首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From ACH tomographic models to absolute velocity models   总被引:2,自引:0,他引:2  
The ACH method, a widely used tomographic inverse method, is characterized by the use of relative residuals in order to avoid possible biases coming from outside the target volume. The ACH method thus does not really retrieve the 3-D structure of the target volume, but instead leads to velocity contrasts relative to the layer average of the velocity, this average value remaining unknown ( Aki et al. 1977 ). Two artefacts derive from this particularity: (1) velocity contrasts are known only in the horizontal direction and it is not possible, in a strict mathematical sense, to estimate the contrasts in the vertical direction with ACH alone; (2) negative anomalies are often interpreted as low velocities, whereas negative anomalies may correspond to high velocities if the average value of the corresponding layer is sufficiently high. The converse is true of positive anomalies. We show with synthetic data how these artefacts can affect the interpretation of tomographic images. We propose to correct the artefacts by reintroducing the 1-D regional average model, and show in synthetic experiments how effective this correction can be.
  The application of this procedure to data recorded in the Kunlun region shows that the retrieval of the absolute values of the 3-D velocity model is helpful for interpreting the tomographic images and better defining which features are anomalous.  相似文献   

2.
Wide-angle seismic velocities in heterogeneous crust   总被引:5,自引:0,他引:5  
Seismic velocities measured by wide-angle surveys are commonly used to constrain material composition in the deep crust. Therefore, it is important to understand how these velocities are affected by the presence of multiscale heterogeneities. The effects may be characterised by the scale of the heterogeneity relative to the dominant seismic wavelength (λ); what is clear is that heterogeneities of all scales and strengths bias wide-angle velocities to some degree. Waveform modelling was used to investigate the apparent wide-angle P -wave velocities of different heterogeneous lower crusts. A constant composition (50 per cent felsic and 50 per cent ultramafic) was formed into a variety of 1- and 2-D heterogeneous arrangements and the resulting wide-angle seismic velocity was estimated. Elastic, 1-D models produced the largest velocity shift relative to the true average velocity of the medium (which is the velocity of an isotropic mixture of the two components). Thick (width > λ) horizontal layers, as a result of Fermat's Principle, provided the largest increase in velocity; thin (width ≪λ) vertical layers produced the largest decrease in velocity. Acoustic 2-D algorithms were shown to be inadequate for modelling the kinematics of waves in bodies with multiscale heterogeneities. Elastic, 2-D modelling found velocity shifts (both positive and negative) that were of a smaller magnitude than those produced by 1-D models. The key to the magnitude of the velocity shift appears to be the connectivity of the fast (and/or slow) components. Thus, the models with the highest apparent levels of connectivity between the fast phases, the 1-D layers, produced the highest-magnitude velocity shifts. To understand the relationship between measured seismic velocities and petrology in the deep crust it is clear that high-resolution structural information (which describes such connectivity) must be included in any modelling.  相似文献   

3.
The Massif Central, the most significant geomorphological unit of the Hercynian belt in France, is characterized by graben structures which are part of the European Cenozoic Rift System (ECRIS) and also by distinct volcanic episodes, the most recent dated at 20 Ma to 4000 years BP. In order to study the lithosphere-asthenosphere system beneath this volcanic area, we performed a teleseismic field experiment.
During a six-month period, a joint French-German team operated a network of 79 mobile short-period seismic stations in addition to the 14 permanent stations. Inversion of P -wave traveltime residuals of teleseismic events recorded by this dense array yielded a detailed image of the 3-D velocity structure beneath the Massif Central down to 180 km depth. The upper 60 km of the lithosphere displays strong lateral heterogeneities and shows a remarkable correlation between the volcanic provinces and the negative velocity perturbations. The 3-D model reveals two channels of low velocities, interpreted as the remaining thermal signature of magma ascent following large lithospheric fractures inherited from Hercynian time and reactivated during Oligocene times. The teleseismic inversion model yields no indication of a low-velocity zone in the mantle associated with the graben structures proper. The observation of smaller velocity perturbations and a change in the shape of the velocity pattern in the 60–100 km depth range indicates a smooth transition from the lithosphere to the asthenosphere, thus giving an idea of the lithosphere thickness. A broad volume of low velocities having a diameter of about 200 km from 100 km depth to the bottom of the model is present beneath the Massif Central. This body is likely to be the source responsible for the volcanism. It could be interpreted as the top of a plume-type structure which is now in its cooling phase.  相似文献   

4.
Summary. A new method of moment tensor inversion is developed, which combines surface wave data and P -wave first motion data in a linear programming approach. Once surface wave spectra and first motion data are given, the method automatically obtains the solution that satisfies first motion data and minimizes the L1 norm of the surface wave spectra. We show the results of eight events in which the method works and is stable even for shallow events. We also show one event in which surface wave data and P -wave first motion data seem to be incompatible. In such cases, our method does not converge or converges to a solution which has a large minor (second) double couple component. It is an advantage that the method can determine the compatibility of two data sets without trial and error.
Laterally heterogeneous phase velocity corrections are used to obtain spectra at the source. The method is also applied to invert moment tensors of eight events in two recent three-dimensional (3-D) upper mantle structures. In both 3-D models, variances of spectra are smaller than those in a laterally homogeneous model at 256 s. Statistical tests show that those reductions are significant at a high confidence level for five events out of eight examined. For three events, we examined those reductions at shorter periods, 197 and 151 s. The reduction of variances is comparable to the results at 256 s and is again statistically significant at a high confidence level. Orientation of fault planes does not change very much by incorporation of lateral variations of phase velocity or by doing inversions at different periods. This is mainly because of the constraints from P -wave first motion data. Scatter of phase spectra at shorter periods, especially at 151 s, is great and suggests that surface wave ray paths deviate from great circle paths substantially and these effects cannot be ignored.  相似文献   

5.
When full 3-D modelling is too costly or cumbersome, computations of 3-D elastic wave propagation in laterally heterogeneous, multilayered 2-D geological structures may enhance considerably our ability to predict strong ground motion for seismological and engineering purposes. Towards this goal, we extend the method based on the combination of the thin-layer finite-element and boundary-element methods (TLFE-BEM) and calculate windowend f - k spectra of the 3-D wavefield. The windowed f - k spectra are spatially localized spectra from which the local properties of the wavefield can be extracted. The TLFE-BEM is particularly suited for calculating the complete wavefield where surface waves are dominant in multilayered media. The computations are performed in the frequency domain, providing the f - k spectra directly. From the results for the 3-D wavefield excited by a point source in a 2-D multilayered, sloped structure, it can be said that the phase velocity of the fundamental-mode Rayleigh wave in a laterally heterogeneous multilayered medium, estimated from the windowed f - k spectra, varies with the location of the point source. For the model calculated in this article, the phase velocity varies between the value for the flat layered structure of the thick-layer side and that for the structure just under the centre of the window. The exact subsurface structure just under the centre of an array in a laterally heterogeneous medium cannot be obtained if we use the f - k spectral analysis assuming a flat layered structure.  相似文献   

6.
Five broad-band seismic stations were operated in the northwest fjords area of Iceland from 1996 to 1998 as part of the Iceland Hotspot project. The structures of the upper 35  km or so beneath these stations were determined by the modelling and joint inversion of receiver functions and regional surface wave phase velocities. More than 40 teleseismic events and a few regional events containing high-quality surface wave trains were used. Although the middle period passband of the seismograms is corrupted by oceanic microseismic noise, which hinders the interpretation of structural details, the inversions reveal the overall features. Many profiles obtained exhibit large velocity gradients in the upper 5  km or so, smaller zero gradients below this, and, at ~23  km depth, a zone 2–4  km thick with higher velocity gradients. The two shallower intervals are fairly consistent with the 'upper' and 'lower' crust, defined by Flovenz (1980 ). The deep zone of enhanced velocity gradient seems to correspond to the sharp reflector first reported by Bjarnason et al . (1993 ) and identified by them as the 'Moho'. However, this type of structure is not ubiquitous beneath the northwest fjords area. The distinctiveness of the three intervals is variable, and in some cases a structure with velocity gradient increasing smoothly with depth is observed. We term these two end-members structures of the first and second types respectively. Structures of the second type correlate with older areas. Substantial variation in fundamental structure is to be expected in Iceland because of the great geological heterogeneity there.  相似文献   

7.
A general tomographic technique is designed in order (i) to operate in anisotropic media; (ii) to account for the uneven seismic sampling and (iii) to handle massive data sets in a reasonable computing time. One modus operandi to compute a 3-D body wave velocity model relies on surface wave phase velocity measurements. An intermediate step, shared by other approaches, consists in translating, for each period of a given mode branch, the phase velocities integrated along ray paths into local velocity perturbations. To this end, we develop a method, which accounts for the azimuthal anisotropy in its comprehensive form. The weakly non-linear forward problem allows to use a conjugate gradient optimization. The Earth's surface is regularly discretized and the partial derivatives are assigned to the individual grid points. Possible lack of lateral resolution, due to the inescapable uneven ray path coverage, is taken into account through the a priori covariances on parameters with laterally variable correlation lengths. This method allows to efficiently separate the 2ψ and the 4ψ anisotropic effects from the isotropic perturbations. Fundamental mode and overtone phase velocity maps, derived with real Rayleigh wave data sets, are presented and compared with previous maps. The isotropic models concur well with the results of Trampert & Woodhouse. Large 4ψ heterogeneities are located in the tectonically active regions and over the continental lithospheres such as North America, Antarctica or Australia. At various periods, a significant 4ψ signature is correlated with the Hawaii hotspot track. Finally, concurring with the conclusions of Trampert & Woodhouse, our phase velocity maps show that Rayleigh wave data sets do need both 2ψ and 4ψ anisotropic terms.  相似文献   

8.
An inversion method is presented for the reconstruction of interface geometry between two or more crustal layers from teleseismic traveltime residuals. The method is applied to 2-D models consisting of continuous interfaces separating constant-velocity layers. The forward problem of determining ray paths and traveltimes between incident wave fronts below the structure and receivers located on the Earth's surface is solved by an efficient and robust shooting method. A conjugate gradient method is employed to solve the inverse problem of minimizing a least-squares type objective function based on the difference between observed and calculated traveltimes. Teleseismic data do not accurately constrain average vertical structure, so a priori information in the form of layer velocities and average layer thicknesses is required. Synthetic tests show that the method can be used to reconstruct interface geometry accurately, even in the presence of data noise. Tests also show that, if layer velocities and initial interface positions are poorly chosen, lateral structure is still recoverable. The inversion method was applied to previously published teleseismic data recorded by an in-line array of portable seismographs that traversed the northern margin of the Musgrave Block, central Australia. The solution based on interface parametrization is consistent with models given by other studies that used the same data but different methods, most notably the standard tomographic approach that inverts for velocity rather than interface structure.  相似文献   

9.
On crustal corrections in surface wave tomography   总被引:1,自引:0,他引:1  
Mantle models from surface waves rely on good crustal corrections. We investigated how far ray theoretical and finite frequency approximations can predict crustal corrections for fundamental mode surface waves. Using a spectral element method, we calculated synthetic seismograms in transversely isotropic PREM and in the 3-D crustal model Crust2.0 on top of PREM, and measured the corresponding time-shifts as a function of period. We then applied phase corrections to the PREM seismograms using ray theory and finite frequency theory with exact local phase velocity perturbations from Crust2.0 and looked at the residual time-shifts. After crustal corrections, residuals fall within the uncertainty of measured phase velocities for periods longer than 60 and 80 s for Rayleigh and Love waves, respectively. Rayleigh and Love waves are affected in a highly non-linear way by the crustal type. Oceanic crust affects Love waves stronger, while Rayleigh waves change most in continental crust. As a consequence, we find that the imperfect crustal corrections could have a large impact on our inferences of radial anisotropy. If we want to map anisotropy correctly, we should invert simultaneously for mantle and crust. The latter can only be achieved by using perturbation theory from a good 3-D starting model, or implementing full non-linearity from a 1-D starting model.  相似文献   

10.
We propose a vertical array analysis method that decomposes complex seismograms into body and surface wave time histories by using a velocity structure at the vertical array site. We assume that the vertical array records are the sum of vertically incident plane P and S waves, and laterally incident Love and Rayleigh waves. Each phase at the surface is related to that at a certain depth by the transfer function in the frequency domain; the transfer function is obtained by Haskell's matrix method, assuming a 1-D velocity structure. Decomposed P , S and surface waves at the surface are estimated from the vertical array records and the transfer functions by using a least-squares method in the frequency domain; their time histories are obtained by the inverse Fourier transform. We carried out numerical tests of this method based on synthetic vertical array records consisting of vertically incident plane P and S waves and laterally incident plane Love and Rayleigh waves. Perfect results of the decomposed P , S , Love and Rayleigh waves were obtained for synthetic records without noise. A test of the synthetic records in which a small amount of white noise was added yielded a reasonable result for the decomposed P , S and surface waves. We applied this method to real vertical array records from the Ashigara valley, a moderate-sized sedimentary valley. The array records from two earthquakes occurring at depths of 123 and 148 km near the array (epicentral distance of about 31 km) exhibited long-duration later phases. The analysis showed that duration of the decomposed S waves was a few seconds and that the decomposed surface waves appeared a few seconds after the direct S -wave arrival and had very long duration. This result indicated that the long-duration later phases were generated not by multireflected S waves, but by basin-induced surface waves.  相似文献   

11.
南极沿167°E子午线横贯南极山脉岩石圈速度结构   总被引:3,自引:0,他引:3       下载免费PDF全文
束沛镒  焦丞民 《极地研究》1999,11(3):221-227
依据沿大圆弧穿越南极点和斯科特站两地震台的地震瑞利面波波形资料,计算了两台之间的相速度频散,通过反演计算,获得了台间地下200km 岩石圈剪切波速度细结构。结果表明,横贯南极山脉地壳厚度约为45km ,55~75km 之间存在明显低速带,它预示着这一深度有熔融的岩浆存在。  相似文献   

12.
We infer the lithospheric structure in eastern Turkey using teleseismic and regional events recorded by 29 broad-band stations from the Eastern Turkey Seismic Experiment (ETSE). We combine the surface wave group velocities (Rayleigh and Love) with telesesimic receiver functions to jointly invert for the S -wave velocity structure, Moho depth and mantle-lid (lithospheric mantle) thickness. We also estimated the transverse anisotropy due to Love and Rayleigh velocity discrepancies. We found anomalously low shear wave velocities underneath the Anatolian Plateau. Average crustal thickness is 36 km in the Arabian Plate, 44 km in Anatolian Block and 48 km in the Anatolian Plateau. We observe very low shear wave velocities at the crustal portion (30–38 km) of the northeastern part of the Anatolian Plateau. The lithospheric mantle thickness is either not thick enough to resolve it or it is completely removed underneath the Anatolian Plateau. The shear velocities and anisotropy down to 100 km depth suggest that the average lithosphere–asthenosphere boundary in the Arabian Plate is about 90 and 70 km in Anatolian block. Adding the surface waves to the receiver functions is necessary to constrain the trade-off between velocity and the thickness. We find slower velocities than with the receiver function data alone. The study reveals three different lithospheric structures in eastern Turkey: the Anatolian plateau (east of Karliova Triple Junction), the Anatolian block and the northernmost portion of the Arabian plate. The boundary of lithospheric structure differences coincides with the major tectonic boundaries.  相似文献   

13.
It is well established that the Earth's uppermost mantle is anisotropic, but there are no clear observations of anisotropy in the deeper parts of the mantle. Surface waves are well suited to observe anisotropy since they carry information about both radial and azimuthal anisotropy. Fundamental mode surface waves, for commonly used periods up to 200 s, are sensitive to structure in the first few hundred kilometres, and therefore, do not provide information on anisotropy below. Higher mode surface waves have sensitivities that extend to and beyond the transition zone, and should thus give insight about azimuthal anisotropy at greater depths. We have measured higher mode Love and Rayleigh phase velocities using a model space search approach, which provides us with consistent relative uncertainties from measurement to measurement and from mode to mode. From these phase velocity measurements, we constructed global anisotropic phase velocity maps. Prior to inversion, we determine the optimum relative weighting for anisotropy. We present global azimuthal phase velocity maps for higher mode Rayleigh waves (up to the sixth higher mode) and Love waves (up to the fifth higher mode) with corresponding average model uncertainties. The anisotropy we derive is robust within the uncertainties for all modes. Given the ray theoretical sensitivity kernels of Rayleigh and Love wave modes, the source of anisotropy is complex, but mainly located in the asthenosphere and deeper. Our models show a good correspondence with other studies for the fundamental mode, but we have been able to achieve higher resolution.  相似文献   

14.
Velocity estimation remains one of the main problems when imaging the subsurface with seismic reflection data. Traveltime inversion enables us to obtain large-scale structures of the velocity field and the position of seismic reflectors. However, as the media currently under study are becoming more and more complex, we need to know the finer-scale structures. The problem is that below a certain range of velocity heterogeneities, deterministic methods become difficult to use, so we turn to a probabilistic approach. With this in view, we characterize the velocity field as a random field defined by its first and second statistical moments. Usually, a seismic random medium is defined as a homogeneous velocity background perturbed by a small random field that is assumed to be stationary. Thus, we make a link between such a random velocity medium (together with a simple reflector) and seismic reflection traveltimes. Assuming that the traveltimes are ergodic, we use 2-D seismic reflection geometry to study the decrease in the statistical traveltime fluctuations as a function of the offset (the source–receiver distance). Our formulae are based on the Rytov approximation and the parabolic approximation for acoustic waves. The validity and the limits are established for both of these approximations in statistically anisotropic random media. Finally, theoretical inversion procedures are developed for the horizontal correlation structure of the velocity heterogeneities for the simplest case of a horizontal reflector. Synthetic seismograms are then computed (on particular realizations of random media) by simulating scalar wave propagation via finite difference algorithms. There is good agreement between the theoretical and experimental results.  相似文献   

15.
In this study, we test the adequacy of 2-D sensitivity kernels for fundamental-mode Rayleigh waves based on the single-scattering (Born) approximation to account for the effects of heterogeneous structure on the wavefield in a regional surface wave study. The calculated phase and amplitude data using the 2-D sensitivity kernels are compared to phase and amplitude data obtained from seismic waveforms synthesized by the pseudo-spectral method for plane Rayleigh waves propagating through heterogeneous structure. We find that the kernels can accurately predict the perturbation of the wavefield even when the size of anomaly is larger than one wavelength. The only exception is a systematic bias in the amplitude within the anomaly itself due to a site response.
An inversion method of surface wave tomography based on the sensitivity kernels is developed and applied to synthesized data obtained from a numerical simulation modelling Rayleigh wave propagation over checkerboard structure. By comparing recovered images to input structure, we illustrate that the method can almost completely recover anomalies within an array of stations when the size of the anomalies is larger than or close to one wavelength of the surface waves. Surface wave amplitude contains important information about Earth structure and should be inverted together with phase data in surface wave tomography.  相似文献   

16.
Mikumo & Aki attempted to determine phase velocities at a single site using seismometers and strainmeters oriented in the same horizontal direction. For the five earthquakes studied, they found a good agreement with the theoretically predicted velocities for body waves and, in some cases, for surface waves. Rodgers showed that for long periods (> 100 s), horizontal acceleration and tilt cannot easily be separated instrumentally, and King et al. have shown that near-station heterogeneities may result in azimuthal effects not considered by Mikumo & Aki. We rederive the method for single-site phase velocity determinations taking into account both of these effects. Our method uses strain and vertical acceleration measurements because the vertical acceleration record is neither affected by site effects nor contaminated by tilt.  相似文献   

17.
18.
Array analysis is performed on surface waves recorded in the French Alps using a small‐aperture (25 km) temporary array of six broad‐band stations. The analysis shows that both Rayleigh and Love waves deviate relative to the great‐circle path. The deviations are particularly strong, up to 30°, between 20 and 40 s period. To interpret these observations, we first study the effect of large‐scale structures using ray tracing in a smooth, laterally heterogeneous model of the Earth. Second, we evaluate the local effect by considering a model for the French Alps including strong lateral heterogeneities around the array that were not taken into account in the ray tracing. By combining these two possible causes of the observed deviations, we propose an explanation for the general trend in the observed deviations. Finally, we show that by taking into account azimuthal deviations, phase velocities measured at a regional scale can be significantly improved.  相似文献   

19.
In case of a complex overburden, the seismic data can be greatly improved by applying a full wavefield redatuming procedure. In practice, the application of the redatuming process to 3-D data acquired by conventional acquisition designs is non-trivial. Because of the large amount of data involved in the 3-D redatuming process and because of the sparseness of these data, it is impossible to apply conventional wave equation datuming directly.
We present a data mapping approach to redatuming (DMR), which follows the concept of Kirchhoff data mapping. A simplified background medium where no ray bending occurs is assumed for the medium below the datum in order to map an input data set referenced to the acquisition surface to an output data set referenced to the new datum level. The DMR method can be interpreted as a simplified version of the Kirchhoff summation redatuming (KSR) method, where one of the 2-D integrals over the acquisition coordinates can be solved analytically. Consequently, in this approach fewer traces are involved in the computation of one time sample (a 2-D integral is computed instead of a 4-D integral), which makes it particularly attractive for the application to 3-D data sets.
In this paper the theory underlying data mapping redatuming is discussed and the proposed approach is tested on fully sampled 2-D and 3-D synthetic data from models with both simple and complex velocity distributions in the subsurface.
The tests clearly show that the objective of producing results that are comparable to the conventional KSR has been achieved. The redatumed traces are dynamically and kinematically correct. Furthermore, these results confirm that the dependency of the new approach on the assumed medium below the datum level is, indeed, weak because the assumption of a velocity medium where no ray bending occurs is already sufficient to produce correct results.  相似文献   

20.
Simulation of SH- and P-SV-wave propagation in fault zones   总被引:3,自引:0,他引:3  
Seismic fault-zone (FZ) trapped waves provide a potentially high-resolution means for investigating FZ and earthquake properties. Seismic waves emitted within and travelling along low-velocity FZ layers may propagate many kilometres within the low-velocity structure associated with the fault. Waveform observation of FZ trapped waves can be modelled in terms of FZ layer velocities, thicknesses and attenuation coefficients. This can greatly improve the resolution of imaged FZ structure and microearthquake locations. At present, broad-band theoretical seismograms are restricted to plane-parallel layers of uniform properties. However, it is not clear how realistic these models are compared with actual fault structures which could, for example, flare outwards near the surface, have irregular boundaries, interior heterogeneities, etc. To address these interpretational uncertainties, we perform finite-difference simulations for irregular FZ geometries and non-uniform material properties within the layers. The accuracy of the numerical solutions are verified by comparison with the analytical solution of Ben-Zion & Aki (1990) for plane-parallel structures. Our main findings are: (1) FZs can widen at the ctustal surface only slightly modifying the trapped waves; (2) velocity variations with depth destroy trapped wave propagation at all wavelengths; (3) FZ trapped waves can be obscured by the presence of a low-velocity surface layer; (4) models with short-scale random structures suggest that trapped waves average out irregular FZ geometries, and hence can be effectively modelled by average-property plane-layered media for the observed range of wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号