首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
基于2012年消融期6~9月在祁连山老虎沟12号冰川采集冰川融水径流样品,分析探讨冰川融水中粉尘颗粒物对融水理化性质的影响。结果表明,粉尘特征在消融期的变化很好地反映了冰川消融过程,融水中粉尘浓度和粒径众数在冰川强烈消融期的7月份表现为最高。粉尘体积粒径分布主要包括大气气溶胶超细颗粒(0~3.0μm,主要为PM 2.5),大气粉尘颗粒(3.0~20μm),以及局地源的粗颗粒(20~100μm);对雪冰消融释放的粉尘部分(3.0~20μm)粒径分布正态拟合结果说明,融水中粉尘颗粒物有很大部分来源于积雪中的粉尘运移所致。同时,融水中化学离子相对组成及其浓度消融期变化都与粉尘有较好的一致性,意味着粉尘对融水化学要素有重要影响。此外,pH值和电导率(EC)消融期的变化也反映了粉尘对融水物理指标的影响。在粉尘浓度较高时,融水pH值和电导率也表现出高值;融水径流中的悬移质颗粒物(SPM)浓度和溶解质固体(TDS)浓度具有较为一致的变化过程,反映了粉尘对于融水中溶解质含量也有较大影响。  相似文献   

2.
天山乌鲁木齐河源1号冰川融水径流水化学特征研究   总被引:3,自引:2,他引:1  
冯芳  冯起  刘贤德  李忠勤  刘蔚  金爽 《冰川冻土》2014,36(1):183-191
2006年和2007年的整个消融期内,在天山乌鲁木齐河源1号冰川末端水文控制点逐日定时采集融水径流样品,对样品的主要可溶离子、pH、电导率EC、总溶解固体TDS和悬移质颗粒物SPM进行了分析. 结果表明:天山乌鲁木齐河源1号冰川融水径流离子类型为Ca2+-HCO3--SO42-,呈弱碱性. 融水径流中TDS变化受日径流量调节显著,表现为消融初期和末期浓度较高,消融强烈时浓度较低;SPM以细颗粒物质为主,各粒度组分含量变化幅度较大,且质量浓度SSC年内变化与TDS呈相反的变化趋势. 融水径流中离子组成主要受岩石风化作用影响,离子摩尔比值和Piper图分析表明,控制冰川径流离子组成的主要过程是碳酸盐、黄铁矿和长石类矿物风化作用.  相似文献   

3.
贡嘎山地区的冰川水文特征   总被引:1,自引:3,他引:1  
曹真堂 《冰川冻土》1995,17(1):73-83
贡嘎山地区气候温和,降水量充沛,冰川消融强烈。冰川融水径流模数为100-145L/(s.km^2),冰川融水径流深高达2000-4500mm.冰川融水径流的年内分配比较均匀,冰川强烈消融期的5-9月,冰川融水径流占冰川区年总径流的80%左右;径流量集中的6-8月,占60%左右,冰川融水径流的年内变化气温的年内变化基本相一致,最大值出现在7月或8月。  相似文献   

4.
乌鲁木齐河源1号冰川不溶微粒的季节变化特征   总被引:12,自引:1,他引:12  
冰芯中的不溶微粒是反映大气粉尘的良好指标,亦是冰芯定年的重要方法。为了探究不溶微粒在雪层中的季节变化特征,对采自乌鲁木齐河源1号冰川4 130 m处的雪冰样品进行不溶微粒分析。表层雪中粗微粒浓度在一年中有2个峰值,分别出现在12~3月、6~9月;总微粒只有一个峰值区,出现在4~8月。对比同期气象资料发现,其受降水、大气环流以及局地风影响显著。结合雪层物理剖面和微粒在雪层中的浓度发现:污化层是粗颗粒(直径大于10 μm)聚集的区域。对该粒径范围的微粒浓度峰值进行跟踪,发现不溶微粒在雪层中的浓度和位置变化与融水、物理成冰过程密切相关。  相似文献   

5.
曹真堂 《冰川冻土》1993,15(4):582-589
郭扎冰川作用区冰川融水径流域年径流量的80%。纯冰川融水径流模数为17.7L/s·km^2,冰川融水径流深为200.2mm,冰川消融深是目前我国有实测资料冰川中的最低值。冰川融水径流年内分配很不均匀,夏季(6-8月)占80%,最大肖融期为7-9月,占86.3%。  相似文献   

6.
气候变化对乌鲁木齐河流域水资源的影响   总被引:4,自引:0,他引:4  
分析了乌鲁木齐河流域近40 a来的气候变化及其气候要素与冰川融水、降水径流的关系.结果表明:高山冰川区融水径流的变化主要受气温变化影响,冰川区夏季6~8月累积气温每增加0.5℃,流域37.95 km2冰川产生的融水量将增加3.3514×106m3;近期气温再升高0.5℃,冰川融水年平均径流量将达到35×106m3.降水对中高山径流的影响较大,每增加20 mm降水量,降雨径流量增加8.9×106m3,40 a来其变化呈略增加趋势,年平均增加量为0.4095×106m3,与冰川融水增加量相当;降水与冰川融水径流量增加百分率相比,增加幅度较小.最后提出了减少污染,增加植被覆盖面积等应对气候变化对水资源影响的措施.  相似文献   

7.
慕士塔格卡尔塔马克冰川水文观测与特征分析   总被引:6,自引:5,他引:1  
基于2003年卡尔塔马克冰川强烈消融期连续的气象与水文观测, 对卡尔塔马克冰川消融的影响因素和融水径流特征进行了分析. 结果表明: 消融期的冰川融水流量与气温之间存在着良好的相关关系, 降水过程会导致气温降低抑制冰川消融. 卡尔塔马克冰川纯冰川融水径流模数为62.4 L·s-1·km-2, 冰川区融水径流深为 463.5 mm. 根据现场降水损失试验, 总损失达 26%, 校正后大本营处2003年降水量为134 mm.  相似文献   

8.
利用科其喀尔巴西冰川2005年6月至2006年5月水文、气象资料,并结合15 m融合TM、1∶[KG-*2]50000地形图、FY 2C数值产品和NCEP/NCAR再分析资料等,构建了10个简单、具有一定自主创新意义的分布式冰川融水径流模型(空间分辨率60 m),较好地模拟了研究冰川流域的日平均流量。结果表明,利用FY 2C总云量资料并结合辐射传输参数化方案能够较好地估算流域太阳入射短波辐射;单独利用总辐射有直接估算大型冰川流域某段时期融水径流的可能。气温与冰川末端流量呈指数关系,度日因子模型更适合于消融季节;提出的基于单元格气温和海拔的简单消融模型有望改进度日因子模型。在气温指数模型中加入太阳辐射调整系数,能够更好地估算冰川融水径流。简化分布式能量平衡模型能够反映大型冰川融水径流的变化;单层汇流方案在一定程度上能够概化托木尔型冰川的汇流过程。  相似文献   

9.
融水径流分割研究回顾及展望   总被引:1,自引:1,他引:0  
全球气候变暖引起雪冰(积雪/冰川)消融、冻土退化,融水径流量显著增加。不同融水径流分割方法可以量化河流径流的融水比例,反映高寒区雪冰变化及其对气候变暖的响应。评述了不同径流分割方法的原理及其优缺点,并着重介绍了同位素/化学径流分割的计算方法及示踪剂选择。对比分析各研究流域融水径流分割结果,详细讨论影响融水径流变化的主要因素。针对同位素径流分割方法的理想化假设,提出了量化不确定性的的拓展研究。最后,阐述了随着高频采样技术的完善,同位素径流分割研究的发展前景。  相似文献   

10.
通过2013年6-9月对唐古拉山冬克玛底冰川流域河水的逐日定时样品采集,并结合流域水文与气象资料,对径流的总溶解固体(TDS)和悬移质的变化特征进行分析。结果表明:2013年消融期的平均气温为3.7℃,消融期降水量为546 mm,7月和8月两个月径流量占消融期总径流量的63%。消融期逐日的TDS变化范围为31~140 mg·L-1,平均值为60 mg·L-1,TDS随径流变化显著,表现为消融强烈时(7-8月) TDS浓度较低,消融初期(6月)和末期(9月)时TDS浓度较高;径流中TDS与悬移质浓度(SSC)变化表现出相反变化趋势,即消融强烈时悬移质浓度较高,而消融初期与末期悬移质浓度较低,消融期平均悬移质浓度为122.8 mg·L-1,流量-SSC时序关系表现为以顺时针滞后事件为主。2013年冬克玛底冰川流域消融期的化学侵蚀总量和物理侵蚀总量分别为2.214×103 t和6.722×103 t,化学侵蚀与物理侵蚀率的比值为0.33。  相似文献   

11.
气候变暖背景下,冰雪、冻土剧烈消融引起的寒区径流成分改变对流域径流演变规律及水循环机制产生了深刻影响。对长江源区各水体水化学特征及其生态水文学研究进行归纳总结,主要进展包括:长江源区的大气降水的水汽来源主要受西风环流和季风环流的控制。冰雪融水的水化学特征受到消融强度、消融持续时间和新雪融水的影响,同时在冰雪融水、积雪以及冰川融水之间可能存在化学离子的交换。冻土层上水受到降水、冰雪融水、地下冰融水等的混合补给,造成水化学特征变化的随机波动。海拔在4 500 m的地区是冻土层上水水化学特征对研究区离子控制源较为敏感的区域。随着海拔高度的增加,降雨直接补给对河水中化学离子的稀释作用逐渐减弱,同时,海拔从4 500 m到5 000 m的降水对河水中离子浓度的稀释效果最大,而在海拔5 000 m以上河水主要受冰雪融水的补给,降水和消融期的变化对河水水化学的影响很小。研究结果为更系统地认知寒区下垫面变化所引起的水文效应提供科学依据,为流域水资源的合理开发利用提供决策依据。  相似文献   

12.
雪冰反照率能够改变冰川表面能量收支平衡,是影响冰川消融的重要因素之一。利用祁连山地区冰川面积矢量数据、MODIS逐日积雪反照率、气温和降水以及冰川物质平衡等数据,探讨了祁连山典型冰川区雪冰反照率特征及其对冰川物质平衡的影响。结果表明:祁连山地区冰川多年平均反照率为0.532,冰川区面积大小与其多年平均反照率之间呈显著正相关(R2=0.16,P<0.05,N=91),即冰川面积缩减1 km2,对应的平均反照率下降0.0025。祁连山老虎沟12号冰川反照率在夏季有明显的海拔效应,且强于其他时段,达到0.047?(100m)-1。典型冰川年均物质平衡量与冰川表面夏季(6—8月)平均反照率之间存在显著的正相关关系,老虎沟12号冰川和七一冰川决定系数R2分别达到了0.48(P<0.05)和0.66(P <0.05)。冰川表面夏季平均反照率这一指标能够较好地衡量青藏高原北部祁连山地区冰川物质平衡的变化。  相似文献   

13.
祁连山老虎沟流域产汇流特征分析   总被引:1,自引:0,他引:1  
为了研究老虎沟流域冰川产汇流特征,根据老虎沟流域2009年消融期4-10月的气象与水文观测资料,采用排除和不排除降水对冰雪消融产流影响的方法,对老虎沟流域融水径流的产流特征、白天和夜晚径流特征、径流的滞后效应进行了分析。结果表明: 5-9月各月流量占到整个消融期流量的比例分别为7%、26%、33%、19%、14%。降水对河流的产流贡献率约为22%,冰雪融水和地下水对河流的产流贡献率为78%。观测期内,除5月外,白天流量全部大于晚上流量,而且6-8月白天和夜晚径流之间的差值较大。老虎沟冰川区以裸冰消融为主,冰面湖较少而且小,汇流较快,储水性能并不明显。5-9月流量峰值和谷值平均分别滞后气温7.0 h、3.5 h、2.5 h、2.5 h和4.5 h,冰川排水系统也随着流量变化经历慢速-快速-慢速的变化过程。  相似文献   

14.
慕士塔格冰芯降水记录及其对冰川水资源的气候意义   总被引:5,自引:1,他引:4  
2003年在东帕米尔慕士塔格冰川海拔7010 m处钻取了的一支长41.6 m的冰芯,从中恢复了1955年以来的积累量.结果表明:自20世纪70年代以来,冰川积累量持续减少,特别近年来积累量呈加速减小趋势;平均而言,20世纪90年代后期至2003年平均积累量只有20世纪60年代冰川积累量的一半.重建的慕士塔格地区冰川物质平衡近20 a来亏损严重,主要是由近年来慕士塔格高山区降水的减小和温度的升高共同作用引起的.对主要以冰川融水为补给的塔里木河流域上游山区而言,短期冰川融水的增加会调节河流径流,而当冰川得不到足够的降水补充时,冰川的退化必然影响到下游的河流径流.  相似文献   

15.
祁连山老虎沟流域强消融期径流对气候变化的响应   总被引:4,自引:4,他引:0  
为定量研究老虎沟流域径流对气候变化的响应,利用老虎沟流域1959年和2014年强消融期(7月)的气象、径流数据,分析了强消融期气温、降水、蒸发、冰川消融量、径流(流域的径流深)等的变化,进而探讨了老虎沟流域强消融期气温分布和降水形态、流域蒸发和冰川消融对径流的影响。结果表明:老虎沟流域2014年强消融期径流比1959年多159 mm,增加了49.67%。2014年7月平均气温较1959年升高0.38℃,最低气温升高1.34℃。1959年和2014年7月降水量相差较小;老虎沟流域强消融期日降水和日径流之间呈负相关,蒸发量的变化较小,流域内祁连山站的混合态降水比例减少23.01%,导致降水转化为径流的比例增大;起决定性作用的是正积温, 2014年7月较1959年的正积温高11.71℃·d,主要由于2~4℃的气温日数增多导致正积温增加,从而加剧冰川消融对径流的补给。  相似文献   

16.
2008年6月,在祁连山七一冰川采集雪坑、冰川融水和冰川末端冰样,经过大孔吸附树脂富集后,用GC-MS对样品中的正构烷烃(nC14~nC32)和多环芳烃进行了分析.结果表明,正构烷烃的含量在冰川融水中最高,雪坑次之,冰中最低;多环芳烃的含量在雪坑中最高,冰中最低,冰川融水界于二者之间.正构烷烃与多环芳烃都具有很强的疏水性,在固-液相分配过程中倾向于保留在残留固相中.由于冰川融水样品距冰川末端约1km,沿途地表土壤和植被会贡献部分正构烷烃,所以冰川融水中正构烷烃的含量最高.与正构烷烃不同,多环芳烃较易挥发,而且易被沿途土壤和植被所吸附,导致冰川融水中多环芳烃的含量降低.冰川末端冰中正构烷烃与多环芳烃的含量都很低,可能是由于冰川末端冰年代比较古老,受人类活动的污染较轻.正构烷烃的碳优势指数(CPI值)表明,七一冰川中的正构烷烃主要来自高等植物蜡和化石燃料燃烧产物的混合物,多环芳烃的荧蒽/芘(Fla/Pyr)和菲/蒽(Phe/Ant)比值表明,七一冰川冰雪和冰川融水中检测到的多环芳烃主要来自化石燃料的不完全燃烧.  相似文献   

17.
2008年10月和2009年10月在祁连山老虎沟12号冰川积累区采集了2个雪坑样品, 通过样品中δ18O、可溶性离子、不溶性微粒的变化特点划分了雪坑季节. 2008年雪坑季节变化信号明显, 而2009年雪坑不明显, 微粒浓度、Ca2+与Mg2+含量在春季较高. 离子平衡、pH值、电导率及同期气象记录观测资料均显示, 2009年雪坑受淋溶影响较大. 淋溶强烈时, 受融水造成的粉尘溶解及离子淋溶的影响, 雪坑中微粒与Ca2+、Mg2+变化趋势不甚一致; 与Ca2+相比, Mg2+变化能够较好表征微粒的变化; d>5 μm的微粒可能更易于溶解迁移. 通过分析室内雪冰样品在液态下的变化, 发现伴随静置过程微粒的质量浓度呈下降的趋势, 期间Ca2+、Mg2+却呈现增加的变化, 可能与碳酸盐矿物的溶解有关.  相似文献   

18.
揭示新疆山地冰川变化及其影响,对新疆山地-绿洲-荒漠系统的健康和稳定发展意义重大。系统梳理新疆冰川物理变化、化学过程、生物资源、气候响应与生态效应等研究成果。结果表明:①新疆山地冰川总体上呈加速消融之势,且受地形、气候影响,冰川变化的区域性差异明显;②气溶胶解释了乌鲁木齐河源1号冰川表层物质的组成与来源,同位素定量了各流域径流中冰川融水的比例;③冰川变化对极端微生物生存条件、空间分布的影响研究较为成熟,但其与生物资源间的综合反馈机理尚不明晰;④冰川消融对水资源的影响随冰川融水拐点的到来而加剧,造成的生态服务缩减和冰雪产业损失日益凸显。制定统一的冰川提取标准、扩宽研究视角、全面系统观测冰川、提高模拟预测精度、加强灾害预警与制定对策是未来新疆山地冰川研究的关注点。  相似文献   

19.
揭示新疆山地冰川变化及其影响,对新疆山地-绿洲-荒漠系统的健康和稳定发展意义重大。系统梳理新疆冰川物理变化、化学过程、生物资源、气候响应与生态效应等研究成果。结果表明:①新疆山地冰川总体上呈加速消融之势,且受地形、气候影响,冰川变化的区域性差异明显;②气溶胶解释了乌鲁木齐河源1号冰川表层物质的组成与来源,同位素定量了各流域径流中冰川融水的比例;③冰川变化对极端微生物生存条件、空间分布的影响研究较为成熟,但其与生物资源间的综合反馈机理尚不明晰;④冰川消融对水资源的影响随冰川融水拐点的到来而加剧,造成的生态服务缩减和冰雪产业损失日益凸显。制定统一的冰川提取标准、扩宽研究视角、全面系统观测冰川、提高模拟预测精度、加强灾害预警与制定对策是未来新疆山地冰川研究的关注点。  相似文献   

20.
The rock glacier Innere Ölgrube, located in a small side valley of the Kauner Valley (Ötztal Alps, Austria), consists of two separate, tongue-shaped rock glaciers lying next to each other. Investigations indicate that both rock glaciers contain a core of massive ice. During winter, the temperature at the base of the snow cover (BTS) is significantly lower at the active rock glacier than on permafrost-free ground adjacent to the rock glacier. Discharge is characterized by strong seasonal and diurnal variations, and is strongly controlled by the local weather conditions. Water temperature of the rock glacier springs remains constantly low, mostly below 1°C during the whole melt season. The morphology of the rock glaciers and the presence of meltwater lakes in their rooting zones as well as the high surface flow velocities of >1 m/yr point to a glacial origin. The northern rock glacier, which is bounded by lateral moraines, evolved from the debris-covered tongue of a small glacier of the Little Ice Age with its last highstand around A.D. 1850. Due to the global warming in the following decades, the upper parts of the steep and debris-free ice glacier melted, whereas the debris-covered glacier tongue transformed into an active rock glacier. Due to this evolution and due to the downslope movement, the northern rock glacier, although still active, at present is cut off from its ice and debris supply. The southern rock glacier has developed approximately during the same period from a debris-covered cirque glacier at the foot of the Wannetspitze massif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号