首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
通过两种还原型微生物铁还原菌JF-5和硫酸盐还原菌SRB对模拟酸矿废水中Fe~(3+)和SO~(2-)_4的还原作用合成纳米FeS,并将该生物纳米FeS包覆在灰岩表面,以提高灰岩可渗透反应墙(PRBs)对酸矿废水中砷的去除能力。通过批吸附实验研究As(Ⅴ)的静态吸附机理,柱实验研究As(Ⅴ)在包覆灰岩柱中的动态吸附和迁移,结果表明,包覆层生物FeS粒径为纳米级,并呈现一定晶形,能有效提高灰岩表面的比表面积和对As(Ⅴ)的吸附能力,红外光谱分析表明化学吸附为主要吸附机制;生物纳米FeS包覆灰岩静态吸附实验最大吸附量为187.46μg/g,达到纯灰岩吸附量(6.64μg/g)的30倍;JF-5和SRB形成的生物包覆吸附性质优于SRB和Fe(Ⅱ),二者对As(Ⅴ)的吸附能力都远大于纯灰岩对As(Ⅴ)的滞留能力。  相似文献   

2.
选用两种不同的硫酸盐还原菌(一种是嗜酸性硫酸盐还原菌Desulfosporosinus sp.,另一种是嗜中性硫酸盐还原菌Desulfomicrobium baculatum)合成了两种硫化亚铁(FeS)矿物,并采用BET、SEM、XRD、XPS对其进行表征。结果显示,嗜酸性硫酸盐还原菌合成的FeS矿物(S-FeS)比表面积为13.35 m2/g,铁硫原子比为0.91,表面活性组分FeS相对含量是63.6%;嗜中性硫酸盐还原菌合成的FeS矿物(Z-FeS)比表面积为7.64 m2/g,铁硫原子比为0.84,表面活性组分FeS相对含量为77.2%;两种FeS矿物的主要成分均为不定形FeS和结晶程度较差的四方硫铁矿。通过批处理实验,研究了这两种FeS矿物对六溴环十二烷(HBCD)的还原脱溴效果。结果显示,两种FeS体系下HBCD的还原脱溴反应均遵循假一级反应动力学;反应速率常数随着FeS浓度的增加而增加,当FeS的浓度从0.3 g/L增加至1.2 g/L时,S-FeS和Z-FeS转化HBCD的反应速率常数分别从0.0049 h–1增至0.3194 h–1和0.3868 h–1;反应体系p H值(4~8)的变化极大地影响FeS对HBCD的还原脱溴效率;两种FeS均能还原转化HBCD的三种主要同分异构体,转化率大小依次为β-HBCDγ-HBCDα-HBCD;在两种FeS反应体系中均检测出四溴环十二碳烯(C12H18Br4)、二溴环十二碳二烯(C12H18Br2)和环十二碳三烯(C12H18)等HBCD还原脱溴的中间产物(GC-MS方法鉴定),由此推测S-FeS和Z-FeS还原脱溴HBCD的途径均为逐步邻位双脱溴。以上研究结果表明,两种不同类型硫酸盐还原菌合成的FeS矿物均具有还原脱溴HBCD的能力,并且它们的还原脱溴的能力和机制差异不大。  相似文献   

3.
地下水中三氯乙烯(TCE)严重威胁公众健康和环境安全,纳米零价铁原位注射技术可以还原降解TCE,但是应用中,纳米零价铁存在易氧化团聚而失活、迁移性差等问题。为此,利用天然高分子壳聚糖作包覆剂增强分散性和稳定性,镍作催化剂增强反应活性,成功制备获得壳聚糖包覆纳米铁镍双金属颗粒(CS Fe Ni)。沉降光谱实验表明包覆壳聚糖后纳米铁的分散稳定性得到增强,Zeta电位测试进一步证实颗粒表面负电荷增加,提高了静电排斥力,使得CS Fe Ni分散稳定性明显改善。柱迁移实验表明改性后的CS Fe Ni迁移能力得到提高。批实验表明CS Fe Ni能够高效降解TCE并能完全脱氯,研究结果为纳米铁原位注射技术的实际应用提供了理论基础和实验参考。  相似文献   

4.
金属纳米硫化亚铁(FeS)在重/类金属修复上具有广阔的应用前景。使用嗜酸性铁还原菌(JF-5)和硫酸盐还原菌(SRB)合成生物纳米FeS,探讨其自然沉降规律,并使用羧甲基纤维素钠(CMC)作为稳定剂,探讨CMC-FeS在石英砂柱中的迁移特性。结果表明,SRB和JF-5菌液在一定比例下混合即能生成纳米FeS,且当混合菌液中n(Fe)/n(S)=0.2时FeS生成量最多,颗粒物浓度达2 400 mg/L;FeS的自然沉降速率在0.1%CMC溶液中得到有效减缓。对流扩散模型能很好地描述CMC-FeS悬浮颗粒在石英砂柱中的迁移行为,相比于纯水-FeS体系(R2=0.20),其模型相关性最高达0.85;在90、180和360 mL/h这3种输入流速下,中等流速180 mL/h能够获得最佳渗透性,其渗透系数平均值为243.97 cm/h。实验结果表明,CMC-FeS的稳定性和迁移性较纯水-FeS均得到加强,可为土壤污染修复提供理论参考。  相似文献   

5.
采用液相还原法成功制备纳米零价铁,并组装出生物质炭负载纳米零价铁复合材料(NZVI/BC)。XRD图谱显示,NZVI/BC由生物质炭(BC)和纳米零价铁(NZVI)两种成分复合而成;SEM图像显示,加入生物质炭之后,NZVI颗粒在炭表面分散良好。研究考察溶液p H值、还原剂投加量、铁/炭比和NO-3初始浓度等因素对NZVI/BC还原性能的影响。结果表明,NZVI/BC显示出优良的还原性能。在相同条件下,反应2 h,NZVI对NO-3的去除率为75%,而NZVI/BC对NO-3的去除率为96%。NZVI/BC是一种具有应用前景的硝态氮净化材料。  相似文献   

6.
骆少勇  周跃飞  刘星 《地学前缘》2020,27(5):218-226
通过在滇池开展原位实验,研究探讨了湖泊沉积物中磷灰石制约水铁矿分解和转化的机制,以及二者共存时的环境效应。结果表明:将水铁矿放置到沉积物中1个月,矿物保持稳定;放置时间达到3个月时,添加磷灰石实验中水铁矿发生了显著物相转变。冬天(12—2月)实验中,转化产物随深度的变化趋势为针铁矿+磁(赤)铁矿→针铁矿+纤铁矿→针铁矿;夏天(6—9月)实验中,转化产物随深度的变化趋势为针铁矿+纤铁矿+磁(赤)铁矿→针铁矿+纤铁矿→未转化。透射电镜分析结果显示冬天实验中生成的磁性铁氧化物为纳米磁铁矿和磁赤铁矿,夏天实验中产生的则主要为纳米磁铁矿。X射线光电子能谱分析结果显示冬天表层实验样品具有较高P含量。分析表明的湖泊沉积物中磷灰石促进水铁矿转化的过程为:(1)微生物促进磷灰石溶解;(2)磷灰石溶解释放的P促进铁还原菌生长;(3)铁还原菌促进水铁矿还原;(4)水铁矿还原产生的溶解态Fe2+催化水铁矿向针铁矿、纤铁矿和磁铁矿转化。冬天及沉积氧化-还原界面最适宜磷灰石分解菌和铁还原菌生长,水铁矿的转化和P释放能力也更强,相应地内源磷释放的风险也更大。  相似文献   

7.
纳米零价铁原位修复地下水污染是近年发展起来的新技术,通过改性合成不同种类纳米零价铁可以克服其易团聚易氧化的问题,水体中存在的天然有机质也会对纳米铁的分散性和反应活性产生影响,因此开展原位测试并研究不同种类纳米铁在水中的团聚效应具有重要意义。本文对实验合成的纳米零价铁、羧甲基纤维素包覆纳米零价铁、膨润土负载纳米零价铁以及商用纳米零价铁,基于动态光散射技术(DLS),运用纳米粒度/Zeta电位分析仪,结合透射电子显微镜(TEM)和沉降光谱曲线等手段,对比研究了天然有机质(腐植酸HA)对纳米铁团聚效应的影响。结果表明,羧甲基纤维素包覆或膨润土负载改性提高了纳米零价铁颗粒的分散稳定性,有效抑制了团聚沉降,团聚体粒径分布在1000 nm以下。HA会吸附在纳米铁颗粒表面,从而增加静电排斥力,进一步减缓了团聚效应,尤其是对膨润土负载纳米零价铁的影响最为显著,其团聚体粒径能降至100 nm以下,沉降速率也极大减缓,分散稳定性表现最佳。本研究表明DLS结合TEM表征纳米颗粒是获得更加丰富的微观粒子信息的一种非常重要的手段。  相似文献   

8.
为了弄清楚酸性矿井废水的排放是否对阿哈湖造成了汞污染,我们研究了阿哈湖中汞的各种赋存形态(包括溶解气态汞、活性汞、颗粒态汞、溶解态汞、溶解态甲基汞、颗粒态甲基汞,以及沉积物间隙水体的溶解态汞和溶解态甲基汞)及其在水体和沉积物间隙水中的剖面分布.实验数据表明,溶解态甲基汞浓度在沉积物下2~5 cm处最高,随深度增加而逐渐降低,与硫酸盐还原菌(SRB)的分布相吻合,说明水体-沉积物界面是甲基汞的产生地点;并且在沉积物中高浓度硫酸根浓度高达1100mg/L时,硫酸根浓度与甲基汞浓度依然一致.  相似文献   

9.
零价铁纳米颗粒具有许多异于本体物质的独特性质,在废水处理方面应用潜力巨大。以蒙脱石为载体和分散剂,通过硼氢化钠液相还原法制备了零价铁纳米颗粒。采用电镜及多种谱学技术手段对所得铁纳米颗粒进行了表征。结果表明,铁纳米颗粒大致呈球状形貌,平均粒径约为55 nm,在蒙脱石表面分散良好,具有零价铁内核-铁氧化物外壳结构,提高了纳米铁在空气氛中的稳定性。通过批次实验考察了负载型铁纳米颗粒净化Cr(Ⅵ)的效率、过程及机理。净化效果受p H值影响显著,在最优p H值为1.0条件下,零价铁内核因其表面氧化膜酸溶而出露,可作为有效成分快速高效去除水体中Cr(Ⅵ)污染物,机理为零价铁将吸附至其表面的Cr(Ⅵ)异相还原为Cr(Ⅲ)而去除。属自发放热吸附过程,动力学行为符合准二级模型,吸附等温线可用Langmuir方程较好拟合。研究成果为新型纳米零价铁材料的制备及其铬污染治理提供了理论支撑。  相似文献   

10.
硫酸盐还原菌是厌氧环境中参与砷形态转化的重要微生物种群,其介导的生物地球化学循环过程对铁氧化物表面吸附态砷迁移转化的影响亟待深入研究.选取江汉平原典型高砷含水层原位沉积物分离纯化出一株严格厌氧硫酸盐还原菌Desulfovibrio JH-S1,对其进行砷和铁还原能力鉴定,并通过模拟培养实验探究硫酸盐还原菌参与下的铁矿物相转化对吸附态砷迁移的影响.Desulfovibrio JH-S1具有Fe(III)还原能力,无硫和有硫体系中Fe(III)均能被还原,但在硫酸盐充足条件下铁还原量显著增加;该菌株不具备As(V)还原能力,但添加硫酸盐的培养体系中As(V)去除率可达96%以上.Desulfovibrio JH-S1能够还原硫酸盐从而促进载砷的水铁矿还原转化为纤铁矿,并导致吸附的砷释放.江汉平原高砷含水层土著硫酸盐还原菌兼具硫酸盐/铁还原功能,参与了高砷含水层系统中砷-铁-硫耦合循环,对高砷地下水的形成具有重要作用.   相似文献   

11.
Oxidation of mackinawite (FeS) and concurrent mobilization of arsenic were investigated as a function of pH under oxidizing conditions. At acidic pH, FeS oxidation is mainly initiated by the proton-promoted dissolution, which results in the release of Fe(II) and sulfide in the solution. While most of dissolved sulfide is volatilized before being oxidized, dissolved Fe(II) is oxidized into green rust-like precipitates and goethite (α-FeOOH). At basic pH, the development of Fe(III) (oxyhydr)oxide coating on the FeS surface inhibits the solution-phase oxidation following FeS dissolution. Instead, FeS is mostly oxidized into lepidocrocite (γ-FeOOH) via the surface-mediated oxidation without dissolution. At neutral pH, FeS is oxidized via both the solution-phase oxidation following FeS dissolution and the surface-mediated oxidation mechanisms. The mobilization of arsenic during FeS oxidation is strongly affected by FeS oxidation mechanisms. At acidic pH (and to some extent at neutral pH), the rapid FeS dissolution and the slow precipitation of Fe (oxyhydr)oxides results in arsenic accumulation in water. In contrast, the surface-mediated oxidation of FeS at basic pH leads to the direct formation of Fe (oxyhydr)oxides, which provides effective adsorbents for As under oxic conditions. At acidic and neutral pH, the solution-phase oxidation of dissolved Fe(II) accelerates the oxidation of the less adsorbing As(III) to the more adsorbing As(V). This study reveals that the oxidative mobilization of As may be a significant pathway for arsenic enrichment of porewaters in sulfidic sediments.  相似文献   

12.
Surface chemistry of disordered mackinawite (FeS)   总被引:1,自引:0,他引:1  
Disordered mackinawite, FeS, is the first formed iron sulfide in ambient sulfidic environments and has a highly reactive surface. In this study, the solubility and surface chemistry of FeS is described. Its solubility in the neutral pH range can be described by Ksapp = {Fe2+} · {H2S(aq)} · {H+}−2 = 10+4.87±0.27. Acid-base titrations show that the point of zero charge (PZC) of disordered mackinawite lies at pH ∼7.5. The hydrated disordered mackinawite surface can be best described by strongly acidic mono-coordinated and weakly acidic tricoordinated sulfurs. The mono-coordinated sulfur site determines the acid-base properties at pH < PZC and has a concentration of 1.2 × 10−3 mol/g FeS. At higher pH, the tricoordinated sulfur, which has a concentration of 1.2 × 10−3 mol/g FeS, determines surface charge changes. Total site density is 4 sites nm−2. The acid-base titration data are used to develop a surface complexation model for the surface chemistry of FeS.  相似文献   

13.
Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in engineered systems designed for groundwater cleanup. In this study, we investigate transformation processes of iron sulfides and consequent impacts on TCE degradation using batch experimental techniques, transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). Our results show that mackinawite is highly reactive toward TCE and no detectable mineralogical changes were detected during the course of reaction. However, freeze-dried FeS transformed to a mixture of mackinawite and greigite during the freeze drying process, with further mineralogical changes during reaction with TCE to lepidocrocite, goethite and pyrite. Newly formed lepidocrocite is a transient phase, with conversion to goethite over time. TCE transformation kinetics show that freeze-dried FeS is 20-50 times less reactive in degrading TCE than non-freeze-dried FeS, and the TCE degradation rate increases with pH (from 5.4 to 8.3), possibly due to an increase of surface deprotonation or electron transfer at higher pH. Results suggest that freeze drying could cause FeS particle aggregation, decreased surface area and availability of reactive sites; it also could change FeS mineralogy and accelerate mineral transformation. These aspects could contribute to the lower reactivity of freeze-dried FeS toward TCE degradation. Modeling results show that FeS transformation in natural environments depends on specific biogeochemical conditions, and natural FeS transformation may affect mineral reactivity in a similar way as compared to the freeze drying process. Rapid transformation of FeS to FeS2 could significantly slow down TCE degradation in both natural and engineered systems.  相似文献   

14.
A four month study of a man-made lake used for hydroelectric power generation in northeastern Pennsylvania USA was conducted to investigate seasonal anoxia and the effects of sulfide species being transported downstream of the power generation equipment. Water column analyses show that the system is iron-rich compared to sulfide. Total Fe(II) concentrations in the hypolimnion are typically at least twice the total sulfide levels. In situ voltammetric analyses show that free Fe(II) as [Fe(H2O)6]2+ or free H2S as H2S/HS- are either not present or at trace levels and that iron-rich sulfide complexes are present. From the in situ data and total Fe(II) and H2S measurements, we infer that these iron-rich sulfide complexes may have stoichiometries such as Fe2SH3+ (or polymeric forms of this and other stoichiometries). These iron-rich sulfide complexes appear related to dissolution of the iron-rich FeS mineral, mackinawite, because IAP calculations on data from discrete bottle samples obtained from bottom waters are similar to the pKsp of mackinawite. Soluble iron-sulfide species are stable in the absence of O2 (both in lake waters and the pipeline) and transported several miles during power generation. However, iron-sulfide complexes can react with O2 to oxidize sulfide and can also dissociate releasing volatile H2S when the waters containing them are exposed to the atmosphere downstream of the powerplant. Sediment analyses show that the lake is rich in oxidized iron solids (both crystalline and amorphous). Fe concentrations in FeS solids are low (<5 μmole/grdry wt) and the pyrite concentration ranges from about equal to the solid FeS to 30 times the solid FeS concentration. The degree of pyritization is below 0.12 indicating that pyrite formation is limited by free sulfide, which can react with the iron-rich sulfide complexes.  相似文献   

15.
Arsenate, As(V), sorption onto synthetic iron(II) monosulfide, disordered mackinawite (FeS), is fast. As(V) sorption decreases above the point of zero surface charge of FeS and follows the pH-dependent concentration of positively charged surface species. No redox reaction is observed between the As(V) ions and the mineral surface over the time span of the experiments. This observation shows that As(V) dominantly forms an outer-sphere complex at the surface of mackinawite. Arsenite, As(III), sorption is not strongly pH-dependent and can be expressed by a Freundlich isotherm. Sorption is fast, although slower than that of As(V). As(III) also forms an outer-sphere complex at the surface of mackinawite. In agreement with previous spectroscopic studies, complexation at low As(V) and As(III) concentration occurs preferentially at the mono-coordinated sulfide edge sites. The Kd (L g−1) values obtained from linear fits to the isotherm data are ∼9 for As(V) and ∼2 for As(III). Stronger sorption of As(V) than As(III), and thus a higher As(III) mobility, may be reflected in natural anoxic sulfidic waters when disordered mackinawite controls arsenic mobility.  相似文献   

16.
The dissolution rates of natural fluorapatite (FAP), Ca10(PO4)6F2, were measured at 25 °C in mixed-flow reactors as a function of pH from 3.0 to 11.7, and aqueous calcium, phosphorus, and fluoride concentration. After an initial preferential Ca and/or F release, stoichiometric Ca, P, and F release was observed. Measured FAP dissolution rates decrease with increasing pH at 3 ? pH ? 7, FAP dissolution rates are pH independent at 7 ? pH ? 10, and FAP dissolution rates again decrease with increasing pH at pH ? 10. Measured FAP dissolution rates are independent of aqueous Ca, P, and F concentration at pH ≈ 3 and pH ≈ 10.Apatite dissolution appears to be initiated by the relatively rapid removal from the near surface of F and the Ca located in the M1 sites, via proton for Ca exchange reactions. Dissolution rates are controlled by the destruction of this F and Ca depleted surface layer. The destruction of this layer is facilitated by the adsorption/penetration of protons into the surface at acidic conditions, and by surface hydration at neutral and basic conditions. Taking into account these two parallel mechanisms, measured fluorapatite forward dissolution rates can be accurately described using
  相似文献   

17.
Limestone drains are often implemented in the treatment of acid mine drainage (AMD), but when the AMD contains high levels of dissolved Fe their lifetime is dependent on the rate of precipitation of Fe hydroxide on the limestone surface. This study used a small-scale laboratory experiment to define the longevity of a limestone drain by determining the thickness of the Fe coating encapsulating the limestone particles when the system lost its maximum neutralising potential. Synthetic AMD (100 mg/L Fe, pH 4–4.8) was pumped through a column containing limestone particles for 1110 h, when the effluent pH had dropped from a maximum of 6.45–4.9. The decline in neutralisation during the experiment was due to the formation of Fe hydroxide coatings on the limestone grains. These coatings are composed of lepidocrocite/goethite in three distinct layers: an initial thick porous orange layer, overlain by a dense dark brown crust, succeeded by a layer of loosely-bound, porous orange globules. After 744 h, a marked increase in the rate of pH decline occurred, and the system was regarded as having effectively failed. At this time the Fe hydroxide crust effectively encapsulated the limestone grains, forming a diffusion barrier that slowed down limestone dissolution. Between the coating and the limestone substrate was a 60 μm wide void, so that agitation of the limestone sample would readily remove the coating from the limestone surface.  相似文献   

18.
The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces   总被引:4,自引:0,他引:4  
The adsorption of gold by pyrite, pyrrhotite, and mackinawite from solutions containing up to 40 mg/kg (8 μm) gold as hydrosulphidogold(I) complexes has been measured over the pH range from 2 to 10 at 25°C and at 0.10 m ionic strength (NaCl, NaClO4). The pH of point of zero charge, pHpzc, has been determined potentiometrically for all three iron sulphides and shown to be 2.4, 2.7, and 2.9 for pyrite, pyrrhotite, and mackinawite, respectively. In solutions containing hydrogen sulphide, the pHpzc is reduced to values below 2. The surface charge for each sulphide is therefore negative over the pH range studied in the adsorption experiments. Adsorption was from 100% in acid solutions having pH < 5.5 (pyrite) and pH < 4 (mackinawite and pyrrhotite). At alkaline pH’s (e.g., pH = 9), the pyrite surface adsorbed 30% of the gold from solution, whereas the pyrrhotite and mackinawite surfaces did not adsorb.The main gold complex adsorbed is AuHS°, as may be deduced from the gold speciation in solution in combination with the surface charge. The adsorption of the negatively charged Au(HS)2 onto the negatively charged sulphide surfaces is not favoured. The X-ray photoelectron spectroscopic data revealed different surface reactions for pyrite and mackinawite surfaces. While no change in redox state of adsorbent and adsorbate was observed on pyrite, a chemisorption reaction has been determined on mackinawite leading to the reduction of the gold(I) solution complex to gold(0) and to the formation of surface polysulphides. The data indicate that the adsorption of gold complexes onto iron sulphide surfaces such as that of pyrite is an important process in the “deposition” of gold from aqueous solutions over a wide range of temperatures and pressures.  相似文献   

19.
The short term (2–40 days) dissolution of enstatite, diopside, and tremolite in aqueous solution at low temperatures (20–60°C) and pH 1–6 has been studied in the laboratory by means of chemical analyses of reacting solutions for Ca2+, Mg2+, and Si(OH)4 and by the use of X-ray photoelectron spectroscopy (XPS) for detecting changes in surface chemistry of the minerals. All three minerals were found to release silica at a constant rate (linear kinetics) providing that ultrafine particles, produced by grinding, were removed initially by HF treatment. All three also underwent incongruent dissolution with preferential release of Ca and/or Mg relative to Si from their outermost surfaces. The preferential release of Ca, but not Mg for diopside at pH 6 was found by both XPS and solution chemistry verifying the theoretical prediction of greater mobility of cations located in M2 structural sites. Loss mainly from M2 sites also explains the degree of preferential loss of Mg from enstatite at pH 6; similar structural arguments apply to the loss of Ca and Mg from the surface of tremolite. In the case of diopside and tremolite initial incongruency was followed by essentially congruent cation-plus-silica dissolution indicating rapid formation of a constant-thickness, cation-depleted surface layer. Cation depletion at elevated temperature and low pH (~ 1) for enstatite and diopside was much greater than at low temperature and neutral pH, and continued reaction resulted in the formation of a surface precipitate of pure silica as indicated by solubility calculations, XPS analyses, and scanning electron microscopy.From XPS results at pH 6, model calculations indicate a cation-depleted altered surface layer of only a few atoms thickness in all three minerals. Also, lack of shifts in XPS peak energies for Si, Ca, and Mg, along with undersaturation of solutions with respect to all known Mg and Ca silicate minerals, suggest that cation depletion results from the substitution of hydrogen ion for Ca2+ and/or Mg2+ in a modified silicate structure and not from the precipitation of a new, radically different surface phase. These results, combined with findings of high activation energies for dissolution, a non-linear dependence on aH+ for silica release from enstatite and diopside, and the occurrence of etch pitting, all point to surface chemical reaction and not bulk diffusion (either in solution or through altered surface layers) as the rate controlling mechanism of iron-free pyroxene and amphibole dissolution at earth surface temperatures.  相似文献   

20.
《Applied Geochemistry》1999,14(5):581-606
Despite encrustation by Fe and Al hydroxides, limestone can be effective for remediation of acidic mine drainage (AMD). Samples of water and limestone (CaCO3) were collected periodically for 1 a at 3 identical limestone-filled drains in Pennsylvania to evaluate the attenuation of dissolved metals and the effects of pH and Fe- and Al-hydrolysis products on the rate of CaCO3 dissolution. The influent was acidic and relatively dilute (pH<4; acidity <90 mg) but contained 1–4 mg·L−1 of O2, Fe3+, Al3+ and Mn2+. The total retention time in the oxic limestone drains (OLDs) ranged from 1.0 to 3.1 hr. Effluent remained oxic (O2>1 mg·L−1) but was near neutral (pH=6.2–7.0); Fe and Al decreased to less than 5% of influent concentrations. As pH increased near the inflow, hydrous Fe and Al oxides precipitated in the OLDs. The hydrous oxides, nominally Fe(OH)3 and Al(OH)3, were visible as loosely bound, orange-yellow coatings on limestone near the inflow. As time elapsed, Fe(OH)3 and Al(OH)3 particles were transported downflow. The accumulation of hydrous oxides and elevated pH (>5) in the downflow part of the OLDs promoted sorption and coprecipitation of dissolved Mn, Cu, Co, Ni and Zn as indicated by decreased UK concentrations of the metals in effluent and their enrichment relative to Fe in hydrous-oxide particles and coatings on limestone. Despite thick (∼1 mm) hydrous-oxide coatings on limestone near the inflow, CaCO3 dissolution was more rapid near the inflow than at downflow points within and the OLD where the limestone was not coated. The high rates of CaCO3 dissolution and Fe(OH3) precipitation were associated with the relatively low pH and high Fe3+ concentration near the inflow. The rate of CaCO3 dissolution decreased with increased pH and concentrations of Ca2+ and HCO3 and decreased Pco2. Because overall efficiency is increased by combining neutralization and hydrolysis reactions, an OLD followed by a settling pond requires less land area than needed for a two-stage treatment system consisting of an anoxic limestone drain an oxidation-settling pond or wetland. To facilitate removal of hydrous-oxide sludge, a perforated-pipe subdrain can be installed within an OLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号