首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
An investigation was conducted to obtain analytical solutions for the pullout behavior of a suction caisson undergoing inclined loads in sand. The inclined load is transformed into an equivalent load system in which the vertical, horizontal, and moment loads are applied on the center of the lid of the suction caisson. The vertical and lateral stiffness coefficients along the skirt of the suction caisson in sands are presented using the new three-dimensional elastic solutions taking into account the nonhomogeneous and nonlinear properties of the sand. The vertical, lateral, and rocking stiffness coefficients on the base of the suction caisson are presented considering the solutions of a hollow rigid cylindrical punch acting on the surface of a soil. The yield, pullout, and failure for sands with the nonhomogeneous and nonlinear characteristics are taken into consideration. The effects of the load inclination, the loading depth, and the aspect ratio on the pullout load capacity of the suction caisson are presented. Behaviour of the suction caisson in sand prior to failure is clarified from the relationship between tensile load, displacement, and rotation and that between depth, vertical pressure, and lateral pressure.  相似文献   

2.
An investigation was made to present analytical solutions of cyclic response to suction caisson subjected to inclined cyclic loadings in clay using a three-dimensional displacement approach. A model representing the relationship between vertical load and vertical displacement and that between lateral load and lateral displacement along the skirt of suction caisson subjected to cyclic loadings is proposed for overconsolidated clay. For the effect of vertical load on cyclic load capacity of suction caisson, using the Mindlin solution in the case of a vertical point load, the vertical stress of soil under the base of suction caisson is presented. For the stress state of soil beneath the base of suction caisson subjected to cyclic loading, the Mohr–Coulomb failure line and critical state line are presented and the relationship between total stress, effective mean principal stress, stress difference, and pore-pressure is elucidated. The comparison of results predicted by the present method for a suction caisson subjected to cyclic loadings in clay has shown good agreement with those obtained from field tests. Cyclic behavior of clay up to failure is made clear from the relationship between cyclic tensile load, vertical and lateral displacements, and rotation and that between depth, vertical, and lateral pressures.  相似文献   

3.
ABSTRACT

An investigation is made to present analytical solutions provided by a three-dimensional displacement approach for analysis of bucket foundations subjected to vertical and lateral loads in cohesive soils. The nonlinear vertical and lateral stiffness coefficients along the skirt of the bucket foundation in nonhomogeneous soil are presented using three-dimensional solutions for vertical and lateral loads and taking into account the dependence of stiffness coefficients on the shear strain. The vertical, lateral, and rocking stiffness coefficients on the base of the skirt of a bucket foundation are obtained from the solutions of hollow rigid cylindrical punch acting on the surface of a soil. The ultimate vertical stress of a soil under the base of a bucket foundation subjected to vertical and moment loads is presented analytically by considering only compression and ignoring tension on the base. The vertical and lateral yields along the skirt and the compression and shear failures on the base are taken into account in analysis of ultimate load capacities. Envelopes of the combined ultimate horizontal and moment load capacities of a bucket foundation in clay are shown. Relationships between ultimate lateral and moment load capacities and the embedment ratio (skirt length to diameter) are presented.  相似文献   

4.
K.D. Jones  Y. Cho 《Ocean Engineering》2007,34(16):2107-2114
An analytical solution has been developed to estimate the horizontal, vertical, and inclined loading pullout capacities of embedded suction anchors in sand. Validation of the analytical solution on pullout capacities has been made through comparisons with the centrifuge model test results. Primary variables for the centrifuge model tests are the depth to the loading point, the load inclination angle, and the addition of flanges. The results indicate that both the horizontal and vertical pullout capacities of the embedded suction anchor in sand increase, reach the peak and then start to decrease as the loading point moves downward. The inclined loading pullout capacity is very much dependent on the load inclination angle and the loading point. The effect of flanges on the pullout capacities is also found to be significant.  相似文献   

5.
Dai  Guo-liang  Zhu  Wen-bo  Zhai  Qian  Gong  Wei-ming  Zhao  Xue-liang 《中国海洋工程》2019,33(6):685-693
Suction caisson foundation derives most of their uplift resistance from passive suction developed during the pullout movement. It was observed that the passive suction generated in soil at the bottom of the caisson and the failure mode of suction caisson foundation subjecting pullout loading behaves as a reverse compression failure mechanism.The upper bound theorems have been proved to be a powerful method to find the critical failure mechanism and critical load associated with foundations, buried caissons and other geotechnical structures. However, limited attempts have been reported to estimate the uplift bearing capacity of the suction caisson foundation using the upper bound solution. In this paper, both reverse failure mechanisms from Prandtl and Hill were adopted as the failure mechanisms for the computation of the uplift bearing capacity of the suction caisson. New equations were proposed based on both failure mechanisms to estimate the pullout capacity of the suction caisson. The proposed equations were verified by the test results and experimental data from published literature. And the two solutions agree reasonably well with the other test results. It can be proved that both failure mechanisms are reasonably and more consistent with the actual force condition.  相似文献   

6.
Dai  Guo-liang  Zhu  Wen-bo  Zhai  Qian  Gong  Wei-ming  Zhao  Xue-liang 《中国海洋工程》2020,34(2):267-278
Suction caisson foundations are often subjected to vertical uplift loads, but there are still no wide and spread engineering specifications on design and calculation method for uplift bearing capacity of suction caisson foundation.So it is important to establish an uplift failure criterion. In order to study the uplift bearing mechanism and failure mode of suction caisson foundation, a series of model tests were carried out considering the effects of aspect ratio,soil permeability and loading mode. Test results indicate that the residual negative pressure at the top of caisson is beneficial to enhance uplift bearing capacity. The smaller the permeability coefficient is, the higher the residual negative pressure will be. And the residual negative pressure is approximately equal to the water head that causes seepage in the caisson. When the load reaches the ultimate bearing capacity, both the top and bottom negative pressures are smaller than Su and both the top and bottom reverse bearing capacity factors are smaller than 1.0 in soft clay. Combined the uplift bearing characteristics of caisson in sandy soil and soft clay, the bearing capacity composition and the calculation method are proposed. It can provide a reference for the engineering design of suction caisson foundation under vertical load.  相似文献   

7.
A series of model tests were performed on steel- and Perspex-made suction caissons in saturated dense marine sand to explore installation and extraction behaviors. The extractions of the caisson were conducted by applying monotonic loading or by pumping water into the caisson. Responses of suction caissons to pullout rates, aspect ratios, and extraction manners were examined. Test results show that a cone-shaped subsidence region occurs around the suction caisson during the suction-assisted installation. The pullout bearing capacity of the suction caisson in sand is dominated by the loading rate and the loading manner. For the suction caisson subjected to monotonic loading, the maximum bearing capacity is reached at the pullout rate of about 20.0?mm/s. The mobilized vertical displacement corresponding to the pullout capacity increases with increasing the pullout rate. The passive suction beneath the suction caisson lid reaches the maximum value when the pullout bearing capacity is mobilized. In addition, during the suction caisson extracted by pumping water into the caisson, the maximum pore water pressure in the caisson is obtained under the displacement of approximately 0.04 times the caisson diameter. The absolute values of the maximum pore water pressures for the suction caissons approximately equal those of the maximum vertical resistances at the monotonic pullout rate of 5 mm/s. When the vertical displacements of the suction caissons with the aspect ratio of 1.0 and 2.0 reach 0.92 and 1.77 times the caisson diameter, respectively, the seepage failure occurs around the caissons. Using a scaling method, the test results can be used to predict the time length required for the prototype suction caisson to be extracted from the seabed.  相似文献   

8.
Upper bound plastic limit analyses (PLA) can provide a useful framework for estimating the load capacity of suction caisson anchors in purely cohesive soils. Since arbitrary assumptions regarding the soil stress state are not required in the PLA formulation, it may be used with greater consistency compared to other simplified approaches such as limit equilibrium methods. While PLA methods do not attempt to include all of the complexities of anchor behavior, they can provide a relatively simple framework for visualizing anchor kinematics leading to an understanding of the relative importance of various parameters on suction anchor load capacity. The most rigorous PLA formulations involve postulating a three-dimensional anchor-soil failure mechanism and deriving expressions for internal energy dissipation throughout the mechanism. This approach can involve extensive numerical integrations and a relatively complex scheme for optimizing the failure mechanism to obtain a least upper bound collapse load. Considerable simplification is possible if the problem is formulated in terms of ultimate unit resistances (lateral, axial, and their interaction) that can be exerted by the soil on the caisson. In this case, the caisson failure mechanism can be characterized in terms of one or two optimization variables. Simple expressions for the ultimate unit resistances acting on the caisson can be obtained from several sources including rigorous PLA solutions, finite element techniques, or experimental measurements. General expressions are possible by limiting consideration to common, idealized strength profiles such as uniform or constant gradient. Such simplified formulations are particularly valuable for providing an analysis tool accessible to practicing engineers. Suction caisson anchors can be subjected to a variety of load orientations including nearly vertical uplift forces imposed by the vertical tendons of tension leg platforms, horizontal loads imposed by catenary mooring systems, and inclined loads imposed by taut moorings. Recently, PLA methods have been applied to the analysis of suction caissons subjected to this range of loading conditions. This paper reviews the formulation of these analyses and summarizes the most significant findings.  相似文献   

9.
ABSTRACT

The suction caisson is commonly a top-closed cylindrical steel structure with large diameter, short length and much thinner skirt wall thickness. The resistance to penetrating is calculated as the sum of the tip bearing capacity and the adhesion on the both sides of the skirt wall. Since the thickness of the skirt wall is very small, the downward adhesion produced by the skirt wall will cause the additional vertical stress and shear stress in the soil at the skirt tip level, increasing the skirt tip resistance. However, the increase in skirt tip resistance caused by the additional vertical stress rather than shear stress in soil at the skirt tip level was only considered, this may lead to an inaccurate estimation for the tip bearing capacity and the suction required. Thus, a modified slip-line field is put forward in this study to estimate the tip resistance. The expression of obtaining the minimum suction to install the suction caisson in clay is derived in terms of the force equilibrium. Results from calculations of the minimum suction have been proved to be in a good agreement with the measured data.  相似文献   

10.
Determining the ultimate capacity of suction caissons in response to combined vertical, horizontal, and moment loading is essential for their design as foundations for offshore wind turbines. However, the method implemented for stability analysis is quite limited. Numerical limit analysis has an advantage over traditional limit equilibrium methods and nonlinear finite element methods in this case because upper and lower bounds can be achieved to ensure that the exact ultimate capacity of the caisson falls within the appropriate range. This article presents theories related to numerical limit analysis. Simulations are conducted for centrifuge model tests, the findings of which reveal the ability of numerical limit analysis to deal with the inclined pullout capacity of suction caissons. Finally, this article proposes an estimation of the ultimate capacity of a 3.5 MW offshore wind turbine foundation on normally consolidated clay based on the typical environmental parameters of Bothkennar, Scotland. Undrained failure envelopes and safety factors are obtained for suction caissons with different embedment ratios. Failure mechanisms, plastic zones, clay stress distributions, and the influence of the skin friction coefficients of caissons are discussed in detail.  相似文献   

11.
复合加载条件下吸力式沉箱基础承载特性数值分析   总被引:2,自引:0,他引:2  
王志云  王栋  栾茂田  范庆来  武科 《海洋工程》2007,25(2):52-56,71
吸力式沉箱基础的承载特性是海洋工程结构设施建造与设计中的一个关键问题。这种新型的深水海洋基础型式,通常承受竖向上拔荷载与水平荷载的共同作用,其工作性能与设计理论远远不能满足工程实践的需要。本文采用有限元分析方法对吸力式沉箱基础的极限承载特性进行数值计算。以大型通用有限元分析软件ABAQUS为平台,通过二次开发,数值实现了Swipe试验加载方法和固定位移比分析方法,针对不同的沉箱长径比、土的强度折减系数,探讨了沉箱基础在垂直上拔荷载和水平荷载单调联合作用下的极限承载力,通过对不同荷载组合的数值计算构造了复合加载条件下沉箱基础破坏包络面。  相似文献   

12.
针对现阶段深水软黏土地基防波堤建设的设计理论和稳定性分析方法尚不成熟,结合实际工程,采用三维弹塑性有限元数值分析方法,研究在水平或竖直单一方向荷载以及复合加载条件下软黏土地基上沉箱防波堤的失稳模式,提出破坏包络线的稳定性判别方法。在波浪水平荷载作用下,深水软基上沉箱防波堤发生倾覆失稳破坏,失稳转动点为沉箱底面以下中轴线偏右的某点,不同于规范中规定的岩石或砂质地基沉箱倾覆转动点为其后踵点;在重力等竖向荷载作用下,沉箱的失稳模式为结构整体下陷,抛石基床及地基形成连贯的塑性区域,呈现较明显地冲剪破坏形式;在水平、竖向复合荷载作用下,软基上沉箱防波堤的破坏包络线由结构倾覆破坏线和地基承载力破坏线组成,包络线将荷载组合区分成稳定区、仅发生水平承载力不足倾覆破坏区、仅发生地基竖向承载力不足破坏区、同时发生水平承载力和地基竖向承载力不足破坏区4个区域。研究成果为深水软基沉箱防波堤建设提供参考和借鉴。  相似文献   

13.
A series of model tests were conducted on Perspex-made suction caissons in saturated dense marine sand to study the sand plug formation during extraction. Suction caissons were extracted by pullout loading or by pumping air into the suction caisson. Effects of the pullout rates, aspect ratios and loading ways (monotonic or sustained) on the pullout capacity, and plug formation were investigated. It was found that the ultimate pullout capacity of the suction caisson increases with increasing the pullout rate. The sand plug formation under the pullout loading is significantly influenced by the pullout rate and the loading way. When the suction caisson is extracted at a relatively slow rate, the general sand boiling through the sand plug along the inner caisson wall occurs. On the contrary, the local sand boiling will occur at the bottom of the suction caisson subjected to a rapid monotonic loading or a sustained loading. Test results of the suction caisson extracted by pumping air into the caisson show that the pressure in the suction caisson almost follows a linear relationship with the upward displacement. The maximum pressures for suction caissons with aspect ratios of 1.0 and 2.0 during extraction by pumping air into the caisson are 1.70 and 2.27 times the maximum suction required to penetrate the suction caisson into sand. It was found that the sand plug moves downward during extraction by pumping air into the caisson and the variation in the sand plug height is mainly caused by the outflow of the sand particles from the inside of the suction caisson to the outside. When the suction caisson model is extracted under the pullout rate of 2?mm/s (0.28?mm/s for the prototype), the hydraulic gradient along the suction caisson wall increases to the maximum value with increasing the penetration depth and then reduces to zero. On the contrary, when extracted under the pullout rate of 10?mm/s (1.4?mm/s for the prototype), the hydraulic gradient along the suction caisson wall increases with increasing the pullout displacement. When extracted by pumping air into the caisson, the hydraulic gradient reaches the critical value, and at the same time, the seepage failure occurs around the suction caisson tip.  相似文献   

14.
吸力基础具有施工速度快、安装过程中受海况天气影响小且易于回收重复利用等优点,被广泛应用于海洋工程。当吸力基础作为海上风电塔架的基础时,常常承受较大的水平荷载,因此其水平承载力是设计的主控因素。介绍了海上风机基础的设计要求,分析了影响基础水平承载性状的因素,总结了吸力基础受水平单调荷载、水平循环荷载和不同荷载组合三个方面的研究现状。讨论了水平荷载的大小、水平加载的高度(偏心率)、循环荷载的频率、循环荷载的次数、循环荷载的幅值、循环荷载的方向性、竖向荷载对吸力基础水平承载性状的影响,考虑了水平荷载的非共线性,指出了目前研究的不足,明确了吸力基础水平承载性状进一步研究的方向,提出了供工程实践参考的建议。  相似文献   

15.
The bearing behavior of suction caissons supporting offshore wind turbines under two-way cyclic lateral loading and dead load in clay was investigated with consideration of soil strength degradation and adhesive interface friction between caisson walls and heterogeneous clay using the finite-element package ABAQUS.An ABAQUS built-in user subroutine was programmed to calculate the adhesive interface friction between clay and caisson walls.The results of parametric studies showed that the degradation of bearing capacity could be aggravated by the decrease of the aspect ratio.The offset between the rotation point of the soil inside the caisson and the central axis of the caisson increased with the increasing vertical load and number of cycles.The linearly increasing strength profile and adhesive interface led to the formation of an inverted spoon failure zone inside the caisson.The settlement-rotation curves in each cycle moved downwards with increasing number of cycles due to the soil strength degradation.  相似文献   

16.
针对深水平台吸力沉箱基础,讨论了与沉箱安装有关的分析方法及涉及的工程地质参数,分析了承受竖向拉拔荷载、倾斜与水平荷载作用的吸力沉箱极限承载力的分析方法及涉及的工程地质参数,对与吸力沉箱设计有关的其它问题也进行了分析.在此基础上,阐明了与吸力沉箱设计有关的工程场地调查内容及需要确定的工程地质参数.其目的是为开发深水平台吸...  相似文献   

17.
As the anchoring foundation of the tension leg platform(TLP), suction caisson foundation is subjected to the longterm vertical pullout loads. But there are few studies on the mechanism of the unloading creep of soft clay and longterm uplift bearing capacity of suction caisson foundations. To address this problem, unloading creep tests of soft clay were carried out to analyze the strain development with time under different confining pressures. The test results show that the creep curve rapidly d...  相似文献   

18.
In this paper, results of a three-dimensional finite element study addressing the effect of embedment ratio (L/D) of caisson foundations on the undrained bearing capacity under uniaxial and combined loadings are discussed. The undrained response of caisson foundations under uniaxial vertical (V), horizontal (H) and moment (M) loading are investigated. A series of equations are proposed to predict the ultimate vertical, moment and maximum horizontal bearing capacity factors. The undrained response of caisson foundations under combined V-H and V-M load space is studied and presented using failure envelopes generated with side-swipe method. The kinematic mechanism accompanying failure under uniaxial loading is addressed and presented for different embedment ratios. Predictions of the uniaxial bearing capacities are compared with other models and it is confirmed that the proposed equations appropriately describe the capacity of caisson foundations under uniaxial vertical, horizontal and moment loading in homogenous undrained soils. The results of this paper can be used as a basis for standard design codes of off-shore skirted shallow foundations which will be the first of its kind.  相似文献   

19.
桶形基础越来越广泛应用于海洋油气平台、海上风机、输电塔、防波堤等构筑物,研究其循环承载特性对以上构筑物服役安全性具有重要意义。通过在软黏土中开展单桶循环上拔以及小间距群桶循环上拔和循环下压超重力离心模型试验,发现循环上拔地基破坏模式为整体破坏,裂隙均呈现圆弧形,循环下压呈现渐进式整体破坏模式,下压过程的挤压作用可明显减小桶周泥面高度,导致其承载力降低。模拟双向受荷工况的循环上拔试验在5次加载后荷载弱化系数开始趋于稳定,远早于单向受荷工况;单向和双向受荷工况循环上拔荷载弱化系数残余稳定值分别为0.31和0.32,循环下压荷载弱化系数最小值为0.35,表明不同加载方式竖向循环荷载作用下,此三者大小均可用软黏土地基灵敏度倒数预估。  相似文献   

20.
通过两组不同水平荷载作用下吸力式沉箱基础长期模型试验,对吸力式沉箱基础随时间的位移变化规律以及土压力分布规律进行了研究。试验结果表明:在长期模型试验中位移发展主要集中在试验前期,后期位移稳定需要更长时间,土体流变效应较为明显。土压力沿深度分布曲线呈抛物形状,表明沉箱基础在水平荷载作用下为转动模式,随时间增加被动区土压力变化呈增大趋势,主动区土压力呈减小趋势。土压力发展主要集中在试验前期,后期土压力变化相对较小,但土压力稳定所需时间较长,同时荷载值越大土压力稳定所需时间越长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号