首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prior transmission electron microscope studies showed that the surface geometry of olivine changes dramatically during natural chemical weathering. However, similar morphological evolution has not been reported in laboratory studies of olivine dissolution. In this study, we examined the development of fayalite (Fe2SiO4) surface morphology during both abiotic and biotic (using Acidithiobacillus ferrooxidans) laboratory dissolution experiments at an initial pH of 2.0. The fayalite came from Cheyenne Canyon, Colorado (Smithsonian # R 3516) and contains a few percent laihunite (olivine structure with ordered ferric iron and vacancies, ∼Fe0.82+Fe0.83+SiO4). High-resolution field emission low voltage scanning electron microscope (SEM) characterization of all reacted samples showed etch patterns consistent with those reported from naturally reacted olivine. High-resolution transmission electron microscope (HRTEM) data demonstrated pervasive channeling on (001), with channel spacings that range down to < 10 nm. Formation of channels on (001) is probably initiated by preferential removal of cations from olivine M1 sites. Channeling confers at least an order of magnitude increase in surface area. Relict strips of olivine between channels contain laihunite layers that are oriented parallel to channel margins. X-ray diffraction analyses indicated that the relative abundance of laihunite is higher in reacted compared to unreacted samples. This result is consistent with prior studies of naturally weathered olivine that suggest that laihunite is far less readily dissolved than olivine.Samples reacted in the presence of A. ferrooxidans cells that enzymatically oxidized iron, or in solutions where ferric iron was added to simulate biological activity, dissolve at a much slower rate than samples reacted abiotically. We attribute suppression of the olivine dissolution rate to surface adsorption of Fe3+. It is probable that ferric iron adsorption is controlled by M2 sites in the underlying olivine structure. If this is coupled with removal of M1 cations during channel formation, then a modified laihunite-like surface will develop (vacancies in laihunite are on M1 sites). Although surface modification might only penetrate a few atomic layers, an inherently unreactive laihunite-like surface structure could explain both the pervasive channeling and the dramatic suppression of the measured dissolution rate.  相似文献   

2.
Biotite dissolution experiments were carried out to better understand the dissolution kinetics and Fe behavior under low O2 conditions, and to give an insight into the Precambrian weathering. Mineral dissolution with a continuous flow-through reactor was employed at 25 °C for up to 65 days varying partial pressure of atmospheric oxygen (PO2), pH (6.86 and 3.01) and Fe content in mineral (1.06 and 0.11 mol of Fe per O10(OH,F)2 for biotite and phlogopite, respectively) independently for the examination of their effects on biotite dissolution. Low PO2 conditions were achieved in a newly developed glove box (PO2 ? 6 × 10−4 atm; referred to as anoxic conditions), which was compared to the present, ambient air conditions (0.2 atm of PO2; oxic conditions). The biotite dissolution rate was slightly faster under anoxic conditions at pH 6.86 while it was not affected by PO2 at pH 3.01. There was no direct effect of Fe content on dissolution rate at pH 6.86 while there was a small difference in dissolution rate between biotite and phlogopite at pH 3.01. The 1.5 order-of-magnitude faster release rate of Fe under anoxic conditions for biotite dissolution at pH 6.86 resulted from the difference in ratio of Fe3+ precipitates remaining in the reactor to Fe dissolved (about 60% and 100% under anoxic and oxic conditions, respectively), which is caused mainly by the difference in PO2. The results infer that the Fe2+ and Fe3+ contents in the Paleoproterozoic paleosols, fossil weathering profiles, are reflected by atmospheric oxygen levels at the time of weathering.  相似文献   

3.
Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition.Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg2+/Ca2+ ratio of 0.4.Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca2+ and Mg2+ in natural waters. Dolomite dissolution appears to be a major process, rivaling calcite dissolution as a control on divalent cation and inorganic carbon contents of soil waters. Furthermore, the fraction of Mg2+ derived from silicate mineral weathering is much smaller than most of the values previously estimated from riverine chemistry.  相似文献   

4.
Fayalite, hypersthene, basalt, and obsidian were dissolved in buffered solutions (25°C; pH 4.5 and 5.5) under air, N2 or O2 atmospheres, in order to follow the kinetics of dissolution. Each dissolved more rapidly at lower pH values, dissolving most rapidly in the initial few days, followed by slower dissolution for periods up to six months. Dissolution was more rapid when air was excluded. In oxygen atmospheres an Fe(OH)3 precipitate armors mineral surfaces, thus inhibiting further dissolution, and further affects the solution by scavenging dissolved silica and cations. Dissolution reactions include initial exchange between cations and H+, incongruent dissolution of silicate structures, oxidation of Fe2+ in solution, precipitation of Fe(OH)3, and scavenging of dissolved silica and cations by Fe(OH)3. Dissolution kinetics may explain weathering of mafic rocks and minerals at the Earth's surface, the formation of Fe-oxide coatings on mineral grains, weathering of submarine mafic rocks and intrastratal solution of mafic minerals in buried sandstones. Early Precambrian weathering would have been more rapid before the appearance of large amounts of oxygen in the atmosphere, and continental denudation rates may have been higher than at present because of this effect and the predominance of mafic igneous rocks at an early stage of continent formation and growth.  相似文献   

5.
The short term (2–40 days) dissolution of enstatite, diopside, and tremolite in aqueous solution at low temperatures (20–60°C) and pH 1–6 has been studied in the laboratory by means of chemical analyses of reacting solutions for Ca2+, Mg2+, and Si(OH)4 and by the use of X-ray photoelectron spectroscopy (XPS) for detecting changes in surface chemistry of the minerals. All three minerals were found to release silica at a constant rate (linear kinetics) providing that ultrafine particles, produced by grinding, were removed initially by HF treatment. All three also underwent incongruent dissolution with preferential release of Ca and/or Mg relative to Si from their outermost surfaces. The preferential release of Ca, but not Mg for diopside at pH 6 was found by both XPS and solution chemistry verifying the theoretical prediction of greater mobility of cations located in M2 structural sites. Loss mainly from M2 sites also explains the degree of preferential loss of Mg from enstatite at pH 6; similar structural arguments apply to the loss of Ca and Mg from the surface of tremolite. In the case of diopside and tremolite initial incongruency was followed by essentially congruent cation-plus-silica dissolution indicating rapid formation of a constant-thickness, cation-depleted surface layer. Cation depletion at elevated temperature and low pH (~ 1) for enstatite and diopside was much greater than at low temperature and neutral pH, and continued reaction resulted in the formation of a surface precipitate of pure silica as indicated by solubility calculations, XPS analyses, and scanning electron microscopy.From XPS results at pH 6, model calculations indicate a cation-depleted altered surface layer of only a few atoms thickness in all three minerals. Also, lack of shifts in XPS peak energies for Si, Ca, and Mg, along with undersaturation of solutions with respect to all known Mg and Ca silicate minerals, suggest that cation depletion results from the substitution of hydrogen ion for Ca2+ and/or Mg2+ in a modified silicate structure and not from the precipitation of a new, radically different surface phase. These results, combined with findings of high activation energies for dissolution, a non-linear dependence on aH+ for silica release from enstatite and diopside, and the occurrence of etch pitting, all point to surface chemical reaction and not bulk diffusion (either in solution or through altered surface layers) as the rate controlling mechanism of iron-free pyroxene and amphibole dissolution at earth surface temperatures.  相似文献   

6.
Large seasonal variations in the dissolved load of the headwater tributaries of the Marsyandi river (Nepal Himalaya) for major cations and 87Sr/86Sr ratios are interpreted to result from a greater dissolution of carbonate relative to silicate at high runoff. There is up to a 0.003 decrease in strontium isotope ratios and a factor of 3 reduction in the Si(OH)4/Ca ratio during the monsoon. These variations, in small rivers sampling uniform lithologies, result from a different response of carbonate and silicate mineral dissolution to climatic forcing. Similar trends are observed in compiled literature data, from both Indian and Nepalese Himalayan rivers. Carbonate weathering is more sensitive to monsoonal runoff because of its faster dissolution kinetics. Silicate weathering increases relative to carbonate during the dry season, and may be more predominant in groundwater with longer water-rock interaction times. Despite this kinetic effect, silicate weathering fluxes are dominated by the monsoon flux, when between 50% and 70% of total annual silicate weathering flux occurs.  相似文献   

7.
Examination of the surface morphology (via scanning electron microscopy) and surface composition (via X-ray photoelectron spectroscopy) of sodic plagioclase and potash feldspar grains taken from four different soils, provides little or no evidence for the existence of a tightly adhering protective surface layer of altered composition on the feldspar surface. Grains, from which all adhering clay has been removed by ultrasonic cleaning, exhibit the same chemical composition in the outermost few tens of angstroms as the underlying feldspar. Aluminum-rich ‘clay’ coatings which continue to adhere to the grains after ultrasonic treatment are patchy, highly hydrous, and unlikely to act as major diffusion-limiting, and thus protective, barriers. Attack by dissolution of the feldspar surface is non-uniform and follows a definite etching sequence characterized by the development and growth of distinctive etch pits. This dissolution sequence can be reproduced by treating fresh feldspars in the laboratory with strong HF-H2SO4? solutions and, thus, the sequence is unaffected by the composition of the attacking solution. All of our results suggest that the dissolution of feldspar during weathering is controlled by selective chemical reaction at the feldspar-solution interface and not by uniform diffusion through a protective surface layer.  相似文献   

8.
Weathering experiments using biotite and phlogopite in the presence of bacteria were conducted to better understand biotic dissolution kinetics and processes (proton- and ligand-promoted dissolution) under aerobic conditions. Miniature batch reactors (300 μl in microplate wells) were used at 24 °C for 3 days with and without bacterial strains. Abiotic experiments were performed with organic and nitric acids in order to calibrate the biotite-phlogopite chemical dissolution. An empirical model was used to fit the pH dependence for iron release rate (rFe) considering the influence of both protons and ligands from acidic to neutral conditions (pH ranging from 3 to 7): rFe=kH(aH+)m+kL(aL)1 where k is the apparent rate constant, aH+ and aL are the activities of protons and ligands, and m and l are the reaction orders. For both minerals in most cases at a given pH, the iron release rates in the presence of bacteria were in good agreement with rates determined by the chemical model and could be explained by a combination of proton- and ligand-promoted processes. Bacteria affect mineral dissolution and iron release rates through the quantities and nature of the organic acids they produce. Three domains were differentiated and proposed as biochemical models of mica dissolution: (1) below pH 3, only proton-promoted dissolution occurred, (2) in weakly acidic solutions both ligand- and proton-promoted mechanisms were involved, and (3) iron immobilization occured, at pH values greater than 4 for biotite and greater than 5 for phlogopite. This model allows us to distinguish the “weathering pattern phenotypes” of strains. Bacteria that are isolated from horizons poor in carbon appear more efficient at weathering micas than bacterial strains isolated from environments rich in carbon. Moreover, our results suggest that the mineral could exert a control on the release of organic acids and the “weathering pattern phenotypes” of bacteria.  相似文献   

9.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

10.
We hypothesize that the weathering of building stones can be attributed to surface dissolution processes. We assume that chemical interactions occur on grain boundaries and/or microcracks and that diffusion is the controlling process. A dissolution layer (rind) develops adjacent to the weathering surface. We quantify the extent of dissolution by introducing a damage variable f; f=0 for pristine rock, and when f=1 the rock disintegrates. We assume that the variations of the damage variable are given by the diffusion equation. We solve two problems. The first is for the structure of the transient dissolution boundary layer prior to surface disintegration. We find an incubation time ti, before active weathering (disintegration) begins. The second is the solution for steady-state weathering with a constant weathering velocity vw. Our results are entirely consistent with weathering studies on Carrara marble gravestones in the United Kingdom. Typical incubation times are ti=20–30 years, and typical steady-state weathering velocities are vw=5–50 m year–1.  相似文献   

11.
A detailed geochemical study on river waters of the Australian Victorian Alps was carried out to determine: (i) the relative significance of silicate, carbonate, evaporite and sulfide weathering in controlling the major ion composition and; (ii) the factors regulating seasonal and spatial variations of CO2 consumption via silicate weathering in the catchments. Major ion chemistry implies that solutes are largely derived from evaporation of precipitation and chemical weathering of carbonate and silicate lithologies. The input of solutes from rock weathering was determined by calculating the contribution of halite dissolution and atmospheric inputs using local rain and snow samples. Despite the lack of carbonate outcrops in the study area and waters being undersaturated with respect to calcite, the dissolution of vein calcite accounts for up to 67% of the total dissolved cations, generating up to 90% of dissolved Ca and 97% of Mg. Dissolved sulfate has δ34S values of 16 to 20‰CDT, indicating that it is derived predominantly from atmospheric deposition and minor gypsum weathering and not from bacterial reduction of FeS2. This militates against sulphuric acid weathering in Victorian rivers. Ratios of Si vs. the atmospheric corrected Na and K concentrations range from ~ 1.1 to ~ 4.3, suggesting incongruent weathering from plagioclase to smectite, kaolinite and gibbsite.Estimated long-term average CO2 fluxes from silicate weathering range from ~ 0.012 × 106 to 0.039 × 106 mol/km2/yr with the highest values in rivers draining the basement outcrops rather than sedimentary rocks. This is about one order of magnitude below the global average which is due to low relief, and the arid climate in that region. Time series measurements show that exposure to lithology, high physical erosion and long water–rock contact times dominate CO2 consumption fluxes via silicate weathering, while variations in water temperature are not overriding parameters controlling chemical weathering. Because the atmospheric corrected concentrations of Na, K and Mg act non-conservative in Victorian rivers the parameterizations of weathering processes, and net CO2 consumption rates in particular, based on major ion abundances, should be treated with skepticism.  相似文献   

12.
Apatite dissolution experiments were conducted using both a fluidized bed and stirred tank reactor over a range of pH, temperature, solution saturation state, and on non-carbonated and carbonated apatite compositions: igneous fluorapatite (FAP) and sedimentary carbonate fluorapatite (CFA), respectively. From 2 <pH <6, the rate of release from dissolution of all apatite components [calcium (Ca), phosphorus (P), and fluoride (F)] increased with decreasing pH for FAP. From 6 < pH < 8.5, the FAP dissolution rate is pH independent. Measuring apatite dissolution rates at pH > 8.5 were not possible due to detection limits of the analytical techniques used in this study and the high insolubility of FAP. For the CFA compositions studied, the dissolution rate decreased with increasing pH from 4 < pH < 7. During early stages of the dissolution reaction for both FAP and CFA, mineral components were released in non-stoichiometric ratios with reacted solution ratios of dissolved Ca:P and Ca:F being greater than mineral stoichiometric ratios, suggesting that Ca was preferentially released compared to P and F from the mineral structure during the early stages of dissolution. An increase in reacted solution pH accompanies this early elevated release of Ca. As the dissolution reaction proceeded to steady state, dissolution became congruent. When normalized to BET measured surface area, FAP dissolved faster from 4 < pH < 7 compared to CFA. The apparent Arrhenius activation energy (Ea) of FAP dissolution over the temperature range of 25-55°C at pH = 3.0, I = 0.1, and pCO2 = 0 is 8.3 ± 0.2 kcal mol−1. Both the apparent exchange of solution H+ for solid-bound Ca at low pH in the early stage of dissolution and the Ea of dissolution suggest a surface and not a diffusion controlled dissolution reaction for FAP and CFA. The degree of undersaturation of the solution, ΔGR, with respect to FAP was important in determining the dissolution rate. At pH = 3.0, I = 0.1, and pCO2 = 0, the dissolution rate of FAP was ∼ 5× greater in the far-from-equilibrium region compared to the near-equilibrium slope region.A simple apatite weathering model incorporating the experimental results from this study was constructed, and numerical calculations suggest that during the Phanerozoic both the surface area of igneous rock available for weathering and the average global temperature were important factors in determining the P weathering flux from apatite dissolution. It is possible that elevated global temperatures coupled with relatively high surface area of igneous rock during the early- to mid-Paleozoic resulted in elevated P weathering fluxes, which along with climatic evolutionary pressures of the Neoproterozoic, facilitated the radiation of multicellular organisms, large-scale phosphorite deposition, and abundance of calcium phosphate shelled organisms during the early Cambrian.  相似文献   

13.
《Applied Geochemistry》2004,19(8):1217-1232
Laboratory experiments were conducted with volcanic ash soils from Mammoth Mountain, California to examine the dependence of soil dissolution rates on pH and CO2 (in batch experiments) and on oxalate (in flow-through experiments). In all experiments, an initial period of rapid dissolution was observed followed by steady-state dissolution. A decrease in the specific surface area of the soil samples, ranging from 50% to 80%, was observed; this decrease occurred during the period of rapid, initial dissolution. Steady-state dissolution rates, normalized to specific surface areas determined at the conclusion of the batch experiments, ranged from 0.03 μmol Si m−2 h−1 at pH 2.78 in the batch experiments to 0.009 μmol Si m−2 h−1 at pH 4 in the flow-through experiments. Over the pH range of 2.78–4.0, the dissolution rates exhibited a fractional order dependence on pH of 0.47 for rates determined from H+ consumption data and 0.27 for rates determined from Si release data. Experiments at ambient and 1 atm CO2 demonstrated that dissolution rates were independent of CO2 within experimental error at both pH 2.78 and 4.0. Dissolution at pH 4.0 was enhanced by addition of 1 mM oxalate. These observations provide insight into how the rates of soil weathering may be changing in areas on the flanks of Mammoth Mountain where concentrations of soil CO2 have been elevated over the last decade. This release of magmatic CO2 has depressed the soil pH and killed all vegetation (thus possibly changing the organic acid composition). These indirect effects of CO2 may be enhancing the weathering of these volcanic ash soils but a strong direct effect of CO2 can be excluded.  相似文献   

14.
本文采用硫酸盐还原菌(SRB)和嗜酸铁还原菌(JF-5)合成纳米FeS,并将其包覆在灰岩表面,采用溶解动力学实验研究了不同纳米FeS包覆层对灰岩溶解和中和能力的影响。结果表明,X射线衍射表面包覆层矿物为纳米的四方硫铁矿,光电子能谱(XPS)结果进一步显示包覆层中Fe的价态为+2,S的价态为-2;包覆层对灰岩的溶解有明显的钝化影响,中和能力随厚度的增加而降低,最厚包覆层的存在能够使最终中和p H值降低1.5个单位。利用Frick第一定律推导了包覆层存在下灰岩的溶解过程公式,建立了包覆层溶解动态模型。  相似文献   

15.
Based on the geological background, R-mode factor statistics, and the analysis of the stability diagram for the corresponding system, five weathering reactions controlling the surface-water chemical composition in the watershed of the Changhuajiang River are deduced. In the mass balance model, the precipitation accounts for some solute input, since the rainwater is dilute without pollution. Most of the Ca2+ and HCO 3 ions are from the dissolution of calcite, K+, Na+, H4SiO4 and some of the Mg2+ and HCO 3 come from albite and biotite weathering to kaolinite. The dissolution of dolomite and gypsum controls the mass balances of Mg2+ and SO 4 2– . The dissolution of calcite is the dominant chemical weathering reaction in the watershed because of its reactivity and high concentration. In the watershed in 1986, the chemical weathering rate was 0.073 (kg/m2 a), and the mechanical denudation rate is 0.093 (kg/m2 a). The chemical weathering mass output proportion of carbonate rocks to silicate rocks was about three to one.  相似文献   

16.
Weathering reactions producing and consuming acid in fresh waste rock samples from the Aitik Cu mine in northern Sweden have been investigated. Batch-scale (0.15 kg) acid titrations with waste rock of different particle sizes were operated for 5 months. The pH was adjusted to a nearly constant level, similar to that in effluents from waste rock dumps at the site (pH near 3.5). The reactions were followed by analysing for all major dissolved elements (K, Na, Mg, Ca, Si, Al, SO4, Cu, Zn, Fe) in aliquots of solution from the reaction vessels. In addition, the solids were physically and chemically characterised in terms of mineralogy, chemical composition, particle size distribution, surface area and porosity. The results show that the alkalinity production is initially dominated by a rapid dissolution of small amounts of calcite and rapidly exchangeable base cations on silicate surfaces. Steady-state dissolution of primary silicate minerals also generates alkalinity. The total alkalinity is nearly balanced by input of acid from the steady-state oxidation of sulphides, such that the pH 3.1–3.4 can be maintained without external input of acid or base. There is a large difference in weathering rates between fine materials and larger waste rock particles (diameters (d) >0.25 mm) for both sulphides and silicates. As a result particles with d smaller than 0.25 mm contribute to approximately 80% of the sulphide and silicate dissolution. Calcite dissolution can initially maintain a neutral pH but with time becomes limited by intra-particle diffusion. Calcite within particles larger than 5–10 mm reacts too slowly to neutralise the acid produced from sulphides.  相似文献   

17.
The weathering rates and mechanisms of three types of glassy rocks were investigated experimentally at 25 °C, pH 1.0 to 6.2, and reaction times as much as to 3 months. Changes in major element chemistry were monitored concurrently as a function of time in the aqueous solution and within the near surface region of the glass. Leach profiles, obtained by a HF leaching technique, displayed near-surface zones depleted in major cations. These zones increased in depth with increasing time and decreasing pH of reactions. Release rates into the aqueous solution were parabolic for Na and K and linear for Si and Al. A coupled weathering model, involving surface dissolution with concurrent diffusion of Na, K, and Al, produced a mass balance between the aqueous and glass phases. Steady state conditions are reached at pH 1.0 after approximately 3 weeks of reaction. Steady-state is not reached even after 3 months at pH 6.2.An interdiffusion model describes observed changes in Na diffusion profiles for perlite at pH 1.0. The calculated Na self-diffusion coefficient of 5 × 10?19 cm2·s?1 at 25°C approximates coefficients extrapolated from previously reported high temperature data for obsidian. The self-diffusion coefficient for H3O+, 1.2 × 10?20 cm2·s?1, is similar to measured rates of water diffusion during hydration of obsidian to form perlite.  相似文献   

18.
This study used batch reactors to characterize the mechanisms and rates of elemental release (Al, Ca, K, Mg, Na, F, Fe, P, Sr, and Si) during interaction of a single bacterial species (Burkholderia fungorum) with granite at T = 28 °C for 35 days. The objective was to evaluate how actively metabolizing heterotrophic bacteria might influence granite weathering on the continents. We supplied glucose as a C source, either NH4 or NO3 as N sources, and either dissolved PO4 or trace apatite in granite as P sources. Cell growth occurred under all experimental conditions. However, solution pH decreased from ∼7 to 4 in NH4-bearing reactors, whereas pH remained near-neutral in NO3-bearing reactors. Measurements of dissolved CO2 and gluconate together with mass-balances for cell growth suggest that pH lowering in NH4-bearing reactors resulted from gluconic acid release and H+ extrusion during NH4 uptake. In NO3-bearing reactors, B. fungormum likely produced gluconic acid and consumed H+ simultaneously during NO3 utilization.Over the entire 35-day period, NH4-bearing biotic reactors yielded the highest release rates for all elements considered. However, chemical analyses of biomass show that bacteria scavenged Na, P, and Sr during growth. Abiotic control reactors followed different reaction paths and experienced much lower elemental release rates compared to biotic reactors. Because release rates inversely correlate with pH, we conclude that proton-promoted dissolution was the dominant reaction mechanism. Solute speciation modeling indicates that formation of Al-F and Fe-F complexes in biotic reactors may have enhanced mineral solubilities and release rates by lowering Al and Fe activities. Mass-balances further reveal that Ca-bearing trace phases (calcite, fluorite, and fluorapatite) provided most of the dissolved Ca, whereas more abundant phases (plagioclase) contributed negligible amounts. Our findings imply that during the incipient stages of granite weathering, heterotrophic bacteria utilizing glucose and NH4 only moderately elevate silicate weathering reactions that consume atmospheric CO2. However, by enhancing the dissolution of non-silicate, Ca-bearing trace minerals, they could contribute to high Ca/Na ratios commonly observed in granitic watersheds.  相似文献   

19.
It has commonly been assumed that the weathering rates of feldspars are proportional to their exposed surface areas. However, weathering does not affect the whole surface of a grain uniformily; preferential dissolution occurs at highly localized sites, which are determined by the location of crystalline defects. To examine the importance of reactions at these sites relative to those occurring on bulk surfaces, we compared the rates of dissolution of 5 different size fractions of an alkali feldspar, whose specific surface areas (m2/g) spanned a range of a factor of twenty.At any given pH value, the bulk dissolution rates (moles/g/h) for the five fractions varied by less than a factor of two. The results suggest that reactions at crystalline defects dominate weathering processes during the early stages of dissolution. Furthermore, the exposure of these defects is not simply or easily related to total surface area. These findings strongly suggest that care must be taken to distinguish between the surface reaction controlled mechanism and a surface area controlled model which is frequently—and incorrectly—assumed to be equivalent. The data presented here are consistent with the former mechanism but strongly dispute the latter.  相似文献   

20.
The oxidation and dissolution mechanisms of galena (PbS) remain uncertain with a wide variety of possible mechanisms having been proposed in the literature. In this study, the thermodynamic viability of some possible mechanisms has been tested using semi-empirical quantum chemical calculations applied to a perfect (001) galena surface.The adsorption of O2 and H2O has been examined in both the gaseous and aqueous environments. In agreement with previous ab initio quantum chemical calculations, the surface induced dissociation of H2O in either environment was found to be energetically unfavourable. However, the dissociative adsorption of O2 was found to be possible and resulted in two O atoms bonded to diagonally adjacent S atoms with the O atoms oriented along the diagonal.The adsorption of H+ and possible subsequent dissolution mechanisms have been examined in the aqueous environment. An anaerobic mechanism leading to the dissolution of hydroxylated Pb2+ was identified. The mechanism involves the protonation of 3 surface S atoms surrounding a central surface Pb atom followed by substitution of this Pb by a further H+. The activation energy of this mechanism was estimated to be ≈100 kJ mol−1. Pb2+ dissolution could only occur with vacancy stabilisation by a H+. The analogous mechanisms for systems comprising H+ adsorbed on either 2 or 4 of the S atoms surrounding a central surface Pb were not found to be energetically viable. Subsequent dissolution of one of the protonated S atoms to form H2S(g) was not found to be possible thus indicating the likely formation of a Pb-deficient S-rich surface under acidic anaerobic conditions.Acidic aerobic dissolution has also been examined. Congruent dissolution to form H2SO4 and Pb2+•6H2O is energetically viable. The dissolution of one of the protonated S atoms neighbouring the Pb2+ vacancy, resulting from the anaerobic dissolution, to form H2SO4, is also possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号