首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive nitrogen loads at the soil surface exceed plant uptake and soil biochemical capacity, and therefore lead to nitrogen accumulation in the deep vadose zone. Studies have shown that stored nitrogen in the vadose zone can eventually reach the water table and affect the quality of groundwater resources. Recently, global scale models have been implemented to quantify nitrate storage and nitrate travel time in the vadose zone. These global models are simplistic and relatively easy to implement and therefore facilitate analysis of the considered transport processes at a regional scale with no further requirements. However, the suitability of applying these models at a regional scale has not been tested. Here, we evaluate, for the first time, the performance and utility of global scale models at the regional scale. Applied to the Loess Plateau of China, we compare estimates of groundwater recharge and nitrate storage derived from global scale models with results from a regional scale approach utilizing the Richards and advection-dispersion equations. The estimated nitrate storage was compared to nitrate observations collected in the deep vadose zone (>50 m) at five sites across the Loess Plateau. Although both models predict similar spatial patterns of nitrate storage, the recharge fluxes were three times smaller and the nitrate storage was two times higher compared with the regional model. The results suggest that global scale models are a potentially useful screening tool, but require refinement for local scale applications.  相似文献   

2.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
4.
A rapid-screening technique was developed to identify lithologies that best disperse artificial recharge via surface infiltration and minimize effects on ground water chemistry. The technique prospectively evaluates basin infiltration rates and water chemistry influences by integrating geotechnical, hydraulic, and water quality data with column test data and numerical modeling. The technique was validated using field data collected from surface infiltration basins designed to recharge ground water pumped from the Pipeline pit gold mine in Nevada. Observed recharge rates at these infiltration sites correlated most significantly with depth to groundwater, with basins in coarse-grained lithologies performing better (0.45 to 0.85 m/day) than those with fine-grained layers (< 0.30 m/day). Observed water quality resulting from leaching of the previously unsaturated vadose zone showed a transitory (< six months) increase in solute concentrations followed by a decrease to baseline conditions, a phenomenon also observed in column tests that leached native soils with local ground water. Leaching of fine-grained soils with evaporites resulted in greater solute concentrations (TDS > 2000 mg/L) than coarse-grained soils (< 1200 mg/L). The results of HYDRUS_2D simulations using the accumulated data as input were in agreement with observed ground water chemistry downgradient of the infiltration basins for a variety of lithologies. Sites for infiltration basins can be rapidly screened to include areas with greatest depth to groundwater and in coarsest alluvial sediments, and impact to ground water chemistry can be reliably predicted using computer modeling and column test results.  相似文献   

5.
Results from hydrometric and isotopic investigations of unsaturated flow during snowmelt are presented for a hillslope underlain by well-sorted sands. Passage of melt and rainwater through the vadose zone was detected from temporal changes in soil water 2H concentrations obtained from sequential soil cores. Bypassing flow was indicated during the initial snowmelt phase, but was confined to the near-surface zone. Recharge below this zone was via translatory flow, as meltwater inputs displaced premelt soil water. Estimates of premelt water fluxes indicate that up to 19 per cent of the premelt soil water may have been immobile. Average water particle velocities during snowmelt ranged from 6.2 × 10?7 to 1.1 × 10?6 ms?1, suggesting that direct groundwater recharge by meltwater during snowmelt was confined to areas where the premelt water table was within 1 m of the ground surface. Soil water 2H signatures showed a rapid response to isotopically-heavy rain-on-snow inputs late in the melt. In addition, spatial variations in soil moisture content at a given depth induced a pronounced lateral component to the predominantly vertical transport of water. Both factors may complicate isotopic profiles in the vadose zone, and should be considered when employing environmental isotopes to infer recharge processes during snowmelt.  相似文献   

6.
In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment–water interface and groundwater recharge under wetlands. A whole‐wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water‐level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40–80 cm of the soil surface. However, some bromide penetrated as deep as 2–3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

7.
An accurate prediction of solute infiltration in a soil profile is important in the area of environmental science, groundwater and civil engineering. We examined the infiltration pattern and monitored the infiltration process using a combined method of dye tracer test and electrical resistivity tomography (ERT) in an undisturbed field soil (1 m × 1 m). A homogeneous matrix flow was observed in the surface soil (A horizon), but a preferential flow along macropores and residual rock structure was the dominant infiltration pattern in the subsurface soil. Saturated interflow along the slopping boundaries of A and C1 horizons and of an upper sandy layer and a lower thin clay layer in the C horizon was also observed. The result of ERT showed that matrix flow started first in A horizon and then the infiltration was followed by the preferential flows along the sloping interfaces and macropores. The ERT did not show as much detail as the dye‐stained image for the preferential flow. However, the area with the higher staining density where preferential flow was dominant showed a relatively lower electrical resistivity. The result of this study indicates that ERT can be applied for the monitoring of solute transportation in the vadose zone. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Seasonal signals of stable isotopes in precipitation, combined with measurements of isotope ratios in soil water, can be used for quantitative estimation of groundwater recharge rates. This study investigates the applicability of using the piston flow principle and the peak shift displacement method to estimate actual groundwater recharge rates in a humid Nordic region located in the province of Quebec, Canada. Two different sites with and without vegetation (C1 and C2) in an unconfined aquifer were tested by measuring soil water isotope ratios (18O/16O and 2H/1H) and volumetric pore water content. Core samples were obtained along the vadose zone down to the groundwater table at the two sites (2.45 m for Site C1 and 4.15 m for Site C2). The peak shift method to estimate groundwater recharge rates was shown to be accurate only in certain specific conditions inherent to the soil properties and the topographical situation of the investigated sites. Indeed, at Site C2, recharge from the snowmelt could not be estimated because of heterogeneity in the lower part of the vadose zone. At this same site the later recharge after the snowmelt (in the period from late spring to early autumn) could be estimated accurately because the upper part of the vadose zone was homogeneous. Furthermore, at site C1, runoff/runon phenomena hampered calculations of actual infiltration and thus produced inaccurate results for recharge. These two different site effects (heterogeneity in the first site and runoff/runon in the other site) were identified as being limiting factors in the accurate assessment of actual recharge. This study therefore recommends the use of the peak shift method for (1) humid Nordic regions, (2) homogeneous and thick vadose zones, and (3) areas with few or limited site effects (runoff/runon).  相似文献   

9.
The spatial and temporal variation of moisture distribution, overall water balance and quantity of infiltrated water in the vadose zone of the Sidi Bouzid Plain (Tunisia) during successive flooding events is quantified in this study. The variation in water content in response to environmental factors such as evaporation and water root uptake is also highlighted. One-dimensional flow simulations in the deep vadose zone were conducted at three spreading perimeters located near Wadi El Fekka. The hydraulic boundary conditions of a time-dependent water blade applied to the soil surface were determined from measured flood hydrographs. For the chosen wet year, the successive flooding events contributed to a significant artificial recharge of the natural groundwater. Although the soil hydraulic parameters did not vary strongly in space, flow simulations showed significant differences in the overall water balance of approximately 9–16% for the various spreading perimeters.  相似文献   

10.
Simultaneous measurement of coupled water, heat, and solute transport in unsaturated porous media is made possible with the multi-functional heat pulse probe (MFHPP). The probe combines a heat pulse technique for estimating soil heat properties, water flux, and water content with a Wenner array measurement of bulk soil electrical conductivity (ECbulk). To evaluate the MFHPP, we conducted controlled steady-state flow experiments in a sand column for a wide range of water saturations, flow velocities, and solute concentrations. Flow and transport processes were monitored continuously using the MFHPP. Experimental data were analyzed by inverse modeling of simultaneous water, heat, and solute transport using an adapted HYDRUS-2D model. Various optimization scenarios yielded simultaneous estimation of thermal, solute, and hydraulic parameters and variables, including thermal conductivity, volumetric water content, water flux, and thermal and solute dispersivities. We conclude that the MFHPP holds great promise as an excellent instrument for the continuous monitoring and characterization of the vadose zone.  相似文献   

11.
The vadose zone is the main region controlling water movement from the land surface to the aquifer and has a very complex structure. The use of non-invasive or minimally invasive geophysical methods especially electrical resistivity imaging is a cost-effective approach adapted for long-term monitoring of the vadose zone. The main aim of this work is to know the fractures in the vadose zone, of granitic terrene, through which the recharge or preferred path recharge to the aquifer takes place and thus to relate moisture and electrical resistivity. Time lapse electrical resistivity tomography (TLERT) experiment was carried out in the vadose zone of granitic terrene at the Indian Geophysical Research Institute, Hyderabad along two profiles to a depth of 18 m and 13 m each. The profiles are 300 m apart. Piezometric, rainfall and soil moisture data were recorded to correlate with changes in the rainfall recharge. These TLERT difference images showed that the conductivity distribution was consistent with the recharge occurring along the minor fractures. We mapped the fractures in hard rock or granites to see the effect of the recharge on resistivity variation and estimation of moisture content. These fractures act as the preferred pathways for the recharge to take place. A good correlation between the soil moisture and resistivity is established in the vadose zone of granitic aquifer. Since the vadose zone exhibits extremely high variability, both in space and time, the surface geophysical investigations such as TLERT have been a simple and useful method to characterize the vadose zone, which would not have been possible with the point measurements alone. The analyses of the pseudosection with time indicate clearly that the assumption of the piston flow of the moisture front is not valid in hard rocks. The outcome of this study may provide some indirect parameters to the well known Richard's equation in studying the unsaturated zone.  相似文献   

12.
Through the delivery of water in snowmelt, climate should govern the rate and extent of saprolite formation in snow‐dominated mountain watersheds, yet the mechanisms by which water flows deeply into regolith are largely unexplored. In this study we link rainfall, snow depth, and water content data from both soil and shallow saprolite to document vadose zone dynamics in two montane catchments over 2 years. Measurements of snow pack thickness and soil moisture reveal strong contrasts between north‐ and south‐facing slopes in both the timing of meltwater delivery and the duration of significant soil wetting in the shallow vadose zone. Despite similar magnitudes of snowmelt recharge, north‐facing slopes have higher sustained soil moisture compared to south‐facing slopes. To help interpret these observations, we use a 2D numerical model of vadose zone dynamics to calculate the expected space–time moisture patterns on an idealized hillslope under two wetting scenarios: a single sustained recharge pulse versus a set of short pulses. The model predicts that the duration of the recharge event exerts a stronger control on the depth and residence time of water in the upper unsaturated zone than the magnitude of the recharge event. Model calculations also imply that water should move more slowly through the subsurface and downward water flux should be substantially reduced when water is applied in several pulses rather than in one sustained event. The results suggest that thicker soil and more deeply weathered rock on north‐facing slopes may reflect greater water supply to the deep subsurface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Interactions between groundwater mounds caused by a geologic layer contrast affect the efficiency of managed aquifer recharge in arid areas. However, research has rarely examined the roles of groundwater mounding size variations on soil water dynamics in a stratified vadose zone in response to a sustained infiltration source. Numerical experiments were conducted on a two-dimensional vertical-section domain using HYDRUS software to simulate the behaviours of two adjacent (upper and lower) groundwater mounds underlying an infiltration basin subjected to clay loam and sandy alternately-layered soil profiles. The model successfully predicted the volume and extent of perched water and approximated vertical travel times during events generating downward fluxes from the surface injection. The response time of the mounding width (lateral extension) to the surface injection was delayed as compared to that of the mounding height (vertical extension), especially for the lower water mound. The mounding heights and widths show a strongly positive correlation with the infiltration rates of both high- and low-permeability layers where the injected water mounded, while the water storage amounts in the high- and low-permeability layers were governed by the mounding height and width, respectively. Exploratory simulations were then employed to assess the dependence of groundwater mounding behaviours and recharge performances on surface injection strategies. Results suggest that, by reducing injection rate or shortening injection duration, the near-term fraction of the surface injection converted to deep recharge is likely to be increased due to the narrowed groundwater mounding size, which would be limited by the water-retarding effect of layer contrasts. This study has important implications for predicting and understanding multilayered groundwater mounding behaviours and associated water mass balance under the geologic stratification, and is expected to aid in optimizing the infiltration basin operation for aquifer recharge.  相似文献   

14.
Release of water from the soil in the process of internal drainage, and its continued downward movement through the vadose zone, constitute the main mechanism of groundwater recharge. Water released from the soil generally contains solutes, and these are conveyed to the groundwater via the same pathways as the drained water. Knowledge of those pathways is essential in any attempt to minimize the likelihood of groundwater pollution. Solutes generally interact with the medium in which they reside or travel, and the spatial and temporal pattern of their movement influences the nature and extent of their interactions. For many years, the assumption had prevailed that flow in the vadose zone is a steady-state, uniform process. Hence the vadose zone can serve to filter, attenuate, as well as degrade, potential pollutants. Recently, however, the existence of preferred pathways has come to light. Such pathways might connect the soil's upper zone directly to the water-table, thus bypassing the greater volume of the vadose zone and evading its filtering mechanisms. Groundwater recharge models that ignore the possibility of such spurts of contamination may be highly misleading. Preferred flow path may be cracks, animal burrows, or decayed root channels. Less easily discernible are transient and random paths associated with the phenomenon of ‘unstable flow’, which is most likely to occur in layered soils during infiltration. The wetting front, instead of remaining horizontal and advancing continuously from one layer to the next, may begin (particularly in transition from a fine-textured to a coarse-textured layer) to form bulges, called ‘fingers’, which propagate downwards and may become, in effect, vertical pipes. At present we are aware only of the occasional occurrence and potential importance of such phenomena, but as yet have neither the systematic empirical data, nor a proven comprehensive theoretical framework, by which to assess where, when, and according to what pattern, they are likely to occur.  相似文献   

15.
One of the greatest challenges in critical zone studies is to document the moisture dynamics, water flux,and solute chemistry of the unsaturated, fractured and weathered bedrock that lies between the soil and groundwater table. The central impediment to quantifying this component of the subsurface is the difficulty associated with direct observations. Here, we report solute chemistry as a function of depth collected over a full year across the shale-derived vadose zone of the Eel River Critical Zone Observatory using a set of novel sub-horizontal wellbores,referred to as the vadose zone monitoring system. The results of this first geochemical glimpse into the deep vadose zone indicate a dynamic temporal and depth-resolved structure. Major cation concentrations reflect seasonal changes in precipitation and water saturation, and normalized ratios span the full range of values reported for the world's largest rivers.  相似文献   

16.
By implementing the moisture-based form of Richards’ equation into the geochemical modelling framework PHREEQC, a generic tool for the simulation of one-dimensional flow and solute transport in the vadose zone undergoing complex geochemical reactions was developed. A second-order, cell-centred, explicit finite difference scheme was employed for the numerical solution of the partial differential equations of flow and transport. In this scheme, the charge-balanced soil solution is treated as an assembly of elements, where changes in water and solute contents result from fluxes of elements across cell boundaries. Therefore, water flow is considered in terms of oxygen and hydrogen transport.  相似文献   

17.
Heterogeneous water flow and solute transport in soils are an important phenomenon and difficult to be characterized. The objectives of this study were to investigate the heterogeneity of solute transport related to heterogeneous soil water flow using dye infiltration experiments, and to characterize heterogeneous water flow and solute transport in soils using the information theory. Field experiments of dye infiltration were performed in four plots. Various information measures were applied to characterize information content and complexity of water flow and solute transport in soils. Information contents and complexities of the maximum and apparent infiltration depths, and the mean and standard deviation of concentrations in the vertical direction of the plots were calculated. More heterogeneous processes of soil water flow and transport result in higher information/complexity values. The probability distributions of mean concentration were similar to those of the corresponding apparent infiltration depths for the plots, indicating that heterogeneity of dye concentrations was closely related to that of soil water flow. However, the range of information entropy and complexity of the water flow sequences was much narrower than that of the sequences of the concentrations. The results suggested that the transport processes were more heterogeneous than the water flow processes. Compared with the probability distributions of flow parameters, the information measures appeared to be a more versatile tool to describe flow and transport heterogeneities in soils.  相似文献   

18.
Recharge processes of karst aquifers are difficult to assess given their strong heterogeneity and the poorly known effect of vadose zone on infiltration. However, recharge assessment is crucial for the evaluation of groundwater resources. Moreover, the vulnerability of karst aquifers depends on vadose zone behaviour because it is the place where most contamination takes place. In this work, an in situ experimental approach was performed to identify and quantify flow and storage processes occurring in karst vadose zone. Cave percolation monitoring and dye tracing were used to investigate unsaturated zone hydrological processes. Two flow components (diffuse and quick) were identified and, respectively, account for 66% and 34% of the recharge. Quickflow was found to be the result of bypass phenomenon in vadose zone related to water saturation. We identify the role of epikarst as a shunting area, most of the storage in the vadose zone occurring via the diffuse flow component in low permeability zones. Relationship between rainfall intensity and transit velocity was demonstrated, with 5 times higher velocities for the quick recharge mode than the diffuse mode. Modelling approach with KarstMod software allowed to simulate the hybrid recharge through vadose zone and shows promising chances to properly assess the recharge processes in karst aquifer based on simple physical models.  相似文献   

19.
The use of the sulphate mass balance (SMB) between precipitation and soil water as a supplementary method to estimate the diffuse recharge rate assumes that the sulphate in soil water originated entirely from atmospheric deposition; however, the origin of sulphate in soil and groundwater is often unclear, especially in loess aquifers. This study analysed the sulphur (δ34S-SO4) and oxygen (δ18O-SO4) isotopes of sulphate in precipitation, water-extractable soil water, and shallow groundwater samples and used these data along with hydrochemical data to determine the sources of sulphate in the thick unsaturated zone and groundwater of a loess aquifer. The results suggest that sulphate in groundwater mainly originated from old precipitation. When precipitation percolates through the unsaturated zone to recharge groundwater, sulphates were rarely dissolved due to the formation of CaCO3 film on the surface of sulphate minerals. The water-extractable sulphate in the deep unsaturated zone (>10 m) was mainly derived from the dissolution of evaporite minerals and there was no oxidation of sulphide minerals during the extraction of soil water by elutriating soil samples with deionized water. The water-extractable concentration of SO4 was not representative of the actual SO4 concentration in mobile soil water. Therefore, the recharge rate cannot be estimated by the SMB method using the water-extractable concentration of SO4 in the loess areas. This study is important for identifying sulphate sources and clarifying the proper method for estimating the recharge rate in loess aquifers.  相似文献   

20.
This study investigates fluctuations in nitrate concentration at the water table to improve understanding of unsaturated zone processes in the Chalk aquifer. Sampling was conducted using a novel multi‐level sampler during periods of water table rise over 5 years at a vertical resolution of 0.05 m. Nitrate concentration increased as the water table seasonally recovered, with similar inter‐annual trends with depth. The rising water table activated horizontal fractures facilitating the delivery of water elevated by up to 10 mg/l of nitrate with respect to the adjacent groundwater below. These fractures are considered to activate via piston displacement of water from the adjoining matrix. Hydrograph analysis identified 16 events which significantly perturbed the water table within 24–48 h of rainfall. Consistent nitrate concentrations indicate recharge through persistent fracture flow from the surface was not generally the primary driver of the rapid water table response during these events. Instead, the response was attributed to the piston displacement of porewater immediately above the water table. However, a single event in November 2012 delivered relatively dilute recharge indicating rapid persistent fracture flow following rainfall was possible to a depth of 14–15 m. Decreases in porewater nitrate concentration around fracture horizons and the dilution of many groundwater samples with respect to porewaters indicate a fresher source of water at depth. This was considered most likely to be a result of near surface water bypassing the matrix because of widespread mineralization on fracture surfaces, which retard water and solute exchange. Therefore, persistent fracture flow maybe considered a frequent process, operating independently of the matrix, and is not necessarily event driven. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号