首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A Mixed-Integer Nonlinear Programming (MINLP) model is formulated and solved in this study to optimize environmental sustainability of flood control, drainage, and irrigation (FCDI) projects in the deltaic regions of Bangladesh. The model optimizes the value of integrated resource benefit, a dimensionless variable defined to measure the environmental sustainability based on the water, agricultural and ecological resources, with a set of project interventions being the major drivers. The resource benefits were evaluated with the help of several indicators, such as flood, navigability, salinity, waterlogging, cropping intensity, land loss and vegetation. The solution of MINLP model provided optimal values of the decision variables, which are the quantities of project interventions (e.g. length and height of dike, number of sluices and drainage inlets, lengths of drainage canals, erosion protection and afforestation works). The approach and the MINLP formulation presented in this study can be used for any real-life FCDI project improvements.  相似文献   

2.
Establishing a water‐saving planting structure is necessary for the arid, water‐deficient regions of northern China and of the world. Optimizing and adjusting a water‐saving agricultural planting structure is a typical semi‐structured, multi‐level, multi‐objective group decision‐making problem. Therefore, optimization can be best achieved with a swarm intelligence algorithm. We build an optimization model for a water‐saving planting structure with four target functions: (1) maximum total net output, (2) total grain yield, (3) ecological benefits, and (4) water productivity. The decision variable is the yearly seeded area of different crops, and its restrictions are the farmland area, the agricultural water resources, and the needs of the people and other farming‐related industries. Multiple objective particle swarm optimization (MOPSO) is an efficient optimization method, but its main shortcoming is that it can easily fall into a local optimum. Multiple objective chaos particle swarm optimization (MOCPSO) will greatly improve the searching performance of the algorithm by placing chaos technology with the advantages of ergodicity into MOPSO. When MOCPSO is used to solve the multi‐objective optimization model in the middle portion of the Heihe River basin, the results show that MOCPSO has the advantages of a high convergence speed and a tendency not to fall easily into a local optimum. After adopting a water‐saving agricultural planting structure, irrigation water would be reduced by about 7%, which would provide tangible economic, social, and ecological benefits for sustainable agricultural development.  相似文献   

3.
Risk assessment of agricultural irrigation water under interval functions   总被引:2,自引:2,他引:0  
In recent years, water shortages and unreliable water supplies have been considered as major barriers to agricultural irrigation water management in China, which are threatening human health, impairing prospects for agriculture and jeopardizing survival of ecosystems. Therefore, effective and efficient risk assessment of agricultural irrigation water management is desired. In this study, an inexact full-infinite two-stage stochastic programming (IFTSP) method is developed. It incorporates the concepts of interval-parameter programming and full-infinite programming within a two-stage stochastic programming framework. IFTSP can explicitly address uncertainties presented as crisp intervals, probability distributions and functional intervals. The developed model is then applied to Zhangweinan river basin for demonstrating its applicability. Results from the case study indicate that compromise solutions have been obtained. They provide the desired agricultural irrigation water-supply schemes, which are related to a variety of tradeoffs between conflicting economic benefits and associated penalties attributed to the violation of predefined policies. The solutions can be used for generating decision alternatives and thus help decision makers to identify desired agricultural irrigation targets with maximized system benefit and minimized system-failure risk. Decision makers can adjust the existing agricultural irrigation patterns, and coordinate the conflict interactions among economic benefit, system efficiency, and agricultural irrigation under uncertainty.  相似文献   

4.
With vast regions already experiencing water shortages, it is becoming imperative to manage sustainably the available water resources. As agriculture is by far the most important user of freshwater and the role of irrigation is projected to increase in face of climate change and increased food requirements, it is particularly important to develop simple, widely applicable models of irrigation water needs for short- and long-term water resource management. Such models should synthetically provide the key irrigation quantities (volumes, frequencies, etc.) for different irrigation schemes as a function of the main soil, crop, and climatic features, including rainfall unpredictability. Here we consider often-employed irrigation methods (e.g., surface and sprinkler irrigation systems, as well as modern micro-irrigation techniques) and describe them under a unified conceptual and theoretical framework, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. We obtain mostly analytical solutions for the stochastic steady state of soil moisture probability density function with random rainfall timing and amount, and compute water requirements as a function of climate, crop, and soil parameters. These results provide the necessary starting point for a full assessment of irrigation strategies, with reference to sustainability, productivity, and profitability, developed in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and net profit. Adv Water Resour 2011;34(2):272-81].  相似文献   

5.
llNTRODUCTIONIrrigationisimp0rtanttof00dpr0ducti0nthr0ughoutthew0rld.Irrigati0nisused0naboutl5theworld'scropland(KendalIandPimentel,l994)and5%ofthew0rld'sfoodproductionland,whichincludesrangelandandpermanentcr0pland(FAO,l998).However,irrigatedlandproducesmorethan30%ofthew0rld'sf0od(Tribe,1994),whichis2l/2timesasmuchperunitareacomparedt0n0n-irrigatedproducti0n(KendallandPimentel,1994).IntheUnitedStates,approximatelyl5theharvestedcr0plandisirrigated,butalmost40thet0talcr0pvalue…  相似文献   

6.
Planting structure influences the economic, social, and ecological benefits of crop farming as well as the use efficiency of water and arable land resources, and so crop planning (CP) benefits for agricultural sustainable development and soil resources utilization. The projection pursuit evaluation (PPE) model is put forward to solve the problem of selecting an optimizing scheme for CP by considering the indices of water‐saving and economic, social, and ecological benefits. The real‐coding‐based accelerating genetic algorithm (RAGA) is introduced to accelerate the calculation process. The model can translate multi‐indices into a single index by transforming high‐dimensional data to low‐dimensional space, which helps evaluate CP optimizing schemes. For example, the model is used to evaluate and select an optimal scheme of CP in the middle reaches of the Heihe mainstream basin in the arid area of northwest China. According to four criteria (high efficiency of resources use, economic rationality, social equity, and ecological security) 19 indices were chosen to evaluate 12 optimizing schemes of four kinds (economic‐benefit, food‐security, ecological‐benefit, and water‐saving programs) in 2006, 2020, and 2030. The result shows that, in the 3 years, the water‐saving program is always the optimized scheme in an arid region with water deficiency and fragile ecology. The evaluated results match up to the developmental conditions of crop farming in recent years. Moreover, the direction of the optimal projection could reflect the weight and orientation of indices objectively and accurately.  相似文献   

7.
In this study, an inexact stochastic optimization model (ITSOM) is developed for agricultural irrigation management with a case study in China. Functional intervals are introduced into the modeling framework to much accurately address the spatial and temporal variation of system components. According to the results of case study, the developed model shows effectiveness in dealing with functional information of system parameters, and brings no difficulty in obtaining optimal water allocation patterns. It is indicated that the surface water resource (i.e. Heshui River) has better be used as the major source, and proper exploration of groundwater can curtail the related expense and further increase the system net benefit. Among eight farms, hybrid rice farm is going to obtain the greatest amount of water than the others, while watermelon farm has the priority to get water due to its highest benefit and penalty rate. In comparison, water allocations to rapeseed and tea farms are to be minimal within the respective fluctuation ranges. Scenario analysis is also conducted to clarify the differences between ITSOM and a conventional interval two-stage stochastic programming (ITSP) model. A total of 60 scenarios are initiated respectively linking to 60 monthly ITSP models for the entire planning horizon. The results show that the optimal objective function values of all ITSP models always fall into the range of that obtained from ITSOM. As each ITSP solution can only correspond to the system condition under a certain time point, it is highly vulnerable to system variation.  相似文献   

8.
Shallow groundwater plays a key role in agro‐hydrological processes of arid areas. Groundwater often supplies a necessary part of the water requirement of crops and surrounding native vegetation, such as groundwater‐dependent ecosystems. However, the impact of water‐saving irrigation on cropland water balance, such as the contribution of shallow groundwater to field evapotranspiration, requires further investigation. Increased understanding of quantitative evaluation of field‐scale water productivity under different irrigation methods aids policy and decision‐making. In this study, high‐resolution water table depth and soil water content in field maize were monitored under conditions of flood irrigation (FI) and drip irrigation (DI), respectively. Groundwater evapotranspiration (ETg) was estimated by the combination of the water table fluctuation method and an empirical groundwater–soil–atmosphere continuum model. The results indicate that daily ETg at different growth stages varies under the two irrigation methods. Between two consecutive irrigation events of the FI site, daily ETg rate increases from zero to greater than that of the DI site. Maize under DI steadily consumes more groundwater than FI, accounting for 16.4% and 14.5% of ETa, respectively. Overall, FI recharges groundwater, whereas DI extracts water from shallow groundwater. The yield under DI increases compared with that under FI, with less ETa (526 mm) compared with FI (578 mm), and irrigation water productivity improves from 3.51 kg m?3 (FI) to 4.58 kg m?3 (DI) through reducing deep drainage and soil evaporation by DI. These results highlight the critical role of irrigation method and groundwater on crop water consumption and productivity. This study provides important information to aid the development of agricultural irrigation schemes in arid areas with shallow groundwater.  相似文献   

9.
10.
Irrigation of agricultural oases is the main water consumer in semi‐arid and arid regions of Northwestern China. The accurate estimation of evapotranspiration (ET) on the oases is extremely important for evaluating water use efficiency so as to reasonably allocate water resources, particularly in semi‐arid and arid areas. In this study, we integrated the soil moisture information into surface energy balance system (SEBS) for improving irrigated crop water consumption estimation. The new approach fed with the moderate resolution imaging spectro‐radiometer images mapped spatiotemporal ET on the oasis in the middle reach of the Heihe river. The daily ET outputs of the new approach were compared with those of the original SEBS using the eddy correlation observations, and the results demonstrate that the modified SEBS remedied the shortcoming of general overestimating ET without regard to soil water stress. Meanwhile, the crop planting structure and leaf area index spatiotemporal distribution in the studied region were derived from the high‐resolution Chinese satellite HJ‐1/CCD images for helping analyse the pattern of the monthly ET (ETmonthly). The results show that the spatiotemporal variation of ETmonthly is closely related to artificial irrigation and crop growth. Further evaluation of current irrigation water use efficiency was conducted on both irrigation district scale and the whole middle reach of the Heihe river. The results reveal that the average fraction of consumed water on irrigation district scale is 57% in 2012. The current irrigation water system is irrational because only 52% of the total irrigated amount was used to fulfil plant ET requirement and the rest of the irrigation water recharged into groundwater in the oasis in 2012. However, in view of the whole middle reach of the Heihe river, the irrigation water use efficiency could reach to 66% in 2012. But pumping groundwater for reused irrigation wastes mostly energy instead of water. An improved irrigation water allocation system according to actual ET requirement is needed to increase irrigation efficiency per cubic meter water resource in an effort to save both water and energy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Soil erosion plays an important role in plant colonization of semi‐arid degraded areas. In this study, we aimed at deepening our knowledge of the mechanisms that control plant colonization on semi‐arid eroded slopes in east Spain by (i) determining topographic thresholds for plant colonization, (ii) identifying the soil properties limiting plant establishment and (iii) assessing whether colonizing species have specific plant traits to cope with these limitations. Slope angle and aspect were surrogates of erosion rate and water availability, respectively. Since soil erosion and water availability can limit plant establishment and both can interact in the landscape, we analysed variations in colonization success (vegetation cover and species number) with slope angle on 156 slopes, as a function of slope aspect. After determining slope angle thresholds for plant colonization, soil was sampled near the threshold values for soil analysis [nitrogen, phosphorous, calcium carbonate (CaCO3), water holding capacity]. Plant traits expressing the plant colonizing capacity were analysed both in the pool of species colonizing the steep slopes just below the threshold and in the pool of species inhabiting gentler slopes and absent from the slopes just below the threshold. Results show that the slope angle threshold for plant colonization decreased from north to south. For the vegetation cover, threshold values were 63°, 50°, 46°, 41° for the north, east, west and south slope aspect classes, respectively, and 65°, 53°, 49° and 45° for the species richness and the same aspect classes. No differences existed in soil properties at slope angle threshold values among slope aspects and between slope positions (just below and above the threshold) within slope aspect classes. This suggests that variations between slope aspect classes in the slope angle threshold result from differences in the colonizing capacity of plants which is controlled by water availability. Long‐distance dispersal and mucilage production were preferably associated with the pool of colonizing species. These results are discussed in the perspective of a more efficient ecological restoration of degraded semi‐arid ecosystems where soil erosion acts as an ecological filter for plant establishment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Accurate estimation of groundwater recharge (GR) and evapotranspiration (ET) are essential for sustainable management of groundwater resources, especially in arid and semi-arid regions. In the Manas River Basin (MRB), water shortage is the main factor restricting sustainable development of irrigated agriculture, which relies heavily on groundwater. Film-mulched drip irrigation significantly changes the pattern and dominant processes of water flow in the unsaturated zone, which increases the difficulty of GR and ET estimation. To better estimate GR and ET under film-mulched drip irrigation in the MRB, bromide tracer tests and soil lithologic investigation were conducted at 12 representative sites. A one-dimensional variably saturated flow model (HYDRUS-1D) was calibrated at each site using soil evaporation data inferred from the bromide tracer tests. The results showed that average annual soil evaporation in uncultivated lands calculated from bromide trace tests was 25.55 mm. The annual GR ranged from 5.5 to 37.0 mm under film-mulched drip irrigation. The annual ET ranged from 507.0 to 747.1 mm, with soil evaporation between 35.7 and 117.0 mm and transpiration between 460.9 and 642.3 mm. Soil evaporation represented 7% to 16% of the total ET and more than 70% of precipitation and irrigation water was used by cotton plants. Spatial variations of soil lithology, water table depth and initial soil water content led to the spatial differences of GR and ET in the MRB. Our study indicated that bromide tracer tests are useful for inferring ET in the arid and semi-arid oases. The combination of bromide tracer tests and HYDRUS-1D enhances reliability for estimation of GR and ET under film-mulched drip irrigation in the MRB and shows promise for other similar arid inland basins around the world.  相似文献   

13.
Abstract

Knowledge of the variability of soil water content (SWC) in space and time plays a key role in hydrological and climatic modelling. However, limited attention has been given to arid regions. The focus of this study was to investigate the spatio-temporal variability of surface soil (0–6 cm) water content and to identify its controlling factors in a region of the Gobi Desert (40 km2). The standard deviation of SWC decreased logarithmically as mean water content decreased, and the coefficient of variation of SWC exhibited a convex upward pattern. The spatial variability of SWC also increased with the size of the investigated area. The spatial dependence of SWC changed over time, with stronger patterns of spatial organization in drier and wetter conditions of soil wetness and stochastic patterns in moderate soil water conditions. The dominant factors regulating the variability of SWC changed from combinations of soil and topographical properties (bulk density, clay content and relative elevation) in wet conditions to combinations of soil and vegetation properties (bulk density, clay content and shrub coverage) in dry conditions. This study has important implications for the assessment of soil quality and the sustainability of land management in arid regions.  相似文献   

14.
Climate change is expected to increase temperatures and lower rainfall in Mediterranean regions; however, there is a great degree of uncertainty as to the amount of change. This limits the prediction capacity of models to quantify impacts on water resources, vegetation productivity and erosion. This work circumvents this problem by analysing the sensitivity of these variables to varying degrees of temperature change (increased by up to 6·4 °C), rainfall (reduced by up to 40%) and atmospheric CO2 concentrations (increased by up to 100%). The SWAT watershed model was applied to 18 large watersheds in two contrasting regions of Portugal, one humid and one semi‐arid; incremental changes to climate variables were simulated using a stochastic weather generator. The main results indicate that water runoff, particularly subsurface runoff, is highly sensitive to these climate change trends (down by 80%). The biomass growth of most species showed a declining trend (wheat down by 40%), due to the negative impacts of increasing temperatures, dampened by higher CO2 concentrations. Mediterranean species, however, showed a positive response to milder degrees of climate change. Changes to erosion depended on the interactions between the decline in surface runoff (driving erosion rates downward) and biomass growth (driving erosion rates upward). For the milder rainfall changes, soil erosion showed a significant increasing trend in wheat fields (up to 150% in the humid watersheds), well above the recovery capacity of the soil. Overall, the results indicate a shift of the humid watersheds to acquire semi‐arid characteristics, such as more irregular river flows and increasingly marginal conditions for agricultural production. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Increasing water demands, higher standards of living, depletion of resources of acceptable quality and excessive water pollution due to agricultural and industrial expansions have caused intense social and political predicaments, and conflicting issues among water consumers. The available techniques commonly used in reservoir optimization/operation do not consider interaction, behavior and preferences of water users, reservoir operator and their associated modeling procedures, within the stochastic modeling framework. In this paper, game theory is used to present the associated conflicts among different consumers due to limited water. Considering the game theory fundamentals, the Stochastic Dynamic Nash Game with perfect information (PSDNG) model is developed, which assumes that the decision maker has sufficient (perfect) information regarding the associated randomness of reservoir operation parameters. The simulated annealing approach (SA) is applied as a part of the proposed stochastic framework, which makes the PSDNG solution conceivable. As a case study, the proposed model is applied to the Zayandeh-Rud river basin in Iran with conflicting demands. The results are compared with alternative reservoir operation models, i.e., Bayesian stochastic dynamic programming (BSDP), sequential genetic algorithm (SGA) and classical dynamic programming regression (DPR). Results show that the proposed model has the ability to generate reservoir operating policies, considering interactions of water users, reservoir operator and their preferences.  相似文献   

16.
The need for irrigation water in arid and semi-arid regions is mostly supplied by groundwater. Furthermore, the agricultural development in these areas is not generally based on a comprehensive plan, which can cause aquifers depletion. On the other hand, to properly manage an aquifer and to have an optimal crop plan, the stochastic nature of the different parameters of a groundwater system such as groundwater recharge and water demands should be taken into consideration. In this paper, we develop an explicit stochastic optimization model for Firouzabad aquifer in Iran. This formulation is based on the first and second moment analysis for groundwater head which has been initially proposed for surface water resources management by Fletcher and Ponnambalam. We extend the model to create a new random withdrawal policy for conjunctive use setting in which the randomness in available precipitation is taken into account. The interesting point is that the model provides the respective probabilities of shortage and surplus without imposing the extra decision variables into the optimization model. A genetic-based algorithm is used to solve the stochastic nonlinear and non-convex formulation. The outcome results indicate that the current crop pattern should be changed, that is, the allocated areas of some crops have to be meaningfully reduced. Finally, to validate our model efficiency, we demonstrate that how much close the statistical characteristics obtained from the optimization model are to those estimated from the Monte Carlo simulation. Furthermore, the optimal benefits obtained using the proposed optimization model are as suitable as the benefits achieved using the corresponding Monte Carlo-based optimization model.  相似文献   

17.
Increases in human water consumption (HWC) and consequent degradation of the ecological environment are common in arid regions. Understanding the mechanisms behind these processes is important for sustainable development. Analyses of changes in HWC between alternating wet and dry periods are carried out in four arid inland basins in Central Asia and China (Syr Darya, Tarim, Heihe and Shulehe river basins). Based on runoff records, the presence of an asymmetric HWC response is proved (p < 0.01), with an increase in HWC during wet periods and a muted decrease during subsequent dry periods. This behaviour is interpreted by invoking theories from behavioural economics at the individual and community levels. A simple model based on these theories is shown to be able to reproduce the observed dynamics and is used to discuss the importance of strengthening institutional factors for water sustainability.  相似文献   

18.
Water resources development and exploitation are critical for a viable and sustainable modern human society. Unfortunately, however, there is a considerable water storage depletion and environmental degradation in especially (semi)‐arid river basins due to the forces of population growth, urbanization, industrialization and intensive agricultural irrigation. Addressing water storage depletion is not only a question of research, but is very much a question of developing appropriate countermeasures to preserve valuable/fragile ecological systems. As one such effort, this study analyzes the hydrology and storage in Baiyangdian Lake as affected by water resources development and exploitation in the Baiyangdian Lake Catchment of Northern China. Three models, WetSpass (Water and Energy Transfer between Soil, Plants and the Atmosphere under quasi‐Steady State), WATBUD (Water Budget) and MODFLOW (USGS three‐dimensional finite‐difference groundwater flow model) were used in combination to simulate the hydrogeologic conditions in the lake catchment for 1956–2008. The model‐calibrated values are in good agreement with the measured values, with R2 > 0·8 and RMSE < 10% of measured values. Runoff, the primary source of water for the lake storage, has steadily declined due mainly to multiple dam construction and reservoir impoundments in the headwater valleys and rivers in the catchment. In addition to dwindling runoff, groundwater levels have declined considerably due to over‐abstraction, mainly for agricultural irrigation. Additionally, evaporation or evapotranspiration is increasing in the lake catchment due to rising temperatures. The worsening hydrological conditions, amid the harsh semi‐arid climate, have resulted in considerable depletion of the storage and hydrology of Baiyangdian Lake. Sustainable countermeasures like agricultural water‐saving and infusion of external water (e.g., via by the South–North Water Transfer Project) could be a viable option for preserving not only the hydrology of the lake catchment, but also storage in Baiyangdian Lake. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Forestation has been encouraged worldwide due to increasing demand for forest products, and for its ecological benefits such as soil erosion control and sediment reduction. However, forestation reduces runoff, thus potentially aggravating water shortages in arid regions. In order to quantitatively estimate the possible water yield reductions caused by forestation in an arid region, a small watershed (the Pailugou watershed) in the Qilian Mountains of northwest China was chosen as a study area. The responses of hydrological dynamics to different forestation scenarios in the study area were simulated using the TOPOG model. The results showed that forestation could lead to a complete loss of runoff at the site scale. At the watershed scale, a 10% increase in forest coverage led to a runoff reduction of 25.6 mm, equivalent to 13% of the runoff in the un-forested watershed. However, due to climatological and topographical constraints, the potential forest distribution occupied only 46.3% of the watershed area, and runoff reduction was estimated to reach a maximum of 60% when the forest cover ratio increased from 0.41% to 46.1%. Actual forest coverage is 36% in the study area, thus the water yield will be reduced with any further increase in forest area. Our study suggested that a trade-off between the numerous benefits of forest coverage increase and its negative impact on water yield should be carefully addressed in arid regions with inherently severe water-shortage.  相似文献   

20.
A method for evaluating the effect of non-uniform and deficient irrigation is presented. The method is based on a deterministic mathematical model that evaluates the effect of the soil water fluctuation in the root zone during the irrigation season on the crop yield.The problem is viewed in conjunction with the management strategy of irrigation water application under the assumption that only shortage of water causes a reduction in yield. The parameters describing the deficit zone of the application pattern, the soil-crop-atmosphere system and the crop response are incorporated in the model. Crop yield predictions are made through the relative water use and a multiplicative and an additive yield functions.A numerical example is used to illustrate the use of the model in sprinkler irrigation practice. The results agree well with those derived from the mathematical model evaluating the irrigation regime and the yield on each square of the irrigated area separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号