首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed homogeneous long-term photometric observations of 28 well-known weakline T Tauri stars (WTTS) and 60 WTTS candidates detected by the ROSAT observatory toward the Taurus-Auriga star-forming region. We show that 22 known WTTS and 39 WTTS candidates exhibit periodic light variations that are attributable to the phenomenon of spotted rotational modulation. The rotation periods of these spotted stars lie within the range from 0.5 to 10 days. Significant differences between the long-term photometric behaviors of known WTTS and WTTS candidates have been found. We have calculated accurate luminosities, radii, masses, and ages for 74 stars. About 33% of the sample of WTTS candidates have ages younger than 10 Myr. The mean distance to 24 WTTS candidates with reliable estimates of their radii is shown to be 143 ± 26 pc. This is in excellent agreement with the adopted distance to the Taurus-Auriga star-forming region.  相似文献   

2.
We present first results of Hipparcos observations of nearby low-mass pre-main-sequence (PMS) stars (T Tauri and Herbig Ae/Be stars). The data obtained by Hipparcos allow us to derive weighted mean parallaxes for three major nearby star-forming regions (SFRs), Lupus, Chamaeleon I and Taurus–Auriga. Furthermore, results on the isolated objects AB Dor and TW Hya are presented. Finally, we discuss the evolutionary status of Herbig Ae/Be (HAEBE) stars on the basis of Hipparcos results.  相似文献   

3.
The study of star forming regions (SFR) allows us to observe many young stellar objects with both the same metallicities and distances but with different masses. Because of its close distance ( 140pc) Taurus-Auriga is one of the best studied SFR with more than 100 well-studied, low-mass, pre-main sequence stars, T Tauri stars (TTS). A motivation for studying X-ray emission of T associations is to understand the origin of X-rays and coronal activity. The large sample observed with the ROSAT All-Sky Survey (RASS) also enables us to compare different types of young stars. Other primary goals include star formation efficiency and the interaction of young stars with their intermediate environment (probed by absorption of X-rays). RASS detection rates are comparable withEinstein Observatory results: 43 out of 65 (66%) weak-lined TTS (WTTS) and 9 out of 79 (11%) classical TTS (CTTS) exhibit X-ray emission above RASS detection limit. A strong correlation between X-ray surface flux and stellar rotation indicates that WTTS are intrinsically more X-ray active than CTTS, because WTTS rotate faster. However, rotation is not the only parameter that determines X-ray activity. Also, we compare Taurus-Auriga TTS with TTS of southern SFR like ScoCen, Lupus, Chamaeleon, and CrA. A new result is that CTTS and WTTS can be discriminated reliably by their X-ray spectral hardness ratios. X-ray emission of CTTS appears to be harder, partly because of circumstellar absorption. Spectral fits give results consistent with Raymond-Smith spectra and emission temperatures of 1.0 keV for both WTTS and CTTS. However, we find that CTTS and WTTS have significantly different X-ray luminosity functions. Medians of absorption corrected X-ray luminosities (logL X in cgs units) are 29.701 ± 0.045 for WTTS and 29.091 ± 0.032 for CTTS. WTTS are intrinsically more luminous than CTTS, most likely because WTTS rotate on average faster than CTTS and are less absorbed. This paper concentrates on differences between CTTS and WTTS and indirect clues to be drawn from X-ray absorption and hardness ratios about circumstellar material around TTS.  相似文献   

4.
Surface temperature inhomogeneities in classical T Tauri stars (CTTS) induced by magnetic activity andmass accretion lead to rotationalmodulation of both photometric and spectroscopic parameters of these stars. Using the extended photometric catalogue byGrankin et al., we have derived the periods and amplitudes of the rotational modulation of brightness and color for 31 CTTS; for six of them, the periods have been revealed for the first time. The inclinations of the rotation axis and equatorial rotational velocities of CTTS have been determined. We show that the known periods of brightness variations for some of the CTTS are not the axial rotation periods but are the Keplerian periods near the inner boundary of the dusty disk. We have found that the angular velocity of CTTS with a mass of 0.3?3M ?? in the Taurus-Auriga complex remains constant in the age range 1?C10 Myr. CTTS on radiative evolutionary tracks rotate faster than completely convective CTTS. The specific angular momentum of CTTS depends on the absolute luminosity in the H?? line.  相似文献   

5.
I argue that temperatures of spots, responsible for observed periodical light variations of T Tauri stars (TTS), are not known with reliable accuracy to discriminate between chromospheric and accretion theories of TTS 's phenomenon. The hypothesis is set up that spots on classical TTS (CTTS) are due to heating of stellar surface by radiation from a collisional accretion shock, whereas spots on weak line TTS (WTTS), at least in some cases, are connected with a collisionless accretion shock rather than chromospheric activity. Possible scenarios of WTTS interaction with circumstellar matter are discussed.  相似文献   

6.
The relationships among traditional wind and disk diagnostics - Hα and [OI]λ6300 lines and IR luminosity excesses, respectively - and star parameters are critically analysed. The total sample includes 109 PMS stars - 20 Weak-line T Tauri (WTTS), 45 Classical T Tauri (CTTS) and 44 HAeBe stars-. Our results suggest that Hα is neither a wind nor an accretion tracer. Hα and [OI] emissions seem to correlate very well with the photospheric luminosity and not with ΔLIR/Lph, a parameter related to the origin of the IR excesses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We have analyzed a sample of 74 magnetically active stars toward the Taurus-Auriga starforming region. Based on accurate data on their basic physical parameters obtained from original photometric observations and published data on their proper motions, X-ray luminosities, and equivalent widths of the Hα and Li lines, we have refined the evolutionary status of these objects. We show that 50 objects are young stars with ages of 1–40 Myr and belong to the Taurus-Auriga star-forming region. Other 20 objects have a controversial evolutionary status and can belong to both Taurus-Auriga starforming region and the Gould Belt. The remaining four objects with ages of 70–100 Myr belong to the zero-age main sequence. We have analyzed the relationship between the rotation period, mass, and age for 50 magnetically active stars. The change in the angular momentum of the sample stars within the first 40 Myr of their evolution has been investigated. An active star-protoplanetary disk interaction is shown to occur on a time scale from 0.7 to 10Myr.  相似文献   

8.
The Nobeyama Millimeter Array Survey for protoplanetary disks has been made for 19 protostellar IRAS sources in Taurus; 13 of them were optically invisible protostars and 6 were young T Tauri stars. We observed 98-GHz continuum and CS(J = 2 – 1) line emissions simultaneously with spatial resolutions of 2 . 8-8 . 8 (360-1,200 AU). The continuum emission was detected from 5 out of 6 T Tauri stars and 2 out of 13 protostar candidates: the emission was not spatially resolved and was consistent with being originated from compact circumstellar disks. Extended CS emission was detected around 2 T Tauri stars and 11 protostar candidates. There is a remarkable tendency for the detectability of the 98-GHz continuum emission to be small for protostar candidates. This tendency is explained if the mass of protoplanetary disks around protostars is not as large as that around T Tauri stars; the disk mass may increase with the increase of central stellar mass by dynamical accretion in the course of evolution from protostars to T Tauri stars.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

9.
We have constructed a model of the solar nebula that allows for the temperature and pressure distributions at various stages of its evolution to be calculated. The mass flux from the accretion envelope to the disk and from the disk to the Sun, the turbulent viscosity parameter α, the opacity of the disk material, and the initial angular momentum of the protosun are the input model parameters that are varied. We also take into account the changes in the luminosity and radius of the young Sun. The input model parameters are based mostly on data obtained from observations of young solar-type stars with disks. To correct the input parameters, we use the mass and chemical composition of Jupiter, as well as models of its internal structure and formation that allow constraints to be imposed on the temperature and surface density of the protoplanetary disk in Jupiter’s formation zone. Given the derived constraints on the input parameters, we have calculated models of the solar nebula at successive stages of its evolution: the formation inside the accretion envelope, the evolution around the young Sun going through the T Tauri stage, and the formation and compaction of a thin dust layer (subdisk) in the disk midplane. We have found the following evolutionary trend: an increase in the temperature of the disk at the stage of its formation, cooling at the T Tauri stage, and the subsequent internal heating of the dust subdisk by turbulence dissipation that causes a temperature rise in the formation zone of the terrestrial planets at the high subdisk density and the opacity in this zone. We have obtained the probable ranges of temperatures in the disk midplane, i.e., the temperatures of the protoplanetary material in the formation region of the terrestrial planets at the initial stage of their formation.  相似文献   

10.
We analyzed the spectra of eight T Tauri stars (T Tau, RY Tau, CO Ori, EZ Ori, GW Ori, GX Ori, V1044 Ori, and SU Aur) in the wavelength range from 1200 to 3100 Å taken with the STIS spectrograph from the Hubble Space Telescope. For each star, we found an upper limit on the interstellar extinction A v , which proved to be lower than the values obtained by different authors from optical observations. For T Tau and RY Tau, we found the upper limits on their luminosities, masses, and radii as well as the bolometric luminosity of the excess emission continuum. The latter is most likely associated with mass accretion from a protoplanetary disk. We show that the bulk of the emission continuum is radiated in the infrared. For these stars, we determined the ratio of the flux in the C IV 1550 doublet lines to the excess-continuum flux. This ratio proved to be two orders of magnitude lower than its values predicted by the accretion-shock (AS ) models developed by Lamzin (1998) and Calvet and Gullbring (1998). This result leads us to believe that for T Tau and RY Tau, the emission continuum originates in the accretion disk and/or in the boundary layer rather than in the AS, as has been assumed previously. This implies that in these stars, only a small fraction of the accreted matter passes through the AS, while the bulk of this matter settles in the equatorial plane of the star, passing through the boundary layer.  相似文献   

11.
Magnetic field is believed to play an important role in the collapse of a molecular cloud. In particular, due to the properties of magnetic forces, collapse should be easier along magnetic field lines. This is supported by the large-scale sheet-like structures observed in the Taurus giant molecular cloud for instance. Here we investigate whether such a preferred orientation for collapse is present at a much smaller scale, that of individual objects, i.e., about 100AU. We use recent high-angular resolution images of T Tauri stars located in the Taurus star-forming region to find the orientation of the symmetry axis of each star+jet+disk system and compare it with that of the local magnetic field. We find that (i) T Tauri stars that are associated to a jet or an outflow are generally oriented parallel to the magnetic field, as previously demonstrated. More surprising, given our current knowledge of these objects, we also find that (ii) T Tauri stars that are not at present believed to be associated to a jet or an outflow are oriented very differently, i.e., mostly perpendicular to the magnetic field. We present some implications of this puzzling new result.  相似文献   

12.
We have found that two members of the TW Hydrae association, TW Hydrae and Hen 3-600A, are still actively accreting, based on the ballistic infall signature of their broad Halpha emission profiles. We present the first quantitative analysis of accretion in these objects and conclude that the same accretion mechanisms which operate in the well-studied 1 Myr old T Tauri stars can and do occur in older (10 Myr) stars. We derive the first estimates of the disk mass accretion rate in TW Hya and Hen 3-600A, which are 1-2 orders of magnitude lower than the average rates in 1 Myr old objects. The decrease in accretion rates over 10 Myr, as well as the low fraction of TW Hya association objects still accreting, points to significant disk evolution, possibly linked to planet formation. Given the multiplicity of the Hen 3-600 system and the large UV excess of TW Hya, our results show that accretion disks can be surprisingly long lived in spite of the presence of companions and significant UV ionizing flux.  相似文献   

13.
《New Astronomy Reviews》1999,43(1):67-77
There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a circumstellar disk from optical and infrared imaging and spectroscopy as well as from millimeter-wavelength interferometry. These results suggest that the disk-outflow connection found in low-mass pre-main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. We examine the observational basis for this hypothesis and consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. We then list some of the interesting questions that one could hope to address as this young field of research continues to develop.  相似文献   

14.
We present results from a survey observation of circumstellar disks around protostellar sources associated with the Taurus molecular cloud. Our result shows that the 98 GHz continuum emission tends to be weaker for embedded sources than for visible T Tauri stars, which is consistent with our previous interpretation of disk formation. Direct observations of the formation of a centrifugally supported viscous accretion disk around HL Tau is discussed.  相似文献   

15.
《New Astronomy》2007,12(4):265-270
Surface lithium abundance and rotation velocity can serve as powerful and mutually complementary diagnostics of interior structure of stars. So far, the processes responsible for the lithium depletion during pre-main sequence evolution are still poorly understood. We investigate whether a correlation exists between equivalent widths of Li (EW(Li)) and rotation period (Prot) for weak-line T Tauri stars (WTTSs). We find that rapidly rotating stars have lower EW(Li) and the fast burning of Li begins at the phase when star’s Prot evolves towards 3 days among 0.9M to 1.4M WTTSs in Taurus–Auriga. Our results support the conclusion by Piau and Turch-Chiéze about a model for lithium depletion with age of the star and by Bouvier et al. in relation to rotation evolution. The turn over of the curve for the correlation between EW(Li) and Prot is at the phase of zero-age main sequence (ZAMS). The EW(Li) decreases with decreasing Prot before the star reaches the ZAMS, while it decreases with increasing Prot (decreasing rotation velocity) for young low-mass main sequence stars. This result could be explained as an age effect of Li depletion and the rapid rotation does not inhibit Li destruction among low-mass PMS stars.  相似文献   

16.
For accretion on to neutron stars possessing weak surface magnetic fields and substantial rotation rates (corresponding to the secular instability limit), we calculate the disk and surface layer luminosities general relativistically using the Hartle & Thorne formalism, and illustrate these quantities for a set of representative neutron star equations of state. We also discuss the related problem of the angular momentum evolution of such neutron stars and give a quantitative estimate for this accretion driven change in angular momentum. Rotation always increases the disk luminosity and reduces the rate of angular momentum evolution. These effects have relevance for observations of low-mass X-ray binaries.  相似文献   

17.
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 au such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion on to the protostar occurs in ∼104-yr bursts with ̇ ∼10−5 M yr−1, separated by quiescent intervals lasting ∼105 yr where ̇ ≈10−8 M yr−1. Such bursts could lead to repeated episodes of strong mass outflow in young stellar objects. The transition to this episodic mode of accretion occurs at an early epoch ( t ≪1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum-mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at r ∼1 au. The predicted rate of low-mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1–3 au.  相似文献   

18.
This article summarizes the processes of high‐energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high‐resolution X‐ray and UV spectroscopy and modeling. Three mechanisms contribute to the highenergy emission from CTTS: 1) CTTS have active coronae similar to main‐sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X‐ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X‐ray observations of accreting CTTS. Specifically, the model explains the peculiar line‐ratios in the He‐like triplets of Ne IX and O VII. All stars require only small mass accretion rates to power the X‐ray emission. In contrast, the HAeBe HD 163296 has line ratios similar to coronal sources, indicating that neither a high density nor a strong UV‐field is present in the region of the X‐ray emission. This could be caused by a shock in its jet. Similar emission is found in the deeply absorbed CTTS DG Tau. Shock velocities between 400 and 500 km s–1 are required to explain the observed spectrum (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
A summary of our ongoing high and medium resolution optical observational program, devoted to the study of chromospheric activity of pre-main sequence stars, is reported here. The study is centered in bona-fid weak-lined T Tauri stars (WTTS) in Taurus with known rotational period, and in WTTS recently discovered by the ROSAT All-Sky Survey. It is our purpose to quantify the phenomenology of the chromospheric activity of each star determining stellar surface fluxes in the more important chromospheric activity indicators (Ca II H & K, Hβ, Hα, Ca II IRT) as well as to obtain the Li I abundance, a better determination of the stellar parameters, spectral type, and possible binarity. By using these chromospheric excess emissions we will study the flux-flux and rotation-activity relationships in order to get insights into the mechanisms which drive solar-like stellar activity in this kind of low mass pre-main sequence stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
NGC 6611 is the massive young cluster (2–3 Myr) that ionizes the Eagle Nebula. We present very deep photometric observations of the central region of NGC 6611 obtained with the Hubble Space Telescope and the following filters: ACS/WFC F775W and F850LP and NIC2 F110W and F160W, loosely equivalent to ground-based IZJH filters. This survey reaches down to   I ∼ 26 mag  . We construct the initial mass function (IMF) from  ∼1.5 M  well into the brown dwarf regime (down to  ∼0.02 M  ). We have detected 30–35 brown dwarf candidates in this sample. The low-mass IMF is combined with a higher-mass IMF constructed from the ground-based catalogue from Oliveira et al. We compare the final IMF with those of well-studied star-forming regions: we find that the IMF of NGC 6611 more closely resembles that of the low-mass star-forming region in Taurus than that of the more massive Orion Nebula Cluster. We conclude that there seems to be no severe environmental effect in the IMF due to the proximity of the massive stars in NGC 6611.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号