首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
All of the major deep-water sedimentary provinces of the Gulf of Mexico were sampled with 48 piston cores, representative of the late Quaternary. The amount (per cent) and δ5C13 of the organic carbon in the sediment was measured at intervals within each core.Graphs of δC13 versus depth for each core give an indication of the sedimentological history of the Gulf. They show the extent of terrestrial influence on the Gulf during the late Pleistocene.Changes in δC13 of up to 6.0%.(from ~ ?19%.to ?25%. vs NBS-20) were measured across the Pleistocene-Holocene boundary in cores from the abyssal plain. These changes are consistent with a model wherein varying amounts of land-derived organic carbon were transported to the Gulf basin during glacial periods.By comparing graphs for cores from different areas, it was concluded that the major parameter affecting the δC13 values of organic carbon from marine sediments is the relative amount of terrestrial material present in the sediment. The maximum possible effect of the Pleistocene-Holocene temperature change in the Gulf was determined to be ~1.0%, if such an effect occurs at all.  相似文献   

2.
The δC13 value for sedimentary organic carbon in four estuaries of the Gulf of Mexico increases with radial distance from the river mouth. Mass balance calculations indicate that terrestrial organic carbon is limited to sediments within a relatively short distance from the river mouth. This distance is a function of the discharge rate of the river. For the Mississippi River, terrestrial organic carbon is limited to sediments within 69 km of the mouth of Pass à Loutre and 61 km of South Pass. These data indicate that the low δC13 (< ?22%.) values reported for Pleistocene sediments in the Gulf of Mexico may be the result of factors in addition to the postulated large influx of terrestrial organic carbon.  相似文献   

3.
The distribution of δ13C values for organic seston and sediment was determined in three sounds in the Spartina marsh estuaries along the Georgia coast, which had high, moderate, and low inputs of freshwater. Organic matter in all three sounds had similar carbon isotope compositions, for the most part within the range of marine values (δ13C of ?18%. to ?24%.). It appears that river flow does not introduce significant quantities of particulate C3 plant material (δ13C of ?25%. to ?28%.) to Georgia estuaries. Evaluation of δ13C values of estuarine seston and three size fractions of sediment indicated that while Spartina carbon (δ13C of ?13%.) can be an important component of organic matter in intertidal sediments (mean δ13C of ?14.3%. to ?20.0%.), it is less so in subtidal sediments (mean δ13C of ?18.8%. to ?21.2%.), and it is hardly present at all in the seston (mean δ13C of ?24.5%.). δ13C values of dissolved inorganic carbon (DIC) in several water samples ranged between ?2.5%. and ?5.6%., suggesting that the isotope composition of estuarine DIC is influenced by respiratory CO2 derived from metabolism of 13C-depleted plant carbon. Phytoplankton production utilizing this comparatively light DIC could be a source of relatively negative δ13C carbon in the estuary. Additional origins of estuarine organic matter greatly depleted in 13C compared to Spartina carbon remain to be identified.  相似文献   

4.
Organic carbon from sediments collected in Texas seagrass meadows was enriched in 13C by an average of 6.6% relative to organic carbon from offshore sediments. Within the South Texas hay system examined. δ13C values became increasingly more typical of offshore sediments with increasing distance from seagrass meadows. This permits the use of carbon isotope data as a measure of the relative contributions of seagrasses and plankton to sedimentary organic matter.  相似文献   

5.
44 Δ13C-values for carbonaceous matter in a metamorphic profile from the Swiss Alps have been determined. The analyzed samples range from unmetamorphosed sediments to staurolite schists. The carbon isotopic composition is more-or-less constant with δ-values around ?25%. in the unmetamorphosed sediments, but shifts towards higher 13C-content with increasing grade of metamorphism. δ13C values of around ?11%. were measured in the rocks of the highest metamorphic grade.  相似文献   

6.
δ13CPDB compositions for 39 samples of dissolved organic carbon (DOC) from the Gulf of Mexico-Caribbean Sea-Atlantic Ocean system, the South Pacific and Ross Sea are reported. Deep water values are similar with a mean of ?21.8%. attesting to the homogeneity of the oceanic DOC pool. In Antarctic waters, a 5%. difference between DOC and particulate organic carbon (POC), with POC having values similar to modern plankton (δ13CPDB approx ?27%.) supports the idea of the transient nature of POC as compared to DOC.Total, lipid, acid hydrolyzed, amino acid and residue fractions of POC are about 5, 3, 7, 5 and 3%. respectively, more negative in 2000 m water as compared to surface water samples from the Gulf of Mexico.  相似文献   

7.
Fifteen sediment samples were studied from five drill sites recovered by the ‘Glomar Challenger’ on Legs I and IV in the Gulf of Mexico and western Atlantic. This study concentrated on compounds derived from biogenic precursors, namely: (1) hydrocarbons, (2) fatty acids, (3) pigments and (4) amino acids.Carbon isotope (δC13) data (values < ? 26%, relative to PDB), long-chain n-alkyl hydrocarbons ( ?C277) with odd carbon numbered molecules dominating even carbon numbered species, and presence of perylene proved useful as possible indicators for terrigenous contributions to the organic matter in some samples. Apparently land-derived organic matter can be transported for distances over 1000 km into the ocean and their source still recognized.The study was primarily designed to investigate: (i) the sources of the organic matter present in the sediment, (ii) their stability with time of accumulation and (iii) the conditions necessary for in situ formation of new compounds.  相似文献   

8.
δ13Corg and δ13Ccarb values of 58 coexisting organic carbon-carbonate pairs covering the whole Precambrian have yielded means of ?24.7 ± 6.0%. [PDB] and +0.9 ± 2.7%. [PDB], respectively. Accordingly, isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in geologically younger rocks (Δδ ? 25%.), a slight increase displayed by the Early Precambrian pairs (Δδ ? 28%.) being probably biassed by an over-representation in this age group of samples from one single locality (nevertheless, this value still lies within the range permitted for a possible deviation). It is reasonable to assume, therefore, that the overall isotope fractionation factor governing biological fixation of inorganic carbon has been virtually constant since some 3.3 × 109 yr ago.  相似文献   

9.
Lignin oxidation products and stable carbon isotope distributions are used to investigate the sources, transport, and chemical stability of land-derived organic matter in dated cores of modern sediment from the southern Washington State continental shelf and slope. There is no evidence for significant chemical alteration of lignin compounds in these sediments for time periods of up to 400 yr. Gymnosperm woods and nonwoody angiosperm tissues account for most of the land-derived organic matter in the deposits. These land plant remains have an average δ13C of approximately ?25.5% and are concentrated in a narrow band of silty sediment which extends northward from the Columbia River mouth along the mid-shelf. Marine organic matter having an approximate δ13C of ?21.5%, strongly predominates in most other shelf and slope environments. Net fluxes of land-derived organic matter into the surface 5 cm of the cores vary directly with sediment accumulation rates. Net fluxes of marine organic material into the surface sediments are highest in environments which favor the preservation of organic matter, but correspond to less than 1% of the primary productivity in the overlying waters.  相似文献   

10.
DH and 13C12C ratios were measured for 114 petroleum samples and for several samples of related organic matter. δD of crude oil ranges from ?85 to ?181‰, except for one distillate (?250‰) from the Kenai gas field; δ13C of crude oil ranges from ?23.3 to ?32.5‰, Variation in δD and δ13C values of compound-grouped fractions of a crude oil is small, 3 and 1.1%., respectively, and the difference in δD and δ13C between oil and coeval wax is slight. Gas fractions are 53–70 and 22.6–23.2‰ depleted in D and 13C, respectively, relative to the coexisting oil fractions.The δD and δ13C values of the crude oils appear to be largely determined by the isotopic compositions of their organic precursors. The contribution of terrestrial organic debris to the organic precursors of most marine crude oils may be significant.  相似文献   

11.
Orca Basin is a highly reducing basin on the slope of the Gulf of Mexico. Stable carbon isotope ratios and total organic carbon percentages were determined for two cores within the basin and one control core outside the basin. The results show that the organic carbon content of the basin cores is consistently 2–3 times greater than that of the control core. The Pleistocene-Holocene boundary, indicated by a break in the δ13C depth profile, occurs at a greater sediment depth in the basin cores than in the control core. A small sampling interval has made it possible to detect an unexplained fine structure in the δ13C profile not previously observed.  相似文献   

12.
Concentrations and isotopic compositions were determined for H2, N2 and C extracted by stepwise pyrolysis from powdered meteorites, from residues of meteorites partially dissolved with aqueous HF, and from residues of meteorites reacted with HF-HCl solutions. The meteorites treated were the carbonaceous chondrites, Orgueil, Murray, Murchison, Renazzo and Cold Bokkeveld. Data determined for whole rock samples are in approximate agreement with previously published data. Acidification of the meteorites removed the inorganic sources of H2, so that H2 in the HF-HCl acid residues came primarily from insoluble organic matter, which makes up 70–80% fraction of the total carbon in carbonaceous meteorites. The δD in the organic matter differs markedly from previously determined values in organic matter in meteorites. The δD values of organic matter from acid residues of C1 and C2 carbonaceous chondrites range from +650 to + 1150%. The acid residues of the Renazzo meteorite, whose total H2 has a δD of +930‰, gave a δD value of +2500‰. Oxidation of the HF-HCl residue with H2O2 solution removes the high δD and the low δ15N components. The δ13C values range between ?10 and ?21 and δ15N values range between +40 and ?11. The δ15N of Renazzo is unusual; its values range between +150 and ?190.There is good correlation between δD and the concentration of H2 in the acid residues, but no correlation exists between δD, δ13C and δ15N in them. A simple model is proposed to explain the high δD values, and the relationships between δD values and the concentration of H2. This model depends on the irradiation of gaseous molecules facilitating reaction between ionic molecules, and indicates that an increase in the rate of polymerization and accumulation of organic matter on grains would produce an increase in the deuterium concentration in organic matter.  相似文献   

13.
Carbon, oxygen and sulphur isotope data for transects across two pyrite-bearmg carbonate concretions, and their host sediments, from the Upper Lias of N.E. England show symmetrical zonation. δ13CPDB values of the calcite cement (?12.9 to ?15.4%.) indicate that most of it originated from organic matter by bacterial reduction of sulphate, augmented with marine and, to a lesser extent, fermentation derived carbonate. Organic carbon (δ13CPDB = ?26.1 to ?37.0%.). reflects the admixture of allochtho-nous terrestrial organic matter with marine material and the selective preservation of isotopically light organic material through microbiological degradation.Two phases of pyrite are present in each concretion. The earlier framboidal pyrite formed throughout the sediment prior to concretionary growth and has δ34SCD values of ?22 to ?26%. indicating formation by open system sulphate reduction. The later euhedral phase is more abundant and reaches values of ? 2.5 to ? 5.5%. at concretion margins. This phase of sulphate reduction provided the carbonate source for concretionary growth and occurred in a partially closed system. The δ13C and δ34S data are consistent with mineralogical and chemical evidence which suggest that both concretions formed close to the sediment surface. The δ18O values of the calcite in one concretion (δ18OPDB = 2.3 to ?4.8%.) indicate precipitation in pore waters whose temperature and isotopic composition was close to that of overlying seawater. The other concretion is isotopically much lighter (δ18OPDB?8.9 to ?9.9%.) and large δ18O differences between concretions in closely-spaced horizons imply that local factors control the isotopic composition of pore waters.  相似文献   

14.
Organic geochemical proxies have been studied in a 45-cm-long core retrieved from Lake Naukuchiyatal in Kumaun Himalayas, India. Increase in TOC, N, hydrocarbons and pigments concentration from bottom to surface sediments of the core indicates increase in the lake productivity. Stable isotopes (δ13C and δ 15 N), biomarkers (TAR, CPI and n-ΣC15,17,19) and C/N atomic (between 9 and 12) suggest dominance of algal derived organic matter in these sediments. Decrease in organic δ13C values (between ?27 and ?31‰) in surface sediments indicate influence of sewage and land runoff in shifting organic δ13C values, whereas low (between ?0.23 and 2.2‰) δ15N values together with high pigment concentrations (zeaxanthin and echinenone) represent dominance of cyanobacteria in the lake.  相似文献   

15.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

16.
17.
Stable carbon isotope ratios have been measured in skeletons of the temperature shallow water scleractinian coral, Astrangia danae. δ13C values ranging from ?5.42 to ?7.30%. revealed the expected depletion of 13C in skeletal carbonate relative to sea water bicarbonate. Differences among the ratios could not be attributed to collection site and were not correlated to skeletal morphology. Values of δ13C were directly related to zooxanthellae density for all colonies, so that as zooxanthellae concentration increased, δ13C valued increased. Colonies maintained under high temperature conditions were offset from the normal, exhibiting ratios less enriched in 13C than similar colonies from natural conditions. These trends supported the models of Weber and Goreau in which the carbon pools used in calcification are modified by algal photosynthesis. Direct evidence of physiological differences between symbiotic and asymbiotic colonies of A. danae has also been provided.  相似文献   

18.
Organic carbon isotopes in sediments have been frequently used to identify the source of organic matter.Here we present a study of organic δ~(13)C on two sediment profiles influenced by guano from Guangjin and Jinqing islands in the Xisha Archipelago,South China Sea.Organic matter from ornithogenic coral sand sediments has two main sources,guano pellets and plant residues,and their organic δ~(13)C(δ~(13)C_(OM)) are significantly different.Organic carbon δ~(13)C_(guano) is much higher thanδ~(13)C_(plants),and δ~(13)C_(OM)of bulk samples is intermediate.Based on a two-end-member mixing model,the proportions of guano-and plant-derived organic matter in the bulk samples were reconstructed quantitatively.The results showed that seabirds began to inhabit the islands around approximately1200-1400 AD,and that guano pellets have been an important source of soil organic matter since then.With the accumulation of guano-derived nutrients,plants began to develop prosperously on the islands in the last 200 years,which is reflected by the significant increase of plant-derived organic matter in the upper sediment layer.However,guano-derived organic matter decreased greatly in recent decades,indicating a rapid decrease in seabird population.Our results show that organic δ~(13)C can be effectively used to quantitatively determine different source contributions of OM to bulk ornithogenic coral sand sediments.  相似文献   

19.
《Chemical Geology》2002,182(2-4):377-394
Bulk heavy metal (Fe, Mn, Zn, Cu, Pb, Cd), Al, organic carbon and carbonate concentrations, grain sizes, and δC13 of the organic carbon distributions were studied in sediments collected throughout the East China Sea continental shelf and the Yangtze River Delta. The results demonstrated that terrigenous sediments from the Yangtze River is a dominating factor controlling the spatial variations of heavy metals and organic carbon concentrations on the East China Sea continental shelf. In addition, grain size and recent anthropogenic influences are also major factors modifying the spatial and vertical variations of heavy metals.Large spatial variations with a band type distribution of heavy metals, grain size, organic carbon and carbonate were observed. Higher concentrations of heavy metal and light δC13 of the organic carbon were found primarily in the Deltaic and inner shelf sediments. The band type distribution generally followed the coastline with little variations in the north–south direction. Away from the Delta and inner shelf (west–east direction), most heavy metal concentrations decreased rapidly with the exception of Cd where high concentrations of Cd were also found in the carbonate-rich shelf break sediments. Coarse-grained relict sediments and biogenic carbonate are two primary diluting agents for the fine-grained aluminosilicate sediments from the Yangtze River with high concentrations of heavy metals.Unusually high concentrations of Cu, Pb, and Cd showed both spatially and vertically that more pollution prevention measures are needed in the Yangtze River drainage basin in order to prevent further heavy metal pollution of the East China Sea inner continental shelf.  相似文献   

20.
The Upper Triassic Xujiahe Formation in the Sichuan Basin, SW China consists of a series of coal measures. The first, third and fifth members of this formation are dominated by gas prone dark mudstones and coals. The mudstones contain Type II and III kerogens with average organic carbon contents around 1.96%. These source rocks are mature in the central Sichuan and highly mature in the western Sichuan Basin, characterized by gas generation with subordinate amounts of light oil or condensate oils. The source rocks are intercalated with the sandstone dominated second, fourth and sixth members of the Xujiahe Formation, thus leading to three separate self contained petroleum systems in the region. The proven gas reserves in the Xujiahe Formation are only less than that of the Triassic Feixianguan Formation and the Xujiahe Formation has the second largest gas field (Guang’an gas field) in the basin. Gases derived from the Xujiahe Formation coals generally show a normal stable carbon isotopic trend for C1–C4 n-alkanes, with the highest δ13C2 values among the nine gas pay zones in the basin (?20.7‰ to ?28.3‰), and δ13C1 values as low as ?43.0‰ in the central Sichuan. Gas accumulations with an oil leg have also been found in the eastern and southern Sichuan where the thickness of the Xujiahe Formation is significantly reduced. Gases in these accumulations tend to show low δ13C2 values (?30.0‰ to ?36.3‰), characteristic of oil prone source rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号