首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1 RESISTANCE TO WATER-STONE FLOW As a special sort of debris flow, water-stone flow, or as generally called, sub-viscous debris flow, always occurs in channel of steep slope, dominantly in composition of coarse grains of bedload and laminated load with less suspended load. In some literature, water-stone flow is defined for convenience of study as that without suspended fine grains in composition, and it follows from this definition that transportation concentration of this kind of …  相似文献   

2.
This study focuses on the prediction of the porosity of nonuniform sediment mixtures,considering the effects of particle packing.A random particle packing model has been developed for the porosity of bimodal mixtures by extending the existing random particle filling theory.Coefficients in the developed model are calibrated by fitting the model to measured data for a variety of bimodal mixtures,including spherical glass particles,rounded quarry grains,and natural sediments.The model coefficients ...  相似文献   

3.
4.
Debris flows often exhibit high mobility, leading to extensive hazards far from their sources. Although it is known that debris flow mobility increases with initial volume, the underlying mechanism remains uncertain. Here, we reconstruct the mobility–volume relation for debris flows using a recent depth-averaged two-phase flow model without evoking a reduced friction coefficient, challenging currently prevailing friction-reduction hypotheses. Physical experimental debris flows driven by solid–liquid mass release and extended numerical cases at both laboratory and field scales are resolved by the model. For the first time, we probe into the energetics of the debris flows and find that, whilst the energy balance holds and fine and coarse grains play distinct roles in debris flow energetics, the grains as a whole release energy to the liquid due to inter-phase and inter-grain size interactions, and this grain-energy release correlates closely with mobility. Despite uncertainty arising from the model closures, our results provide insight into the fundamental mechanisms operating in debris flows. We propose that debris flow mobility is governed by grain-energy release, thereby facilitating a bridge between mobility and internal energy transfer. The initial volume of debris flow is inadequate for characterizing debris flow mobility, and a friction-reduction mechanism is not a prerequisite for the high mobility of debris flows. By contrast, inter-phase and inter-grain size interactions play primary roles and should be incorporated explicitly in debris flow models. Our findings are qualitatively encouraging and physically meaningful, providing implications not only for assessing future debris flow hazards and informing mitigation and adaptation strategies, but also for unravelling a spectrum of earth surface processes including heavily sediment-laden floods, subaqueous debris flows and turbidity currents in rivers, reservoirs, estuaries, and ocean. © 2020 John Wiley & Sons, Ltd.  相似文献   

5.
Sediment grains in a bedrock‐alluvial river will be deposited within or adjacent to a sediment patch, or as isolated grains on the bedrock surface. Previous analysis of grain geometry has demonstrated that these arrangements produce significant differences in grain entrainment shear stress. However, this analysis neglected potential interactions between the sediment patches, local hydraulics and grain entrainment. We present a series of flume experiments that measure the influence of sediment patches on grain entrainment. The flume had a planar bed with roughness that was much smaller than the diameters of the mobile grains. In each experiment sediment was added either as individual grains or as a single sediment pulse. Flow was then increased until the sediment was entrained. Analysis of the experiments demonstrates that: (1) for individual grains, coarse grains are entrained at a higher discharge than fine grains; (2) once sediment patches are present, the different in entrainment discharge between coarse and fine grains is greatly reduced; (3) the sheltering effect of patches also increases the entrainment discharge of isolated grains; (4) entire sediment patches break‐up and are eroded quickly, rather than through progressive grain‐by‐grain erosion; (5) as discharge increases there is some tendency for patches to become more elongate and flow‐aligned, and more randomly distributed across the bed. One implication of this research is that the critical shear stress in bedrock‐alluvial channels will be a function of the extent of the sediment cover. Another is that the influence of sediment patches equalizes critical shear stresses between different grain sizes and grain locations, meaning that these factors may not need to be accounted for. Further research is needed to quantify interactions between sediment patches, grain entrainment and local hydraulics on rougher bedrock surfaces, and under different types of sediment supply. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The debris deposits at the bottom of very steep natural channels and streams in high mountain areas can be mobilized by runoff, triggering a water–sediment mixture flow known as debris flow. The routing of debris flow through human settlements can cause damage to civil structures and loss of human lives. The prediction of such an event, or the runoff discharge that triggers it, assumes an interest in risk analyses and the planning of defence measures. The object of this study is to find a method to determine the critical runoff value that triggers debris flow as a result of channel‐bed failure. Historical and rainfall data on 30 debris flows that occurred in six watersheds of the Dolomites (north‐eastern Italian Alps) were collected from different sources. Field investigations at the six sites, together with the hydrologic response to the rainfalls that triggered the events, were performed to obtain a realistic scenario of the formation of the debris flow there occurred. Field observations include a survey along the channel of the triggering reach of debris flow, with measurements of the channel slope and cross‐section and sampling of debris deposits for grain size distribution. Simulated runoff discharge values based on the rainfall recorded by pluviometers were then compared with values obtained through experimental criteria on the initiation and formation of debris flow by bed failure. The results are discussed to provide a plausible physical‐based method for the prediction of the triggering of debris flow by channel‐bed failure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Rain‐impacted flows dominate sheet and interrill erosion and are important in eroding soil rich in nutrients and other chemicals which may have deleterious effects on water quality. Erosion in rain‐impacted flow is associated with raindrop detachment followed by transport either by the combination of flow velocity and raindrop impact (raindrop‐induced flow transport, RIFT) or the inherent capacity of the flow to transport detached material. Coarse particles tend to be transported by RIFT, while fine particles tend to be transported without any assistance from raindrop impact. Because the transport process associated with coarse particles is not 100 per cent efficient, it generates a layer of loose particles on the soil surface and this layer protects the underlying soil from detachment. Simulations were performed by modelling the uplift and downstream movement of both fine and coarse particles detached from the soil surface by individual raindrop impacts starting with a surface where no loose material was present. The simulations produced a flush of fine material followed by a decline in the discharge of fine material as the amount of loose material built up on the bed. The decline in the discharge of fine material was accompanied by an increase in the discharge of coarse material. The relative amounts of coarse and fine material discharged in the flow varied with flow velocity and cohesion in the surface of the soil matrix. The results indicate that the discharge of various sized sediments is highly dependent on local soil, rain and flow conditions and that extrapolating the results from one situation to another may not be appropriate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Entrainment criteria for gravel-sized particles on river beds are usually defined in terms of shear stress, but some workers have proposed that critical-discharge relationships are more reliable and more convenient. The critical shear stress in poorly sorted gravels is known from recent work to depend much more on relative than absolute grain size. It is shown that this effect can be included in a semi-theoretical equation for the critical unit discharge to move individual grain sizes in a poorly sorted bed. Comparisons with published data on critical discharges in a variety of rivers show that both the sensitivity of critical discharge to grain size, and the absolute levels of critical discharge, are predicted quite well. However, any prediction of critical discharge is sensitive to the assumptions made, first about flow resistance and secondly about the critical stress to move average-sized particles.  相似文献   

9.
EXPERIMENTAL STUDY ON EQUILIBRIUM CONCENTRATION OF DEBRIS FLOWS   总被引:1,自引:0,他引:1  
Discussion open until 2002.EmunmL SwrY ONEQUII.thare CONCENTRATION OF DEBRIS rrOWSBin YU1AaSTsiCTThe paPe PresentS experimntal study of debris flows. The equiMm concentIation of solidparticle in the now is a hahon of the energy slope, density of solid Particle and kinetic ffichonange of paxtiles. The kinhc forhon angle is a funhon of intemal ffichon angle, the cOnCentrationof solid phocles and the mtalmum POssible concewhon. TO deteImin th6 hahon between thekinetic fficho…  相似文献   

10.
Sedimentation – including erosion, transport, and deposition of coarse-grained particles – is a primary and growing environmental, engineering, and agricultural issue around the world. Soil erosion occurs when the hydrodynamic force induced by flowing water exceeds the geotechnical resistance of soils, as measured by critical shear stress for initiation of soil-particle motion. Even though various quantitative methods have been suggested with respect to different types of soil, the most widely accepted formula to estimate critical shear stress for coarse-grained soil is a direct function of the median grain size of the soil particles; however, the erosion resistance of soils also varies with other geotechnical properties, such as packing density, particle shape, and uniformity coefficient. Thus, in this study, a combined rolling–lift model for particle detachment was derived based on theoretical analysis. A series of experimental flume tests were conducted with specimens prepared with standard soil types, as well as laboratory-prepared mixtures of coarse-grained soil to validate the theoretical model and determine the effect of other geotechnical properties on the erosion characteristics of coarse grains, coupled with the effect of median particle size. The results indicated that the median grain size is the primary variable determining the resistance of coarse grains, but the critical shear stress also varies with the packing density of the soil matrix. In addition, angular particles show more erosion resistance than rounded particles, and the erosion potential of a soil decreased when the grain is well graded (higher value of uniformity coefficient). Additionally, regression analysis was performed to quantify the effect of each parameter on the critical shear stress of coarse grains. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Critical state soil mechanics is a useful framework to understand sand behavior. In this paper, a relationship is developed for estimating undrained critical shear strength of sands based on the critical state framework. The relationship is validated by comparison with laboratory test results and sand liquefied strength from field liquefaction failure case histories. Using this relationship, the influence of fines content on undrained critical shear strength is studied for different combinations of effective stress and density. The parametric study indicates that depending on soil void ratio, effective stress, and the shape and mineralogy of the fine particles, undrained critical strength may increase, remain the same, or decrease as the amount of fines content increases. Both the susceptibility to liquefaction and the severity of strain-softening are affected by adding fines. It is suggested that the critical state parameter is inadequate for describing the behavior of liquefiable sands and sand shearing-compressibility should be taken into account in liquefaction analysis.  相似文献   

13.
《国际泥沙研究》2023,38(2):265-278
Ecological engineering plays an increasingly significant role in mountain hazard control, but the effect of species selection and arrangement (e.g., row spacing and stem spacing) on debris flow suppression is still unclear. To further understand the interception efficiency of shrub arrangement parameters on debris flow and explore the difference with slow hydraulic erosion, sixteen sets of small-scale flume experiments with different stem and row spacings were done to study the effects of shrubs on debris flow severity, flow rate, velocity, and particle size. The results suggest that, for a dilute debris flow, sediment interception effectiveness (27.4%–60.9%) decreases gradually as stem spacing increases. Moreover, as row spacing increases, flow velocity reduction (34.4%–44.9%) and flow reduction (18.5%–47.4%) gradually decrease; and the bulk density reduction (0.5%–5.3%) and sediment interception increase initially and then decrease. In contrast, for a viscous debris flow, the flow reduction, flow velocity reduction, and sedimentation interception decrease gradually as the stem spacing increases. As row spacing increases, the flow velocity reduction, flow reduction, and sediment interception all increase initially and then decrease. A formula for the flow velocity of dilute debris flow after the filter strip was derived based on the energy conservation law and Bernoulli's equation, confirming that debris flow movement is closely related to the degree of vegetation cover. This research strengthens the current understanding of the effectiveness of vegetation in debris flow disaster prevention and control and can guide practical applications.  相似文献   

14.
当前预测震后泥石流灾害损的方法所用时间较长,且预测结果误差较大,存在预测效率低和预测准确率低的问题。本文基于GIS技术的震后泥石流灾害损失耦合预测方法,采用GIS技术获取震后泥石流灾害的相关信息,根据获取的信息建立流域水量计算模型、固体物质量计算模型、泥石流起动模型,对泥石流的起动过程进行分析,在财产损失预测模型和人员损失预测模型的基础上构建震后泥石流灾害损失耦合预测模型,实现震后泥石流灾害损失的预测。结果表明:本文所提方法预测效率高、预测准确率高。  相似文献   

15.
1 INTRODUCTION In the watershed of the Jiangjia Ravine, the frequency of occurrence of rainstorms which can mobilize debris flows is high, and there are abundant unconsolidated materials deposited in the upstream area, these resulted in frequent eruption …  相似文献   

16.
Debris flows generated from landslides are common processes and represent a severe hazard in mountain regions due to their high mobility and impact energy. We investigate the dynamics and the rheological properties of a 90 000 m3 debris‐flow event triggered by a rapid regressive landslide with high water content. Field evidence revealed a maximum flow depth of 7–8 m, with an estimated peak discharge of 350–400 m3 s?1. Depositional evidence and grain‐size distribution of the debris pose the debris flow in an intermediate condition between the fluid‐mud and grain‐flow behaviour. The debris‐flow material has silt–clay content up to 15 per cent. The rheological behaviour of the finer matrix was directly assessed with the ball measuring system. The measurements, performed on two samples at 45–63 per cent in sediment concentration by volume, gave values of 3·5–577 Pa for the yield strength, and 0·6–27·9 Pa s for the viscosity. Based on field evidence, we have empirically estimated the yield strength and viscosity ranging between 4000 ± 200 Pa, and 108–134 Pa s, respectively. We used the Flo‐2D code to replicate the debris‐flow event. We applied the model with rheological properties estimated by means of direct measurements and back‐analyses. The results of these models show that the rheological behaviour of a debris‐flow mass containing coarse clasts can not be assessed solely on the contribution of the finer matrix and thus neglecting the effects of direct grain contacts. For debris flows composed by a significant number of coarse clasts a back‐analysis estimation of the rheological parameters is necessary to replicate satisfactorily the depositional extent of debris flows. In these cases, the back‐estimated coefficients do not adequately describe the rheological properties of the debris flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

Previous work on the initiation of debris flows has emphasized the roles played by material strength, stream gradient, and fluid pressure, but in most published models the friction angle (φ′) of the channel material is assigned some characteristic or constant value. The model presented here retains gradient and pressure as variables, and considers the probable changes in φ′ and hydraulic conductivity, K, of channel debris over time. Preliminary results from the Howe Sound area in southwest British Columbia suggest that stream reworking may lead to small increases in φ′ and large increases in K, rendering channel debris more stable with time. This is partially offset by a local increase in channel gradient as debris accumulates. These factors favour the growth of large, marginally stable debris deposits, and may lead to high-magnitude, low-frequency debris torrents in channels not steep enough to produce torrents directly from hillslope failure events.  相似文献   

18.
A generalized probabilistic model is developed in this study to predict sediment entrainment under the incipient motion, rolling, and pickup modes. A novelty of the proposed model is that it incorporates in its formulation the probability density function of the bed shear stress, instead of the near-bed velocity fluctuations, to account for the effects of both flow turbulence and bed surface irregularity on sediment entrainment. The proposed model incorporates in its formulation the collective effects of three para-meters describing bed surface irregularity, namely the relative roughness, the volumetric fraction and relative position of sediment particles within the active layer. Another key feature of the model is that it provides a criterion for estimating the lift and drag coefficients jointly based on the recognition that lift and drag forces acting on sediment particles are interdependent and vary with particle protrusion and packing density. The model was validated using laboratory data of both fine and coarse sediment and was compared with previously published models. The study results show that all the examined models perform adequately for the fine sediment data, where the sediment particles have more uniform gra-dation and relative roughness is not a factor. The proposed model was particularly suited for the coarse sediment data, where the increased bed irregularity was captured by the new parameters introduced in the model formulation. As a result, the proposed model yielded smaller prediction errors and physically acceptable values for the lift coefficient compared to the other models in case of the coarse sediment data.  相似文献   

19.
Laboratory flume experiments were carried out to evaluate the effect of particle density on bedload transport of sand‐sized particles and the effect of a suspended load of clay particles (kaolinite) on bedload transport of sand‐sized particles in rill flow conditions. Three materials in the range 400–600 µm were selected to simulate bedload transport of primary particles and aggregates: sand (2650 kg/m3), crushed brick (2450 kg/m3) and anthracite (1300–1700 kg/m3). In the two first experiments, two different methods were applied to determine bedload transport capacity of coarse particles for various conditions of flow discharge (from 2 to 15 L/min) and slope (2.2, 3 and 4%). In the third experiment, clear water was replaced with kaolinite–water mixture and bedload transport capacity of crushed brick particles was determined for a 4% slope and different concentrations of kaolinite (0, 7, 41 and 84 g/L). The results showed that bedload transport increased significantly with the decrease in particle density but the effect of particle density on transport rates was much less important than flow discharge. Velocity measurements of clear flow, flow mixed with coarse particles and coarse particles confirmed the existence of a differentiation between suspended load and bedload. In these experimental conditions, suspended load of kaolinite did not affect bedload rates of crushed brick particles. Three transport capacity formulae were tested against observed bedload rates. A calibration of the Foster formula revealed that the shear stress exponent should be greater than 1.5. The Low and the Govers unit stream power (USP) equations were then evaluated. The Low equation was preferred for the prediction of bedload rates of primary particles but it was not recommended in the case of aggregates of low density because of the limited experimental conditions applied to derive this equation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A wind tunnel study examined the effect of distributions of saltating particles on sediment surfaces which were characterized by distributions of their tensile strength. The sediments consisted of varying proportions of large sand‐sized particles with a fine particle cement. The energies of the impacting particles and the surface strengths were compared with the mass of material lost from the surface. It is important to consider distributions of parameters rather than mean values only, since abrasion and erosion may occur from surfaces not predicted from average strength and saltation velocities. At the impact velocities used in this study (mean velocity 4·4 m s?1, with standard deviation of 0·51), surfaces containing less than 12 per cent fine material were easily eroded, but insignificant erosion occurred when the fine particle content exceeded 60 per cent. Small amounts of cementing material were easily ruptured, allowing the large sand grains to be moved (largely in creep) by the bombarding particles. A significant amount of energy was lost to the bed. As the percentage of fine material increased, the surface became more difficult to break up and less energy was lost to the bed. The probability that erosion will occur for known energy distributions of impacting particles and surface strength can be calculated and the mass loss increases exponentially with a decrease in the percentage of fine cementing particles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号