that artificial hydrological alteration in an acid wetland can reverse this trend and increase acidity and SO4 concentrations. The experiment involved the monitoring of two catchments in relatively virgin conditions. In one of the catchments, an experiment with intensive groundwater extraction from the bedrock was carried out. During the experiment, the runoff from the catchment decreased by 50%. Furthermore, the extraction of groundwater resulted in increased seasonal aeration of the centrally located wetland, leading to oxidation of reduced S bound to the soil layers of the wetland. The S changed to solute SO4, with a subsequent SO4 surge. Thus, the experiment resulted in an induced acidification of the wetland and runoff waters. The extraction of groundwater significantly increased the recharge of water from the overburden, glacial till and organic soils to groundwater in the bedrock, which in turn reduced the retention time in the bedrock aquifer. These changes resulted in the chemical signature of the groundwater in the bedrock becoming similar to those of the wetland. The findings revealed deterioration in the water quality in the bedrock due to increased concentrations of dissolved organic C and SO4, as well as a decrease in pH.  相似文献   

6.
《Applied Geochemistry》2000,15(9):1345-1367
Rare Earth Elements (REEs), and Sr and Nd isotope distributions, have been studied in mineralized waters from the Massif Central (France). The CO2-rich springs are characterized by a neutral pH (6–7) associated with total dissolved solids (TDS) from 1 to 7 g l−1. The waters result from the mixing of very mineralized water pools, thought to have equilibrated at a temperature of around 200°C with superficial waters. These two mineral water pools evidenced by Sr isotopes and dissolved REEs could reflect 2 different stages of water–rock interaction and an equilibrium with different mineral assemblages.The concentrations of individual dissolved REEs and total dissolved REEs (ΣREE), in the mineral waters examined, vary over several orders of magnitude but are not dependent on the main parameters of the waters (TDS, T°C, pH, Total Organic C). The dissolved REE concentrations presented as upper continental crust normalized patterns show HREE enrichment in most of the samples. The time evolution of REE patterns does not show significant fluctuations except in 1 borehole, located in the Limagne d’Allier area, which was sampled on 16 occasions over an 18 month period. Ten samples are HREE-enriched, whereas 6 samples show flat patterns.The aqueous speciation of REEs shows that CO2−3 complexes dominate (>80%) over the free metal, F, SO2−4 and HCO3 complexes. The detailed speciation demonstrates that the fractionation of REEs (i.e. the HREE enrichment) in CO2-rich and pH neutral fluids is due essentially to the predominance of the CO2−3 complexes.The Sr isotopic composition of the mineral waters in the Massif Central shows different mixing processes; in the Cézallier area at least 3 end-member water types exist. The most dilute end-member is likely to originate as poorly mineralized waters with minimal groundwater circulation. Two other mineralized end-members are identified, although the link between the geographical location of spring outflow and the mixing proportion between the 2 end-members is not systematic. The range in ϵNd(0) for mineralized waters in the Massif Central correlates well with that of the known parent rocks except for 4 springs. One way to explain the ϵNd(0) in these instances is a contribution from drainage of volcanic rocks. The isotopic systematics help to constrain the hydrogeological models for this area.  相似文献   

7.
In natural river systems, the chemical and isotopic composition of stream- and ground waters are mainly controlled by the geology and water-rock interactions. The leaching of major cations from soils has been recognized as a possible consequence of acidic deposition from atmosphere for over 30 years. Moreover, in agricultural areas, the application of physiological acid fertilizers and nitrogen fertilizers in the ammonia form may enhance the cation leaching through the soil profile into ground- and surface waters. This origin of leached cations has been studied on two small and adjacent agricultural catchments in Brittany, western France. The study catchments are drained by two first-order streams, and mainly covered with cambisoils, issued from the alteration and weathering of a granodiorite basement. Precipitations, soil water- and NH4 acetate-leachates, separated minerals, and stream waters have been investigated. Chemical element ratios, such as Ba/Sr, Na/Sr and Ca/Sr ratios, as well as Sr isotopic ratios are used to constrain the relative contribution from potential sources of stream water elements.Based on Sr isotopic ratio and element concentration, soil water- and NH4 acetate leaching indicates (1) a dominant manure/slurry contribution in the top soil, representing a cation concentrated pool, with low 87Sr/86Sr ratios; (2) in subsoils, mineral dissolution is enhanced by fertilizer application, becoming the unique source of cations in the saprolite. The relatively high weathering rates encountered implies significant sources of cations which are not accessory minerals, but rather plagioclase and biotite dissolution.Stream water has a very different isotopic and chemical composition compared to soil water leaching suggesting that stream water chemistry is dominated by elements issued from mineral and rock weathering. Agriculture, by applications of chemical and organic fertilizers, can influence the export of major base cations, such as Na+. Plagioclase dissolution, rather than anthropogenically controlled soil water, seems to be the dominant source of Na+ in streams. However, Ca2+ in streams is mostly derived from slurries and manures deposited on top soils, and transferred into the soil ion-exchange pool and stream waters. Less than 10% of Na+, 5-40% of Sr2+ and 20-100% of Ca2+ found in streams can be directly derived from the application of organic fertilizers.  相似文献   

8.
Climatic and tectonic controls on the relative abundance of solutes in streams draining the New Zealand Southern Alps were investigated by analyzing the elemental and Sr isotope geochemistry of stream waters, bedload sediment, and hydrothermal calcite veins. The average relative molar abundance of major cations and Si in all stream waters follows the order Ca2+ (50%) > Si (22%) > Na+ (17%) > Mg2+ (6%) > K+ (5%). For major anions, the relative molar abundance is HCO3 (89%) > SO42− (7%) > Cl (4%). Weathering reactions involving plagioclase and volumetrically small amounts of hydrothermal calcite define the ionic chemistry of stream waters, but nearly all streams have a carbonate-dominated Ca2+ and HCO3 mass-balance. Stream water Ca/Sr and 87Sr/86Sr ratios vary from 0.173 to 0.439 μmol/nmol and from 0.7078 to 0.7114, respectively. Consistent with the ionic budget, these ratios lie solely within the range of values measured for bedload carbonate (Ca/Sr = 0.178 to 0.886 μmol/nmol; 87Sr/86Sr = 0.7081 to 0.7118) and hydrothermal calcite veins (Ca/Sr = 0.491 to 3.33 μmol/nmol; 87Sr/86Sr = 0.7076 to 0.7097).Streams draining regions in the Southern Alps with high rates of physical erosion induced by rapid tectonic uplift and an extremely wet climate contain ∼10% more Ca2+ and ∼30% more Sr2+ from carbonate weathering compared to streams draining regions in drier, more stable landscapes. Similarly, streams draining glaciated watersheds contain ∼25% more Sr2+ from carbonate weathering compared to streams draining non-glaciated watersheds. The highest abundance of carbonate-derived solutes in the most physically active regions of the Southern Alps is attributed to the tectonic exhumation and mechanical denudation of metamorphic bedrock, which contains trace amounts of calcite estimated to weather ∼350 times faster than plagioclase in this environment. In contrast, regions in the Southern Alps experiencing lower rates of uplift and erosion have a greater abundance of silicate- versus carbonate-derived cations. These findings highlight a strong coupling between physical controls on landscape development and sources of solutes to stream waters. Using the Southern Alps as a model for assessing the role of active tectonics in geochemical cycles, this study suggests that rapid mountain uplift results in an enhanced influence of carbonate weathering on the dissolved ion composition delivered to seawater.  相似文献   

9.
The salt waters from the Emilia-Romagna sector of the Northern Apennine Foredeep have been investigated using major and trace element and stable isotope (δ2H, δ18O, δ37Cl, δ81Br and 87Sr/86Sr ratio). Ca, Mg, Na, K, Sr, Li, B, I, Br and SO4 vs. Cl diagrams suggest the subaerial evaporation of seawater beyond gypsum and before halite precipitation as primary process to explain the brine’s salinity, whereas saline to brackish waters were formed by mixing of evaporated seawater and water of meteoric origin. A diagenetic end-member may be a third component for mud volcanoes and some brackish waters. Salinization by dissolution of (Triassic) evaporites has been detected only in samples from the Tuscan side of the Apennines and/or interacting with the Tuscan Nappe. In comparison with the seawater evaporation path, Ca–Sr enrichment and Na–K–Mg depletion of the foredeep waters reveal the presence of secondary processes such as dolomitization–chloritization, zeolitization–albitization and illitization. Sulfate concentration, formerly buffered by gypsum-anhydrite deposition, is heavily lowered by bacterial and locally by thermochemical reduction during burial diagenesis. From an isotopic point of view, data of the water molecule confirm mixing between seawater and meteoric end-members. Local 18O-shift up to +11‰ at Salsomaggiore is related to water–rock interaction at high temperature (≈150°C) as confirmed by chemical (Mg, Li, Ca distribution) and isotopic (SO4–H2O) geothermometers. 37Cl/35Cl and 81Br/79Br ratios corroborate the marine origin of the brines and evidence the diffusion of halogens from the deepest and most saline aquifers toward the surface. The 87Sr/86Sr ratio suggests a Miocene origin of Sr and rule out the hypothesis of a Triassic provenance of the dissolved components for the analyzed waters issuing from the Emilia-Romagna sector of the foredeep. Waters issuing from the Tuscan side of the Apennines and from the Marche sector of the foredeep show higher 87Sr/86Sr ratios because of the interaction with siliciclastic rocks.  相似文献   

10.
Iron and manganese oxide coatings are actively forming on stream substrates in the White Oak Creek watershed in East Tennessee. Although oxidizing conditions are required for Fe-Mn oxide precipitation, coatings accumulate only if dissolved iron and manganese exceed 50 μg/L. Below this, coatings are lost by abrasion as fast as or faster than they form. Annual rates of formation of 3 mg/g on substrate (gravel) were observed. Manganese is dissolved from coatings between Eh values of 100 to 300 mV and below 1 mg/L dissolved O2 at pH 6.5 to 7.5. Iron oxides can be precipitated under these conditions.Uncontaminated gravels with oxide coatings (composed of illite, quartz, and feldspar) adsorbed radionuclides rapidly from waters below MPC (Maximum Permissible Concentration) levels. Contaminated gravels placed in uncontaminated waters lost 60Co by abrasion in oxidizing conditions and by dissolution of manganese coatings in reducing conditions. Exchangeable 90Sr was completely lost after one month whereas nonexchangeable 90Sr was lost more slowly; 137Cs was totally retained by the gravels. Gravels such as these can be used to monitor the radionuclide content of waters in the environment.  相似文献   

11.
The Precambrian Egersund anorthosites exhibit a wide range of groundwater chemical composition (pH 5.40-9.93, Ca2+ 1.5-41 mg/L, Na+ 12.3-103 mg/L). They also exhibit an evolutionary trend, culminating in high pH, Na-rich, low-Ca groundwaters, that is broadly representative of Norwegian crystalline bedrock aquifers in general. Simple PHREEQC modelling of monomineralic plagioclase-CO2-H2O systems demonstrates that the evolution of such waters can be explained solely by plagioclase weathering, coupled with calcite precipitation, without invoking cation exchange. Some degree of reaction in open CO2 systems seems necessary to generate the observed maximum solute concentrations, while subsequent system closure can be invoked to explain high observed pH values. Empirical data provide observations required or predicted by such a model: (i) the presence of secondary calcite in silicate aquifer systems, (ii) the buffering of pH at around 8.0-8.3 by calcite precipitation, (iii) significant soil gas CO2 concentrations (PCO2 > 10−2 atm) even in poorly vegetated sub-arctic catchments, and (iv) the eventual re-accumulation of calcium in highly evolved, high pH waters.  相似文献   

12.
Exhumation of the Himalayan-Tibetan orogen is implicated in the marked rise in seawater 87Sr/86Sr ratios since 40 Ma. However both silicate and carbonate rocks in the Himalaya have elevated 87Sr/86Sr ratios and there is disagreement as to how much of the 87Sr flux is derived from silicate weathering. Most previous studies have used element ratios from bedrock to constrain the proportions of silicate- and carbonate-derived Sr in river waters. Here we use arrays of water compositions sampled from the head waters of the Ganges in the Indian and Nepalese Himalaya to constrain the end-member element ratios. The compositions of tributaries draining catchments restricted to a limited range of geological units can be described by two-component mixing of silicate and carbonate-derived components and lie on a plane in multicomponent composition space. Key elemental ratios of the carbonate and silicate components are determined by the intersection of the tributary mixing plane with the planes Na = 0 for carbonate and constant Ca/Na for silicate. The fractions of Sr derived from silicate and carbonate sources are then calculated by mass-balance in Sr-Ca-Mg-Na composition space. Comparison of end-member compositions with bedrock implies that secondary calcite deposition may be important in some catchments and that dissolution of low-Mg trace calcite in silicate rocks may explain discrepancies in Sr-Ca-Na-Mg covariation. Alternatively, composition-dependent precipitation or incongruent dissolution reactions may rotate mixing trends on cation-ratio diagrams. However the calculations are not sensitive to transformations of the compositions by incongruent dissolution or precipitation processes provided that the transformed silicate and carbonate component vectors are constrained. Silicates are calculated to provide ∼50% of the dissolved Sr flux from the head waters of the Ganges assuming that discrepancies between Ca-Mg-Na covariation and the silicate rock compositions arise from addition of trace calcite. If the Ca-Mg-Na mixing plane is rotated by composition-dependent secondary calcite deposition, this estimate would be increased. Moreover, when 87Sr/86Sr ratios of the Sr inputs are considered, silicate Sr is responsible for 70 ± 16% (1σ) of the 87Sr flux forcing changes in seawater Sr-isotopic composition. Since earlier studies predict that silicate weathering generates as little as 20% of the total Sr flux in Himalayan river systems, this study demonstrates that the significance of silicate weathering can be greatly underestimated if the processes that decouple the water cation ratios from those of the source rocks are not properly evaluated.  相似文献   

13.
《Applied Geochemistry》2002,17(10):1273-1286
The pH of mine impacted waters was estimated from the spectral reflectance of resident sediments composed mostly of chemical precipitates. Mine drainage sediments were collected from sites in the Anthracite Region of eastern Pennsylvania, representing acid to near neutral pH. Sediments occurring in acidic waters contained primarily schwertmannite and goethite while near neutral waters produced ferrihydrite. The minerals comprising the sediments occurring at each pH mode were spectrally separable. Spectral angle difference mapping was used to correlate sediment color with stream water pH (r2=0.76). Band-center and band-depth analysis of spectral absorption features were also used to discriminate ferrihydrite and goethite and/or schwertmannite by analyzing the 4T16A1 crystal field transition (900–1000 nm). The presence of these minerals accurately predicted stream water pH (r2=0.87) and provided a qualitative estimate of dissolved SO4 concentrations. Spectral analysis results were used to analyze airborne digital multispectral video (DMSV) imagery for several sites in the region. The high spatial resolution of the DMSV sensor allowed for precise mapping of the mine drainage sediments. The results from this study indicate that airborne and space-borne imaging spectrometers may be used to accurately classify streams impacted by acid vs. neutral-to-alkaline mine drainage after appropriate spectral libraries are developed.  相似文献   

14.
Behavior of Uranium in the Yellow River Plume (Yellow River Estuary)   总被引:2,自引:0,他引:2  
The Yellow River (Huanghe) is the second largest river in China and is known for its high turbidity. It also has remarkably high levels of dissolved uranium (U) concentrations (up to 38 nmol 1-1). To examine the mixing behavior of dissolved U between river water and seawater, surface water samples were collected along a salinity gradient from the Yellow River plume during September 2004 and were measured for dissolved U concentration,234U:238U activity ratio, phosphate (PO4 3–), and suspended particulate matter. Laboratory experiments were also conducted to simulate the mixing process in the Yellow River plume using unfiltered Yellow River water and filtered seawater. The results showed a nonconservative behavior for dissolved U at salinities < 20 with an addition of U to the plume waters estimated at about 1.4 X 105 mol yr–1. A similarity between variations in dissolved U and PO4 3– with salinity was also found. There are two major mechanisms, desorption from suspended sediments and diffusion from interstitial waters of bottom sediments, that may cause the elevated concentrations of dissolved U and PO4 3– in mid-salinity waters. Mixing experiments indicate that desorption seems more responsible for the elevated dissolved U concentrations, whereas diffusion influences more the enrichment of PO4 3–.  相似文献   

15.
《Applied Geochemistry》2002,17(3):163-183
The combined chemical composition, B and Sr isotopes, and the basic geologic setting of geothermal systems from the Menderes Massif in western Turkey have been investigated to evaluate the origin of the dissolved constituents and mechanisms of water–rock interaction. Four types of thermal water are present: (1) a Na–Cl of marine origin; (2) a Na–HCO3 type with high CO2 content that is associated with metamorphic rocks of the Menderes Massif; (3) a Na–SO4 type that is also associated with metamorphic rocks of the Menderes Massif with H2S addition; and (4) a Ca–Mg–HCO3–SO4 type that results from interactions with carbonate rocks at shallow depths. The Na–Cl waters are further subdivided based on Br/Cl ratios. Water from the Cumalı Seferihisar and Bodrum Karaada systems are deep circulated seawater (Br/Cl=sea water) whereas water from Çanakkale–Tuzla (Br/Cl<sea water) are from dissolution of Messinian evaporites. Good correlations between different dissolved salts and temperature indicate that the chemical composition of the thermal waters from non-marine geothermal systems is controlled by: (1) temperature dependent water–rock interactions; (2) intensification of reactions due to high dissolved CO2 and possibly HCl gasses; and (3) mixing with overlying cold groundwater. All of the thermal water is enriched in B. The B isotopic composition (δ11B=2.3‰ to 18.7‰; n=6) can indicate either leaching of B from the rocks, or B(OH)3 degassing flux from deep sources. The large ranges in B concentrations in different rock types as well as in thermal waters from different systems suggest the water-rock mechanism. 87Sr/86Sr ratios of the thermal water are used to differentiate between solutes that have interacted with metamorphic rocks (87Sr/86Sr ratio as high as 0.719479) and carbonate rocks (low 87Sr/86Sr ratio of 0.707864).  相似文献   

16.
River water composition (major ion and 87Sr/86Sr ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L−1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L−1), with radiogenic 87Sr/86Sr isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and 87Sr/86Sr and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and 87Sr/86Sr isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and 87Sr/86Sr isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin.  相似文献   

17.
New major, trace and isotopic geochemical results from a regional study of springs discharging from the major carbonate rock aquifer in the Interlake Region of Manitoba, Canada, are used to understand water–rock reactions, timing of recharge/discharge, tufa formation processes, and as baseline data. Spring waters are fresh with total dissolved solids (TDS) concentrations ranging from 150 to 880 mg/L. Waters discharging in the northern part of the study area have lower TDS, are dominantly Ca–Mg–HCO3 waters with low SO4 concentrations (<< 50 mg/L), and appear to have interacted primarily with Silurian carbonate lithologies. In contrast, waters in the southeastern part of the study area have higher TDS and have elevated SO4 concentrations (up to 210 mg/L). Spring waters have elevated Mg/Camolar (1.23 ± 0.23), typically greater than congruent dissolution of dolomite. Ca and Mg concentrations and Mg/Camolar indicate that groundwater residence times were sufficient to allow equilibration with bedrock dolomite lithologies; elevated tritium in northern waters indicates a significant recharge component in the 1960's and 1970's. Tufa precipitates that have formed from many of the spring waters are low-Mg calcite (MgO = 1.70 to 5.80 wt.%). Sr concentrations are variable (57 to 657 ppm) and tufa Sr/Camolar ratios appear to be entirely controlled by spring water Sr/Camolar. Empirically determined Sr distribution coefficients (DSr = 0.389 ± 0.083) indicate rapid crystallization following CO2 degassing, consistent with heavier δ13CVPDB compared to spring waters. Sulfate concentrations are generally too low for calcitization (dedolomitization) reactions driven by anhydrite dissolution to be the dominant control on the elevated groundwater Mg/Camolar, implying either extensive sulfate reduction along the flow paths (however, δ13CDIC suggests the elevated SO4 is more consistent with Fe-sulfide oxidation), or that other processes are involved. Major ion ratios suggest that the waters in the southern part of the study area are more consistent with interaction with siliciclastic rocks than with anhydrite dissolution. We suggest that calcitization (dedolomitization) reactions driven by anhydrite dissolution may not dominate all carbonate aquifers and that mixing of waters in karst conduits combined with ion exchange reactions are important controls on water chemistry in these systems.  相似文献   

18.
Rare earth element (REE) concentrations were determined in acid mine drainage (AMD), bedrock, pyrite, and coal samples from the Sitai coal mine and the Malan coal mine in Shanxi province, China. The AMD displayed high REE concentrations with typical convex shale-normalized patterns. The REE concentrations in the bedrock samples are one order of magnitude higher than those found in pyrite and coal samples. The high REE concentrations in AMD most likely come from the acidic solution leached out REE in bedrock. Results from laboratory and field experiments show that pH is the most important factor controlling the fractionation of REE; but Fe, Al, and Mn colloids and secondary minerals also affects their fractionation. As the pH increased from 4 to 6, the concentrations of total dissolved REE decreased from 520 to 0.875???g?L?1. Fe and Al in AMD has less influence on the fractionation of dissolved REE than low concentrations of Mn. HREE were preferentially removed by secondary minerals and colloids, followed by MREE. Rare earth element??s speciation modeling indicates that sulfate complexes (LnSO4 + and Ln(SO4) 2 ? , 79?C91%) and free-metal species (Ln3+, 8.8?C21%) are the dominant REE species in the AMD, but the REE-sulfate complexation could not explain the MREE-enriched patterns.  相似文献   

19.
Natural and anthropogenic impacts on karst ground water, Zunyi, Southwest China, are discussed using the stable isotope composition of dissolved inorganic carbon and particulate organic carbon, together with carbon species contents and water chemistry. The waters can be mainly characterized as HCO3–Ca type, HCO3 · SO4–Ca type, or HCO3 · SO4–Ca · Mg type, according to mass balance considerations. It is found that the average δ13CDIC values of ground waters are higher in winter (low-flow season) than in summer (high-flow season). Lower contents of dissolved inorganic carbon (DIC) and lower values of δ13CDIC in summer than in winter, indicate that local rain events in summer and a longer residence time of water in winter play an important role in the evolution of ground water carbon in karst flow systems; therefore, soil CO2 makes a larger contribution to the DIC in summer than in winter. The range of δ13CDIC values indicate that dissolved inorganic carbon is mainly controlled by the rate of carbonate dissolution. The concentrations of dissolved organic carbon and particulate organic carbon in most ground water samples are lower than 2.0 mg C L−1 and 0.5 mg C L−1, respectively, but some waters have slightly higher contents of organic carbon. The waters with high organic carbon contents are generally located in the urban area where lower δ13CDIC values suggest that urbanization has had an effect on the ground water biogeochemistry and might threaten the water quality.  相似文献   

20.
Thermodynamic properties of 32 dissolved thorium species and 9 thorium-bearing solid phases have been collected from the literature, critically evaluated and estimated where necessary for 25°C and 1 atm pressure. Although the data are incomplete, especially for thorium minerals and organic complexes, some tentative conclusions can be drawn. Dissolved thorium is almost invariably complexed in natural waters. For example, based on ligand concentrations typical of ground water (ΣCl = 10 ppm, ΣF = 0.3 ppm, ΣSO4 = 100 ppm, andΣPO4 = 0.1 ppm), the predominant thorium species are Th(SO4)02, ThF2+2, and Th(HPO4)20below pH ≈ 4.5; Th(HPO4)2?3 from about pH 4.5 to 7.5; and Th(OH)04 above pH 7.5. Based on stability constants for thorium citrate, oxalate and EDTA complexes, it seems likely that organic complexes predominate over inorganic complexes of thorium in organic-rich stream waters, swamp waters, soil horizons, and waterlogged recent sediments. The thorium dissolved in seawater is probably present in organic complexes and as Th(OH)04. The tendency for thorium to form strong complexes enhances its potential for transport in natural waters by many orders of magnitude below pH 7 in the case of inorganic complexing, and below about pH 8 when organic complexing is important. The existence of complexes in addition to those formed with hydroxyl, is apparent from the fact that measured dissolved thorium in fresh surface waters (pH values generally 5–8) usually ranges from about 0.01 to 1 ppb and in surface seawater (pH = 8.1) is about 0.00064 ppb. This may be contrasted with the computed solubility of thorianite in pure water which is only 0.00001 ppb Th as Th(OH)04 above pH 5. Although complexing increases the solubility of thorium-bearing heavy minerals below pH 8, maximum thorium concentrations in natural waters are probably limited in general by the paucity and slow solution rate of these minerals and by sorption processes, rather than by mineral-solution equilibria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号