首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have imaged earthquake source zones beneath the northeast India region by seismic tomography, fractal dimension and b value mapping. 3D P-wave velocity (Vp) structure is imaged by the Local Earthquake Tomography (LET) method. High precision P-wave (3,494) and S-wave (3,064) travel times of 980 selected earthquakes, m d ≥ 2.5, are used. The events were recorded by 77 temporary/permanent seismic stations in the region during 1993–1999. By the LET method simultaneous inversion is made for precise location of the events as well as for 3D seismic imaging of the velocity structure. Fractal dimension and seismic b value has been estimated using the 980 LET relocated epicenters. A prominent northwest–southeast low Vp structure is imaged between the Shillong Plateau and Mikir hills; that reflects the Kopili fault. At the fault end, a high-Vp structure is imaged at a depth of 40 km; this is inferred to be the source zone for high seismic activity along this fault. A similar high Vp seismic source zone is imaged beneath the Shillong Plateau at 30 km depth. Both of the source zones have high fractal dimension, from 1.80 to 1.90, indicating that most of the earthquake associated fractures are approaching a 2D space. The spatial fractal dimension variation map has revealed the seismogenic structures and the crustal heterogeneities in the region. The seismic b value in northeast India is found to vary from 0.6 to 1.0. Higher b value contours are obtained along the Kopili fault (~1.0), and in the Shillong Plateau (~0.9) The correlation coefficient between the fractal dimension and b value is found to be 0.79, indicating that the correlation is positive and significant. To the south of Shillong Plateau, a low Vp structure is interpreted as thick (~20 km) sediments in the Bengal basin, with almost no seismic activity in the basin.  相似文献   

2.
Recent seismic activity in southern Lebanon is of particular interest since the tectonic framework of this region is poorly understood. In addition, seismicity in this region is very infrequent compared with the Roum fault to the east, which is seismically active. Between early 2008 and the end of 2010, intense seismic activity occurred in the area. This was manifested by several swarm-like sequences and continuous trickling seismicity over many days, amounting in total to more than 900 earthquakes in the magnitude range of 0.5?≤?M d?≤?5.2. The region of activity extended in a 40-km long zone mainly in a N-S direction and was located about 10 km west of the Roum fault. The largest earthquake, with a duration magnitude of M d?=?5.2, occurred on February 15, 2008, and was located at 33.327° N, 35.406° E at a depth of 3 km. The mean-horizontal peak ground acceleration observed at two nearby accelerometers exceeded 0.05 g, where the strongest peak horizontal acceleration was 55 cm/s2 at about 20 km SE of the epicenter. Application of the HypoDD algorithm yielded a pronounced N-S zone, parallel to the Roum fault, which was not known to be seismically active. Focal mechanism, based on full waveform inversion and the directivity effect of the strongest earthquake, suggests left-lateral strike-slip NNW-SSE faulting that crosses the NE-SW traverse faults in southern Lebanon.  相似文献   

3.
The 23 October 2011 Van earthquake took place in the NE part of Lake Van area, surprisingly on a fault (the Van fault) that is not present in the current active fault map of Turkey. However, occurrence of such a large magnitude earthquake in the area is not surprising regarding the historical seismicity of the region. The comparison of the damage patterns suggests that the earthquake is much likely a recurrence of the 1715 Van earthquake. The finite fault modelling of the earthquake using teleseismic broadband body waveforms has shown that the earthquake rupture was unilateral toward SW, was mostly reverse faulting, confined to below the depth of 5 km, did not propagate offshore, and was dominated by a failure of a single asperity with a peak slip of about 5.5 m. The total seismic moment calculated for the model is 4.6?×?1019 Nm (M W ?≈?7.1). The finite fault model coincides with the field observations indicating blind faulting and the vertical displacements over the free surface estimated from it correlate well with the maximum reported uplift along the coast of Lake Van above the hanging wall. The possible offshore continuations of the Van fault and some other faults lying its south are also discussed by assessing a previous offshore seismic reflection study and the earthquake epicentres and focal mechanisms.  相似文献   

4.
In Taiwan an international project to drill into the Chelungpu fault (TCDP) was initiated after the M w 7.6 Chi-Chi earthquake in 1999. At Takeng, two vertical holes (A and B) to depths of about 2 km have been drilled through the northern portion of the Chelungpu fault system. In this study, we conducted systematic hydromechanical tests on TCDP drillcores collected from Hole-A at various depths above and below the major slip zone of the Chelungpu fault. We focus on the measurements of permeability as function of pressure and the brittle failure behavior. Evolution of permeability as a function of pressure and porosity was measured using either steady-state flow or a pulse transient technique. When subjected to an effective pressure reaching 100 MPa, permeability values of shaly siltstone samples range from 10?16 to 10?19 m2. In comparison, permeability values of porous sandstones are at least an order of magnitude higher, ranging from 10?14 to 10?18 m2. To characterize permeability anisotropy associated with the bedding structure of the rocks of the Chelungpu fault, cylindrical samples were taken from the TCDP drillcores along three orthogonal directions, denoted X, Y and Z respectively. Direction Z is parallel to the TCDP core axis, and the other two directions are perpendicular to the core axis, with X (N105°E) perpendicular and Y (N15°E) parallel to the strike of the bedding. In shaly siltstones, permeability values of samples cored along the strike of bedding (direction Y) can be up to 1 order of magnitude higher than those cored perpendicular to the strike of bedding (direction X). These observations indicate that permeability anisotropy is controlled by the spatial distribution of bedding in Chelungpu fault host rocks. Permeability evolution of fault rocks plays an important role in dynamic weakening processes, which are particularly pertinent to large earthquakes such as the Chi-Chi earthquake. Our experimental data on permeability and its anisotropy of TCDP core samples provide necessary constraints on fault models and proposed weakening mechanisms.  相似文献   

5.
Aftershock locations, source parameters and slip distribution in the coupling zone between the overriding North American and subducted Rivera and Cocos plates were calculated for the 22 January 2003 Tecomán earthquake. Aftershock locations lie north of the El Gordo Graben with a northwest-southeast trend along the coast and superimposed on the rupture areas of the 1932 (M w?=?8.2) and 1995 (M w?=?8.0) earthquakes. The Tecomán earthquake ruptured the northwest sector of the Colima gap, however, half of the gap remains unbroken. The aftershock area has a rectangular shape of 42?±?2 by 56?±?2?km with a shallow dip of roughly 12° of the Wadati-Benioff zone. Fault geometry calculated with the Náb??lek (1984) inversion procedure is: (strike, dip, rake)?=?(277°, 27°, 78°). From the teleseimic body wave spectra and assuming a circular fault model, we estimated source duration of 20?±?2?s, a stress drop of 5.4?±?2.5?MPa and a seismic moment of 2.7?±?.7?×?1020?Nm. The spatial slip distribution on the fault plane was estimated using new additional near field strong motion data (54?km from the epicenter). We confirm their main conclusions, however we found four zones of seismic moment release clearly separated. One of them, not well defined before, is located toward the coast down dip. This observation is the result of adding new data in the inversion. We calculated a maximum slip of 3.2?m, a source duration of 30?s and a seismic moment of 1.88?×?1020?Nm.  相似文献   

6.
The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is ~ 8.0 × 1018 N·m (Mw?≈?6.5), and the centroid depth is ~ 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5–15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes >?6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is ~ 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in ~ 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 Mw7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.  相似文献   

7.
We investigate mainshock slip distribution and aftershock activity of the 8 January 2013 M w?=?5.7 Lemnos earthquake, north Aegean Sea. We analyse the seismic waveforms to better understand the spatio-temporal characteristics of earthquake rupture within the seismogenic layer of the crust. Peak slip values range from 50 to 64 cm and mean slip values range from 10 to 12 cm. The slip patches of the event extend over an area of dimensions 16?×?16 km2. We also relocate aftershock catalog locations to image seismic fault dimensions and test earthquake transfer models. The relocated events allowed us to identify the active faults in this area of the north Aegean Sea by locating two, NE–SW linear patterns of aftershocks. The aftershock distribution of the mainshock event clearly reveals a NE–SW striking fault about 40 km offshore Lemnos Island that extends from 2 km up to a depth of 14 km. After the mainshock most of the seismic activity migrated to the east and to the north of the hypocenter due to (a) rupture directivity towards the NE and (b) Coulomb stress transfer. A stress inversion analysis based on 14 focal mechanisms of aftershocks showed that the maximum horizontal stress is compressional at N84°E. The static stress transfer analysis for all post-1943 major events in the North Aegean shows no evidence for triggering of the 2013 event. We suggest that the 2013 event occurred due to tectonic loading of the North Aegean crust.  相似文献   

8.
Distribution of parameters characterizing soil response during the 1999 Chi-Chi, Taiwan, earthquake (M w = 7.6) around the fault plane is studied. The results of stochastic finite-fault simulations performed in Pavlenko and Wen (2008) and constructed models of soil behavior at 31 soil sites were used for the estimation of amplification of seismic waves in soil layers, average stresses, strains, and shear moduli reduction in the upper 30 m of soil, as well as nonlinear components of soil response during the Chi-Chi earthquake. Amplification factors were found to increase with increasing distance from the fault (or, with decreasing the level of “input” motion to soil layers), whereas average stresses and strains, shear moduli reduction, and nonlinear components of soil response decrease with distance as ~ r ?1 . The area of strong nonlinearity, where soil behavior is substantially nonlinear (the content of nonlinear components in soil response is more than ~40–50% of the intensity of the response), and spectra of oscillations on the surface take the smoothed form close to E(f) ~ f ?n , is located within ~20–25 km from the fault plane (~ 1/4 of its length). Nonlinearity decreases with increasing distance from the fault, and at ~40–50 km from the fault (~ 1/2 of the fault length), soil response becomes virtually linear. Comparing soil behavior in near-fault zones during the 1999 Chi-Chi, the 1995 Kobe (M w = 6.8), and the 2000 Tottori (Japan) (M w = 6.7) earthquakes, we found similarity in the behavior of similar soils and predominance of the hard type of soil behavior. Resonant phenomena in upper soil layers were observed at many studied sites; however, during the Chi-Chi earthquake they involved deeper layers (down to ~ 40–60 m) than during lesser-magnitude Kobe and Tottori earthquakes.  相似文献   

9.
With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local Ms5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.  相似文献   

10.
2-D shallow velocity structure is derived by travel-time inversion of the first arrival seismic refraction and wide-angle reflection data along the E–W trending Narayanpur–Nandurbar and N–S Kothar–Sakri profiles, located in the Narmada–Tapti region of the Deccan syneclise. Deccan volcanic (Trap) rocks are exposed along the two profiles. Inversion of seismic data reveals two layered velocity structures above the basement along the two profiles. The first layer with a P-wave velocity of 5.15–5.25 km s?1 and thickness varying from 0.7–1.5 km represents the Deccan Trap formation along the Narayanpur–Nandurbar profile. The Trap layer velocity ranges from 4.5 to 5.20 km s?1 and the thickness varies from 0.95 to 1.5 km along the Kothar–Sakri profile. The second layer represents the low velocity Mesozoic sediments with a P-wave velocity of 3.5 km s?1 and thickness ranging from about 0.70 to 1.6 km and 0.55 to 1.1 km along the E–W and N–S profiles, respectively. Presence of a low-velocity zone (LVZ) below the volcanic rocks in the study area is inferred from the travel-time ‘skip’ and amplitude decay of the first arrival refraction data together with the prominent wide-angle reflection phase immediately after the first arrivals from the Deccan Trap formation. The basement with a P-wave velocity of 5.8–6.05 km s?1 lies at a depth ranging from 1.5 to 2.45 km along the profiles. The velocity models of the profiles are similar to each other at the intersection point. The results indicate the existence of a Mesozoic basin in the Narmada–Tapti region of the Deccan syneclise.  相似文献   

11.
We report an experimental and microstructural study of the frictional properties of simulated fault gouges prepared from natural limestone (96 % CaCO3) and pure calcite. Our experiments consisted of direct shear tests performed, under dry and wet conditions, at an effective normal stress of 50 MPa, at 18–150 °C and sliding velocities of 0.1–10 μm/s. Wet experiments used a pore water pressure of 10 MPa. Wet gouges typically showed a lower steady-state frictional strength (μ = 0.6) than dry gouges (μ = 0.7–0.8), particularly in the case of the pure calcite samples. All runs showed a transition from stable velocity strengthening to (potentially) unstable velocity weakening slip above 80–100 °C. All recovered samples showed patchy, mirror-like surfaces marking boundary shear planes. Optical study of sections cut normal to the shear plane and parallel to the shear direction showed both boundary and inclined shear bands, characterized by extreme grain comminution and a crystallographic preferred orientation. Cross-sections of boundary shears, cut normal to the shear direction using focused ion beam—SEM, from pure calcite gouges sheared at 18 and 150 °C, revealed dense arrays of rounded, ~0.3 μm-sized particles in the shear band core. Transmission electron microscopy showed that these particles consist of 5–20 nm sized calcite nanocrystals. All samples showed evidence for cataclasis and crystal plasticity. Comparing our results with previous models for gouge friction, we suggest that frictional behaviour was controlled by competition between crystal plastic and granular flow processes active in the shear bands, with water facilitating pressure solution, subcritical cracking and intergranular lubrication. Our data have important implications for the depth of the seismogenic zone in tectonically active limestone terrains. Contrary to recent claims, our data also demonstrate that nanocrystalline mirror-like slip surfaces in calcite(-rich) faults are not necessarily indicative of seismic slip rates.  相似文献   

12.
利用主动震源检测汶川地震余震引起的浅层波速变化   总被引:15,自引:6,他引:9  
为了监测汶川地震后断裂带附近的波速变化,2008年6月,我们利用快速响应探测系统,在龙门山断裂带北端进行了为期3周的连续观测实验.实验使用电动落锤作为主动震源,GPS连续同步授时的高精度数采作为接收系统.利用记录到的高时间精度观测数据,结合互相关时延检测技术,计算了P波和面波走时的相对变化,来表征地下波速的变化.我们观测到两次面波波速的异常变化,变化幅度最高达到2%,远远大于气压变化所能引起的波速变化.结合该时段内地震活动记录,我们认为面波的波速变化是由在附近发生的两次地震事件的同震效应引起的,该观测结果同理论计算结果相符.  相似文献   

13.
The 2-D shallow velocity structure along the north-south Palashi-Kandi profile in the West Bengal sedimentary basin has been updated by travel-time inversion of seismic refraction, wide-angle reflection and gravity data. A six-layer shallow model up to a depth of about 7 km has been derived. The first layer, which has an average velocity of 2.0 kms?1, represents the alluvium deposit, which rests over the shale formation with average velocity of 3.0 kms?1. The thin (200 m) Sylhet limestone, observed at a nearby Palashi well, remains hidden in the present data set. Hence a 200-m thin layer with a velocity of 3.7 kms?1, corresponding to the Sylhet limestone, has been assumed to be present throughout the profile. The fourth layer with a velocity of 4.5–4.7 kms?1 at a depth of 1.7–2.4 km represents the Rajmahal traps. The ‘skip’ phenomenon and rapid amplitude decay of first arrivals indicate a low-velocity zone (LVZ) in the study area. Using the ‘skip’ phenomena and wide-angle reflection data, identified on seismograms, the LVZ with a velocity of 4.0 kms?1, indicating the Gondwana sediments, has been delineated below the Rajmahal traps. The next layer with a velocity 5.4–5.6 kms?1 overlying the crystalline basement (5.8–6.25 kms?1) may be associated with the Singhbhum group of meta volcanic rock that has been exposed in the western part of the basin. The basement lies at a variable depth of 4.9 to 6.8 km. The overall uncertainties of various velocity and boundary nodes are ± 0.15 kms?1 and ± 0.5 km, respectively. The elevated basement feature in the north might have acted as a structural barrier for the deposition of Sylhet limestone during the Eocene epoch. The seismically derived shallow structure correctly explains the observed Bouguer gravity anomaly along the profile. The addition of reflections in the present analysis provides a stronger control on the depths and velocities of basement and overlying sedimentary formations, compared to the earlier model derived mainly by the first arrival seismic data.  相似文献   

14.
The focal mechanism solution of the Shiqu MS 4.4 earthquake occurred on May 16th, 2017 in Sichuan Province is studied by the gCAP method using the waveform data from the regional seismic networks in Sichuan, Qinghai, Tibet and Gansu provinces. The strike/dip/dipping angle of the first nodal plane are 214°/80°/167° and those of the second nodal plane are 306°/77°/10°, the optimal centroid depth is 7.3 ​± ​0.6 ​km and the moment magnitude is MW 4.5. Furthermore, the study investigates the robustness of the results against the error of crustal velocity structure, location, data quality and difference of seismic parameters, subsequently obtaining a stable resolved focal mechanism. According to the geological structure in the seismogenic area, spatial distribution of aftershock sequenceof the regional tectonic stress field, and the focal mechanism of the main shock, we suggest that the Shiqu earthquake is induced by a left-lateral strike-slip mechanism and the second nodal plane is inferred to be the seismogenic fault, consistent with the geometry of the Changshagongma fault which is the secondary fault of the northwest part of the Xianshuihe fault zone.  相似文献   

15.
In this paper we search for a reference relation between seismic P-wave velocity V and density ρ ref for the continental crust. Based on the results of modern seismic experiments, we compiled 2-D seismic models into a network of four, each about 1100–1400 km long, continental-scale seismic transects cutting all main tectonic units in Central Europe. The Moho depth (about 52 km beneath the TESZ in SE Poland, to about 25 km beneath the Pannonian Basin) and the crustal structure of this area are characterised by a large variation. This structural variation provides an interesting basis for gravity studies and especially for analysing the difference of the density structure between two major tectonic provinces of distinctive age difference: Precambrian and Phanerozoic. The 2-D gravity modelling applied for crustal cross-sections representing the regional structure, based on a unified gravity anomaly map of the area, allows for a stable determination of some general features of the regional reference velocity-density relation for the continental crust. In general three major seismo-petrological types of rocks can be distinguished: sediments, crystalline crust and mantle. In compacted sediments the reference velocity-density relation is well described by the Gardner or Nafe-Drake model. Calculated gravity anomalies, using unified velocity-density relation for the whole crystalline crust, well describe observed anomalies, with an average difference of 14 mGal. However, calculated gravity anomalies, using separated velocity-density relations for the crystalline crust of Precambrian and Phanerozoic Europe, describe observed anomalies better than for the entire crust, with an average difference 12 mGal. The most important feature of these relations is the large differentiation of the derivative dρ ref /dV in the crystalline crust, being about 0.3 g s/m4 for Precambrian, and about 0.1 g s/m4 for the Phanerozoic crystalline crust. The modelling suggests a very small density value in the uppermost mantle ρ = 3.11 g/cm3 below the younger area, while for the older area it is ρ = 3.3 g/cm3.  相似文献   

16.
17.
The Canterbury earthquake sequence beginning with the 2010 M W 7.2 Darfield earthquake is one of the most notable and well-recorded crustal earthquake sequences in a low-strain-rate region worldwide and as such provides a unique opportunity to better understand earthquake source physics and ground motion generation in such a tectonic setting. Ground motions during this sequence ranged up to extreme values of 2.2 g, recorded during the February 2011 M W 6.2 event beneath the city of Christchurch. A better understanding of the seismic source signature of this sequence, in particular the stress release and its scaling with earthquake size, is crucial for future ground motion prediction and hazard assessment in Canterbury, but also of high interest for other low-to-moderate seismicity regions where high-quality records of large earthquakes are lacking. Here we present a source parameter study of more than 200 events of the Canterbury sequence, covering the magnitude range M W 3–7.2. Source spectra were derived using a generalized spectral inversion technique and found to be well characterized by the ω ?2 source model. We find that stress drops range between 1 and 20 MPa with a median value of 5 MPa, which is a factor of 5 larger than the median stress drop previously estimated with the same method for crustal earthquakes in much more seismically active Japan. Stress drop scaling with earthquake size is nearly self-similar, and we identify lateral variations throughout Canterbury, in particular high stress drops at the fault edges of the two major events, the M W 7.2 Darfield and M W 6.2 Christchurch earthquakes.  相似文献   

18.
The 1995 Kobe (Hyogo-ken Nanbu) earthquake, M = 7.2, ruptured the Nojima fault in southwest Japan. We have studied core samples taken from two scientific drillholes that crossed the fault zone SW of the epicentral region on Awaji Island. The shallower hole, drilled by the Geological Survey of Japan (GSJ), was started 75 m to the SE of the surface trace of the Nojima fault and crossed the fault at a depth of 624 m. A deeper hole, drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) was started 302 m to the SE of the fault and crossed fault strands below a depth of 1140 m. We have measured strength and matrix permeability of core samples taken from these two drillholes. We find a strong correlation between permeability and proximity to the fault zone shear axes. The half-width of the high permeability zone (approximately 15 to 25 m) is in good agreement with the fault zone width inferred from trapped seismic wave analysis and other evidence. The fault zone core or shear axis contains clays with permeabilities of approximately 0.1 to 1 microdarcy at 50 MPa effective confining pressure (10 to 30 microdarcy at in situ pressures). Within a few meters of the fault zone core, the rock is highly fractured but has sustained little net shear. Matrix permeability of this zone is approximately 30 to 60 microdarcy at 50 MPa effective confining pressure (300 to 1000 microdarcy at in situ pressures). Outside this damage zone, matrix permeability drops below 0.01 microdarcy. The clay-rich core material has the lowest strength with a coefficient of friction of approximately 0.55. Shear strength increases with distance from the shear axis. These permeability and strength observations reveal a simple fault zone structure with a relatively weak fine-grained core surrounded by a damage zone of fractured rock. In this case, the damage zone will act as a high-permeability conduit for vertical and horizontal flow in the plane of the fault. The fine-grained core region, however, will impede fluid flow across the fault.  相似文献   

19.
We modeled a tsunami from the West Papua, Indonesia earthquakes on January 3, 2009 (M w?=?7.7). After the first earthquake, tsunami alerts were issued in Indonesia and Japan. The tsunami was recorded at many stations located in and around the Pacific Ocean. In particular, at Kushimoto on Kii Peninsula, the maximum amplitude was 43?cm, larger than that at Manokwari on New Guinea Island, near the epicenter. The tsunami was recorded on near-shore wave gauges, offshore GPS sensors and deep-sea bottom pressure sensors. We have collected more than 150 records and used 72 stations?? data with clear tsunami signals for the tsunami source modeling. We assumed two fault models (single fault and five subfaults) which are located to cover the aftershock area. The estimated average slip on the single fault model (80?×?40?km) is 0.64?m, which yields a seismic moment of 1.02?×?1020?Nm (M w?=?7.3). The observed tsunami waveforms at most stations are well explained by this model.  相似文献   

20.
Forty-six mining-induced seismic events with moment magnitude between ?1.2 and 2.1 that possibly caused damage were studied. The events occurred between 2008 and 2013 at mining level 850–1350 m in the Kiirunavaara Mine (Sweden). Hypocenter locations were refined using from 6 to 130 sensors at distances of up to 1400 m. The source parameters of the events were re-estimated using spectral analysis with a standard Brune model (slope ?2). The radiated energy for the studied events varied from 4.7 × 10?1 to 3.8 × 107 J, the source radii from 4 to 110 m, the apparent stress from 6.2 × 102 to 1.1 × 106 Pa, energy ratio (E s/E p) from 1.2 to 126, and apparent volume from 1.8 × 103 to 1.1 × 107 m3. 90% of the events were located in the footwall, close to the ore contact. The events were classified as shear/fault slip (FS) or non-shear (NS) based on the E s/E p ratio (>10 or <10). Out of 46 events 15 events were classified as NS located almost in the whole range between 840 and 1360 m, including many events below the production. The rest 31 FS events were concentrated mostly around the production levels and slightly below them. The relationships between some source parameters and seismic moment/moment magnitude showed dependence on the type of the source mechanism. The energy and the apparent stress were found to be three times larger for FS events than for NS events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号