首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Accurate surface air temperature (T2m) data are key to investigating eco-hydrological responses to global warming. Because of sparse in-situ observations, T2m datasets from atmospheric reanalysis or multi-source observation-based land data assimilation system (LDAS) are widely used in research over alpine regions such as the Tibetan Plateau (TP). It has been found that the warming rate of T2m over the TP accelerates during the global warming slowdown period of 1998–2013, which raises the question of whether the reanalysis or LDAS datasets can capture the warming feature. By evaluating two global LDASs, five global atmospheric reanalysis datasets, and a high-resolution dynamical downscaling simulation driven by one of the global reanalysis, we demonstrate that the LDASs and reanalysis datasets underestimate the warming trend over the TP by 27%–86% during 1998–2013. This is mainly caused by the underestimations of the increasing trends of surface downward radiation and nighttime total cloud amount over the southern and northern TP, respectively. Although GLDAS2.0, ERA5, and MERRA2 reduce biases of T2m simulation from their previous versions by 12%-94%, they do not show significant improvements in capturing the warming trend. The WRF dynamical downscaling dataset driven by ERA-Interim shows a great improvement, as it corrects the cooling trend in ERA-Interim to an observation-like warming trend over the southern TP. Our results indicate that more efforts are needed to reasonably simulate the warming features over the TP during the global warming slowdown period, and the WRF dynamical downscaling dataset provides more accurate T2m estimations than its driven global reanalysis dataset ERA-Interim for producing LDAS products over the TP.  相似文献   

2.
A 26-year simulation (1980–2005) was performed with the Weather Research and Forecast (WRF) model over the Volta Basin in West Africa. This was to investigate the ability of a climate version of WRF to reproduce present day temperature and precipitation over the Volta Basin. The ERA-Interim reanalysis and one realization of the ECHAM6 global circulation model (GCM) data were dynamically downscaled using two nested domains within the WRF model. The outer domain had a horizontal resolution of 50 km and covered the whole of West Africa while the inner domain had a horizontal resolution of 10 km. It was observed that biases in the respective forcing data were carried over to the RCM, but also the RCM itself contributed to the mean bias of the model. Also, the biases in the 50-km domain were transferred unchanged, especially in the case of temperature, to the 10-km domain, but, for precipitation, the higher-resolution simulations increased the mean bias in some cases. While in general, WRF underestimated temperature in both the outer (mean biases of ?1.6 and ?2.3 K for ERA-Interim and ECHAM6, respectively) and the inner (mean biases of ?0.9 K for the reanalysis and ?1.8 K for the GCM) domains, WRF slightly underestimated precipitation in the coarser domain but overestimated precipitation in the finer domain over the Volta Basin. The performance of the GCM, in general, is good, particularly for temperature with mean bias of ?0.7 K over the outer domain. However, for precipitation, the added value of the RCM cannot be overlooked, especially over the whole West African region on the annual time scale (mean biases of ?3% for WRF and ?8% for ECHAM6). Over the whole Volta Basin and the Soudano-Sahel for the month of April and spring (MAM) rainfall, respectively, mean bias close to 0% was simulated. Biases in the interannual variability in both temperature and precipitation over the basin were smaller in the WRF than the ECHAM6. High spatial pattern correlations between 0.7 and 0.8 were achieved for the autumn precipitation and low spatial correlation in the range of 0.0 and 0.2 for the winter season precipitation over the whole basin and all the three belts over the basin.  相似文献   

3.
We present a dynamical downscaling of the Arctic climatology using a high-resolution implementation of the Polar Weather Research and Forecasting, version 3.6 (WRF3.6) model, with a focus on Arctic cyclone activity. The study period is 1979–2004 and the driving fields are data from the Hadley Centre Global Environmental Model, version 2, with an Earth System component (HadGEM2-ES) simulations. We show that the results from the Polar WRF model provide significantly improved simulations of the frequency, intensity, and size of cyclones compared with the HadGEM2-ES simulations. Polar WRF reproduces the intensity of winter cyclones found in ERA-Interim, the global atmospheric reanalysis produced by the European Centre for Medium-range Weather Forecasts (ECMWF), and suggests that the average minimum central pressure of the cyclones is about 10?hPa lower than that derived from HadGEM2-ES simulations. Although both models underestimate the frequency of summer Arctic cyclones, Polar WRF simulations suggest there are 10.5% more cyclones per month than do HadGEM2-ES results. Overall, the Polar WRF model captures more intense and smaller cyclones than are obtained in HadGEM2-ES results, in better agreement with the ERA-Interim reanalysis data. Our results also show that the improved simulations of Arctic synoptic weather systems contribute to better simulations of atmospheric surface fields. The Polar WRF model is better able to simulate both the spatial patterns and magnitudes of the ERA-Interim reanalysis data than HadGEM2-ES is; in particular, the latter overestimates the absorbed solar radiation in the Arctic basin by as much as 30?W?m?2 and underestimates longwave radiation by about 10?W?m?2 in summer. Our results suggest that the improved simulations of longwave and solar radiation are partly associated with a better simulation of cloud liquid water content in the Polar WRF model, which is linked to improvements in the simulation of cyclone frequency and intensity and the resulting transient eddy transports of heat and water vapour.  相似文献   

4.
ERA5再分析数据适用性初步评估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用山东省及周边地区10个站点的地面和高空观测资料对ERA5再分析资料的适用性进行了初步评估。结果表明:再分析的海平面气压和2 m温度与实况资料的相关性明显优于2 m相对湿度和10 m风场;高空温度和相对湿度在对流层中低层的适用性要好于高层,而位势高度和风场在中高层适用性较好;海平面气压再分析与实况的相关有着最明显的季节变化,2 m温度、2 m相对湿度和10 m风速则在部分站点有较明显的季节变化,而10 m风向的相关系数更多地表现出站点之间的差异,高空要素的适用性,季节和区域差异不明显。另外,对比发现,ERA5的适用性总体上要优于ERA-Interim再分析资料,地面和对流层低层的相对湿度、风场提高更为明显。  相似文献   

5.
The Weather Research and Forecast (WRF) model with its land surface model NOAH was set up and applied as regional climate model over Europe. It was forced with the latest ERA-interim reanalysis data from 1989 to 2008 and operated with 0.33° and 0.11° resolution. This study focuses on the verification of monthly and seasonal mean precipitation over Germany, where a high quality precipitation dataset of the German Weather Service is available. In particular, the precipitation is studied in the orographic terrain of southwestern Germany and the dry lowlands of northeastern Germany. In both regions precipitation data is very important for end users such as hydrologists and farmers. Both WRF simulations show a systematic positive precipitation bias not apparent in ERA-interim and an overestimation of wet day frequency. The downscaling experiment improved the annual cycle of the precipitation intensity, which is underestimated by ERA-interim. Normalized Taylor diagrams, i.e., those discarding the systematic bias by normalizing the quantities, demonstrate that downscaling with WRF provides a better spatial distribution than the ERA interim precipitation analyses in southwestern Germany and most of the whole of Germany but degrades the results for northeastern Germany. At the applied model resolution of 0.11°, WRF shows typical systematic errors of RCMs in orographic terrain such as the windward–lee effect. A convection permitting case study set up for summer 2007 improved the precipitation simulations with respect to the location of precipitation maxima in the mountainous regions and the spatial correlation of precipitation. This result indicates the high value of regional climate simulations on the convection-permitting scale.  相似文献   

6.
《大气与海洋》2012,50(4):262-278
ABSTRACT

This study evaluates the 1981–2010 spatiotemporal differences in six available climate datasets (daily total precipitation and mean air temperature) over the Lower Nelson River Basin (LNRB) in ten of its sub-watersheds at seasonal and annual time scales. We find that the Australian National University spline interpolation (ANUSPLIN), and inverse distance weighted (IDW) interpolated observations from 14 Environment and Climate Change Canada (ECCC) meteorological stations show dry biases, whereas reanalysis products tend to overestimate precipitation across most of the basin. All datasets exhibit prominent disagreement in precipitation trends whereby the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) and European Union Water and Global Change (WATCH) Forcing Data ERA-Interim (WFDEI) show exceptional wetting trends, while the IDW and ANUSPLIN data manifest drying trends. Mean air temperature trends generally agree across most of the datasets; however, the North American Regional Reanalysis (NARR) and IDW show stronger warming relative to other datasets. Overall, analyses of the different climate datasets and their ensemble reveal that the choice of input dataset plays a crucial role in the accurate estimation of historical climatic conditions, particularly when assessing trends, for the LNRB. Using the ensemble has the distinct advantage of preserving the unique strengths of all datasets and affords the opportunity to estimate the uncertainty for hydrologic modelling and climate change impact studies.  相似文献   

7.
利用淮河流域1979—2011年260个站点观测、ERA-Interim和NCEP/DOE再分析资料的日降水量数据,选用8个极端降水指数,从空间分布、发展趋势、时间变化等方面对比分析了我国江淮流域极端降水的变化规律,研究了再分析数据的适用性,结果表明:1)持续湿润指数(CWD)、强降水日数(R10mm,R20mm)以及百分位指数(R95p,R99p)具有一致的北少南多的分布特征,而持续干燥指数(CDD)为北多南少,且强度指数(Rx1day,Rx5day)和百分位指数在浙江沿海均有极大值存在。2)大部分地区的强降水日数呈减少趋势,仅在江淮周边地区有弱上升趋势。3)区域平均的降水强度指数具有上升的趋势变化,逐月变化具有先增长后减少的结构特征,5—6月的增长量最大,峰值出现在7月,在夏末、冬季有较明显的随年代增加的趋势,在秋季则随年代减少。4)再分析资料ERA-Interim和NCEP/DOE对不同指数的再现能力有所不同,ERA-Interim对强降水日数(R10mm)、CDD、百分位指数的空间分布以及CDD的变化趋势再现能力较好,与强度指数和百分位指数年际变化的相关性较高,但对CWD变化趋势分布特点的再现能力较弱;NCEP/DOE更善于再现较强降水日数(R20mm)的空间分布以及强度指数和百分位指数的线性变化趋势。5)两种再分析资料能合理地再现强降水日数(R10mm,R20mm)和CDD年际变化特征和强度指数的季节变化特征。  相似文献   

8.
Simulations of the East Asian summer monsoon for the period of 1979–2001 were carried out using the Weather Research and Forecast (WRF) model forced by three reanalysis datasets (NCEP-R2, ERA-40, and JRA-25). The experiments forced by different reanalysis data exhibited remarkable differences, primarily caused by uncertainties in the lateral boundary (LB) moisture fluxes over the Bay of Bengal and the Philippine Sea. The climatological mean water vapor convergence into the model domain computed from ERA-40 was about 24% higher than that from the NCEP-R2 reanalysis. We demonstrate that using the ensemble mean of NCEP-R2, ERA-40, and JRA-25 as LB forcing considerably reduced the biases in the model simulation. The use of ensemble forcing improved the performance in simulated mean circulation and precipitation, inter-annual variation in seasonal precipitation, and daily precipitation. The model simulated precipitation was superior to that in the reanalysis in both climatology and year-to-year variations, indicating the added value of dynamic downscaling. The results suggest that models having better performance under one set of LB forcing might worsen when another set of reanalysis data is used as LB forcing. Use of ensemble mean LB forcing for assessing regional climate model performance is recommended.  相似文献   

9.
Satellite-derived rainfall estimates and the ERA-Interim reanalysis are used to better understand cold air surge/precipitation interactions and to identify the implications for rainfall variability in the Sahel and tropical Africa on synoptic to seasonal timescales. At the synoptic timescale, cold air surges are associated with cold conditions over the eastern Sahara throughout the year due to the eastward passage of surface low pressure systems over the Mediterranean and the subsequent ridging over northern Africa. Rainfall decreases over central and eastern Africa approximately 4–5 days after the cold air first arrives in northeastern Africa. These precipitation anomalies persist for 4 or more days. At the seasonal timescale, a significant relationship between eastern Saharan low-level temperatures and rainfall in the Sahel and tropical Africa is identified, with colder conditions associated with reduced convection on the northern flank of the primary convergence zone, and vice versa. During boreal winter, the anomalous rainfall occurs over tropical Africa (0°N–8°N). During the summer, rainfall anomalies associated with cold air surges occur over the Sahel (10°N–16°N). These relationships are mediated by anomalous anticyclonic flow over northwestern Africa and western Europe. The analysis shows that cold air surges are significantly associated with summertime cooling over the Sahara, but less so during the winter.  相似文献   

10.
Uncertainties in simulating the seasonal mean atmospheric water cycle in Equatorial East Africa are quantified using 58 one-year-long experiments performed with the Weather Research and Forecasting model (WRF). Tested parameters include physical parameterizations of atmospheric convection, cloud microphysics, planetary boundary layer, land-surface model and radiation schemes, as well as land-use categories (USGS vs. MODIS), lateral forcings (ERA-Interim and ERA40 reanalyses), and domain geometry (size and vertical resolution). Results show that (1) uncertainties, defined as the differences between the experiments, are larger than the biases; (2) the parameters exerting the largest influence on simulated rainfall are, in order of decreasing importance, the shortwave radiation scheme, the land-surface model, the domain size, followed by convective schemes and land-use categories; (3) cloud microphysics, lateral forcing reanalysis, the number of vertical levels and planetary boundary layer schemes appear to be of lesser importance at the seasonal scale. Though persisting biases (consisting of conditions that are too wet over the Indian Ocean and the Congo Basin and too dry over eastern Kenya) prevail in most experiments, several configurations simulate the regional climate with reasonable accuracy.  相似文献   

11.
The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean–atmosphere Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled models has been assessed in a historical experiment. All the models realistically reproduce a climatological annual mean of global air mass (AM) close to the ERA-Interim AM during 1989–2005. Surprisingly, the global AM in half of the models shows nearly no seasonal variation, which does not agree with the seasonal processes of global precipitable water or water vapor, given the mass conservation constraint. To better understand the inconsistencies, we evaluated the seasonal cycles of global AM tendency and water vapor source (evaporation minus precipitation). The results suggest that the inconsistencies result from the poor balance between global AM tendency and water vapor source based on the global AM budget equation. Moreover, the cross-equatorial dry air mass ?ux, or hemispheric dry mass divergence, is not well represented in any of the 20 CMIP5 models, which show a poorly matched seasonal cycle and notably larger amplitude, compared with the hemispheric tendencies of dry AM in both the Northern Hemisphere and Southern Hemisphere. Pronounced erroneous estimations of tropical precipitation also occur in these models. We speculate that the large inaccuracy of precipitation and possibly evaporation in the tropics is one of the key factors for the inconsistent cross-equatorial mass ?ux. A reasonable cross-equatorial mass ?ux in well-balanced hemispheric air mass and moisture budgets remains a challenge for both reanalysis assimilation systems and climate modeling.  相似文献   

12.
F. Chen 《Climate Dynamics》2005,24(7-8):667-684
The International Satellite Land-Surface Climatology Project (ISLSCP) Initiative-I 1-degree 1987–1988 data were used to drive a land surface model (LSM) to simulate global surface energy budgets. Simulated surface heat fluxes show remarkable spatial variability and seem to capture well their annual and interannual variability. A shift of maximum evaporation across the equator is more closely related to the seasonal shifting of precipitation pattern than to surface radiation changes. The NCEP/NCAR reanalysis did not reflect this shift, presumably due to its dominant rainfall maximum in the Southern Hemisphere. To assess the “reliability” of these fields, both Global Soil Wetness Project (GSWP) and reanalysis were verified against observations, at two sites. Monthly mean ISLSCP forcing conditions agree fairly well with observations, but its precipitation is usually lower during spring and summer. Low summer GSWP evaporation may be due to low precipitation and incorrect specification of vegetation and soil conditions. The reanalysis had larger seasonal variability than GSWP and observations, and overestimated summer heat fluxes because of its large rainfall and surface radiation. Despite uncertainty in ISLSCP data, an LSM with a modest treatment of vegetation was able to capture reasonably well the seasonal variations in surface heat fluxes at global scales. With some caution, these types of simulations can be used as “pseudo-observations” to evaluate climate-model simulations and to investigate global energy budgets. For the next phase of ISLSCP data development, higher resolution data, which can reflect local heterogeneity of vegetation and soil characteristics, include more rain gauge data are highly desirable to improve model simulations.  相似文献   

13.
Performance of a regional climate model (RCM), WRF, for downscaling East Asian summer season climate is investigated based on 11-summer integrations associated with different climate conditions with reanalysis data as the lateral boundary conditions. It is found that while the RCM is essentially unable to improve large-scale circulation patterns in the upper troposphere for most years, it is able to simulate better lower-level meridional moisture transport in the East Asian summer monsoon. For precipitation downscaling, the RCM produces more realistic magnitude of the interannual variation in most areas of East Asia than that in the reanalysis. Furthermore, the RCM significantly improves the spatial pattern of summer rainfall over dry inland areas and mountainous areas, such as Mongolia and the Tibetan Plateau. Meanwhile, it reduces the wet bias over southeast China. Over Mongolia, however, the performance of precipitation downscaling strongly depends on the year: the WRF is skillful for normal and wet years, but not for dry years, which suggests that land surface processes play an important role in downscaling ability. Over the dry area of North China, the WRF shows the worst performance. Additional sensitivity experiments testing land effects in downscaling suggest the initial soil moisture condition and representation of land surface processes with different schemes are sources of uncertainty for precipitation downscaling. Correction of initial soil moisture using the climatology dataset from GSWP-2 is a useful approach to robustly reducing wet bias in inland areas as well as to improve spatial distribution of precipitation. Despite the improvement on RCM downscaling, regional analyses reveal that accurate simulation of precipitation over East China, where the precipitation pattern is strongly influenced by the activity of the Meiyu/Baiu rainfall band, is difficult. Since the location of the rainfall band is closely associated with both lower-level meridional moisture transport and upper-level circulation structures, it is necessary to have realistic upper-air circulation patterns in the RCM as well as lower-level moisture transport in order to improve the circulation-associated convective rainfall band in East Asia.  相似文献   

14.
Results from a first-time employment of the WRF regional climate model to climatological simulations in Europe are presented. The ERA-40 reanalysis (resolution 1°) has been downscaled to a horizontal resolution of 30 and 10?km for the period of 1961?C1990. This model setup includes the whole North Atlantic in the 30?km domain and spectral nudging is used to keep the large scales consistent with the driving ERA-40 reanalysis. The model results are compared against an extensive observational network of surface variables in complex terrain in Norway. The comparison shows that the WRF model is able to add significant detail to the representation of precipitation and 2-m temperature of the ERA-40 reanalysis. Especially the geographical distribution, wet day frequency and extreme values of precipitation are highly improved due to the better representation of the orography. Refining the resolution from 30 to 10?km further increases the skill of the model, especially in case of precipitation. Our results indicate that the use of 10-km resolution is advantageous for producing regional future climate projections. Use of a large domain and spectral nudging seems to be useful in reproducing the extreme precipitation events due to the better resolved synoptic scale features over the North Atlantic, and also helps to reduce the large regional temperature biases over Norway. This study presents a high-resolution, high-quality climatological data set useful for reference climate impact studies.  相似文献   

15.
颜玲  周玉淑  王咏青 《大气科学》2019,43(2):297-310
利用欧洲气象中心(ERA-interim)再分析资料以及中国气象局观测站点的实况降水观测结合CMORPH卫星反演的逐时降水资料,对比分析了路径类似的1513号台风Soudelor和1410号台风Matmo在登陆福建前后期间的降水分布特征以及造成登陆台风暴雨强度和落区差异的原因,得到以下初步结论:Soudelor和Matmo移动路径相似,但在登陆福建的过程中对浙、闽地区造成的降水强度和分布差异明显,如Soudelor造成的总降水强度比Matmo大,且Soudelor的强降水在登陆前主要分布在台风路径的右侧,台风中心的偏北方向,登陆以后主要在台风的偏北以及东北方向;而Matmo登陆前降水基本均匀分布在路径两侧,强降水区位于台风中心的西北方向,登陆福建以后向北移动的过程中强降水区转向台风中心的北边;不同的大尺度环流背景也会导致登陆过程中不同的降水分布特征,Soudelor影响期间副热带高压比较强盛,并阻断它与中纬度西风槽的作用,而Matmo登陆北上过程中逐渐减弱并汇入河北上空的西风槽中,所以登陆后期Matmo的降水比Soudelor强;Soudelor和Matmo台风登闽前后低层水汽输送及东风急流差异是导致大暴雨落区差异的原因之一,Matmo的水汽输送主要来自孟加拉湾及南海,而Soudelor登陆前东部有来自另一个台风Molave的水汽输送,登陆后强水汽输送通量区及水汽辐合带位于Soudelor偏北侧,这与Soudelor登陆造成的暴雨在中心偏北方向一致;南亚高压相对于台风的位置也会影响降水,Soudelor登陆时,大兴安岭上空大槽前的偏西风急流与南部高压西北侧的西南急流一起使得它登陆后减弱速度变缓,有利于台风暴雨的维持,而Matmo高空受急流造成的气旋性切变流场加速了台风的减弱;此外,台风自身的结构和强度变化以及登陆后维持时间不同也是造成两次过程降水差异的主要原因之一,台风暖心结构的强度以及台风高层暖心减弱的速度对台风降水有一定影响,但对登陆时台风暴雨的不对称分布影响较小;Soudelor登闽过程中,涡度场强度比Matmo大,且维持一个深厚的垂直对称结构,登闽后期附近的辐合上升气流主要位于中心东侧,而Matmo在登闽过程中,低层的强辐合区和上升运动区始终偏西,造成二者降水分布的不同。  相似文献   

16.
A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions at a grid spacing of 25 km. The Community Land Model(CLM) is used to describe land surface processes, with updates in the surface parameters,including the land cover and surface emissivity. The simulation is compared against observations to evaluate the model performance in reproducing the present day climatology and interannual variability over the 10 main river basins in China,with focus on surface air temperature and precipitation. Temperature and precipitation from the ERA-Interim reanalysis are also considered in the model assessment. Results show that the model reproduces the present day climatology over China and its main river basins, with better performances in June–July–August compared to December–January–February(DJF).In DJF, we find a warm bias at high latitudes, underestimated precipitation in the south, and overestimated precipitation in the north. The model in general captures the observed interannual variability, with greater skill for temperature. We also find an underestimation of heavy precipitation events in eastern China, and an underestimation of consecutive dry days in northern China and the Tibetan Plateau. Similar biases for both mean climatology and extremes are found in the ERA-Interim reanalysis, indicating the difficulties for climate models in simulating extreme monsoon climate events over East Asia.  相似文献   

17.
宋雯雯  李国平  王皓 《气象科技》2018,46(1):129-138
利用WRF模式、地基GPS资料以及常规气象观测资料,结合模式输出资料的高空间分辨率(10km)和GPS大气可降水量(GPS-PWV)资料的高时间分辨率(30min)的优点,对2008年7月20—22日四川盆地一次暴雨过程的水汽变化特征及各物理量与大气可降水量的关系进行综合分析。结果表明:此次降雨过程是由高原涡和西南涡共同作用引起,WRF模式能够较好地模拟出降雨落区和强度。GPS-PWV反映的大气可降水量增减趋势与WRF模拟的较为一致。水汽密度垂直分布反映了大气可降水量分布,水汽密度随高度增加而递减,降雨初期,水汽密度随高度减小迅速,降雨强盛时期,水汽密度随高度减小的速度减慢。水汽辐合使得水汽密度和大气可降水量增大,风的散度项与水汽通量散度的变化一致,而水汽平流项对水汽辐合贡献较小,水汽的辐合主要由风场辐合造成。  相似文献   

18.
The atmospheric branch of the hydrological cycle associated with the East Asian summer monsoon is intricate due to its distinct land-sea configurations: the highest mountains are to its west, the oceans are to its south and east, and mid-latitude influences come from its north. Here we use the weather research and forecast (WRF) model to demonstrate that using two different large-scale driving fields, derived from the NCEP/DOE R2 and ERA40 reanalysis data and the same model configuration yielded remarkable differences. We found that the differences are primarily caused by uncertainties in the water vapor influx across the lateral boundaries in the reanalyses. The summer-mean water vapor convergence into the model domain computed from the ERA40 reanalysis is 47% higher than that from the R2 reanalysis. The largest uncertainties in moisture transport are found in the regions of the Philippine Sea and the Bay of Bengal, where the moisture transport has the most significant impacts on the East Asian summer monsoon rainfall distribution. The sensitivity test results suggest that the biases in the seasonal mean, seasonal march of the rain band, and individual rainfall events may be reduced by using an “ensemble” average of R2 and ERA40 as lateral boundary forcing. While the large-scale forcing field does not conserve water vapor, the WRF simulation conserves water vapor in the inner model domain. The regional model simulation has corrected the biases in the total amount and the month-to-month distribution of precipitation in the large-scale driving field. However, RCM’s daily precipitation is poorer than that in the reanalysis filed. Since the RCM solutions may sensitively depend on the reanalysis forcing, intercomparison of models’ performance based on a single set of the reanalysis may not be reliable. This calls for attention to reshape our strategy for validation of RCMs.  相似文献   

19.
In the context of regional downscaling, we study the representation of extreme precipitation in the Weather Research and Forecasting (WRF) model, focusing on a major event that occurred on the 8th of June 2007 along the coast of eastern Australia (abbreviated “Newy”). This was one of the strongest extra-tropical low-pressure systems off eastern Australia in the last 30 years and was one of several storms comprising a test bed for the WRF ensemble that underpins the regional climate change projections for eastern Australia (New South Wales/Australian Capital Territory Regional Climate Modelling Project, NARCliM). Newy provides an informative case study for examining precipitation extremes as simulated by WRF set up for regional downscaling. Here, simulations from the NARCliM physics ensemble of Newy available at ~10 km grid spacing are used. Extremes and spatio-temporal characteristics are examined using land-based daily and hourly precipitation totals, with a particular focus on hourly accumulations. Of the different physics schemes assessed, the cumulus and the boundary layer schemes cause the largest differences. Although the Betts-Miller-Janjic cumulus scheme produces better rainfall totals over the entire storm, the Kain-Fritsch cumulus scheme promotes higher and more realistic hourly extreme precipitation totals. Analysis indicates the Kain-Fritsch runs are correlated with larger resolved grid-scale vertical moisture fluxes, which are produced through the influence of parameterized convection on the larger-scale circulation and the subsequent convergence and ascent of moisture. Results show that WRF qualitatively reproduces spatial precipitation patterns during the storm, albeit with some errors in timing. This case study indicates that whilst regional climate simulations of an extreme event such as Newy in WRF may be well represented at daily scales irrespective of the physics scheme used, the representation at hourly scales is likely to be physics scheme dependent.  相似文献   

20.
云南地基GPS观测大气可降水量变化特征   总被引:4,自引:1,他引:3  
利用2007年云南地基GPS站点观测资料,分析GPS反演的大气可降水量(PWV)变化特征,并用探空、实际降水量资料和GPS反演结果进行比较。结果表明:GPS/PWV能反映云南降水的季节变化特征,海拔较低的测站普遍比同期海拔较高的测站测得的GPS/PWV值高;GPS/PWV值与探空得到的大气水汽总量随时间演变趋势基本一致,其相关系数均达0.89;GPS/PWV变化周期和实际降水发生的周期基本相同,降水大多为GPS/PWV值连续增加达到峰值(或从峰值开始下降)后开始;GPS/PWV上升幅度较大或位于高位可作为连续性强降水过程出现的预报指标,但使用GPS/PWV峰值作预报指标时,还应考虑季节因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号