首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the foreland regions of the Western Arunachal Himalaya (WAH), geological studies along the Kameng river (between Tipi village and the Himalayan Frontal Thrust (HFT)) reveal four levels of unpaired terraces and a paired terrace. In WAH, wrench deformation of HFT zone resulted in a SE propagation of the Balipara anticline and it is suggested that the Mikir high basement controls its orientation. Ages of terrace surfaces from Siwaliks suggest that since the Late Pleistocene, Kameng River migrated at a rate varying between ∼7.5 cm/yr in upper reaches and ∼13.5 cm/yr towards northeast due to HFT related uplift. In the Brahmaputra plains, luminescence ages of abandoned paleochannel deposits suggest eastward shifting of the Kameng river at an average rate of ∼1 m/yr. Field evidences between Bhalukpong and Tipi villages show Pliocene strath and Quaternary terrace surfaces, displaced by faults that do not correspond to the mapped faults in the foreland region. We interpret them as out-of-sequence thrusts (OOSTs). This is the first such report of OOST in the NE Himalaya. Presence of active OOST is inferred by similar age (∼1 ka) and differing incision rates of the surface of same terrace (T2b) in adjacent locations. This suggests that OOSTs in the western Arunachal Siwalik are <1 ka. Average slip rate and horizontal shortening rate on OOST during the Holocene, are calculated as ∼12 mm/yr and 7 mm/yr respectively. Thus any estimation of Holocene shortening in the Siwalik therefore, needs to incorporate slip along the OOSTs given that it accommodates a significant amount of N-S compression of the Himalayan fold-and-thrust belt. The reason for OOST in the WAH Siwalik foreland is discussed in terms of the critical wedge dynamics arising from erosion via tectonics-climate interaction. We estimate a minimum slip rate of Siwalik as ∼27 mm/yr during the Holocene and suggest acceleration in shortening rates east of Bhutan.  相似文献   

2.
2015年4 月25 日尼泊尔MW7.8特大地震发生在喜马拉雅山南麓, 震源机制解表明该地震为低角度逆冲型地震.通过收集地震区的活动构造研究资料、卫星影像解释和野外实地考察,认为尼泊尔MW7.8地震区地表分布三条主要的逆冲断裂,由北向南分别为喜马拉雅主中央断裂(MCT)、喜马拉雅主边界断裂(MBT)和喜马拉雅主前缘断裂(MFT).主边界断裂和主前缘断裂为晚更新世以来的活动断裂,但至今为止也没有发现喜马拉雅主中央断裂晚第四纪活动的依据.野外调查未发现尼泊尔MW7.8地震在喜马拉雅山南麓的主要断裂上形成地震地表破裂带.喜马拉雅山南麓的构造特征为薄皮构造,表现为浅部陡倾断坡-深部缓倾断坪(7°左右)-深部断坡(11°左右)的构造样式.深部断坡-断坪又称为主喜马拉雅断裂(MHT),其中的深部断坡是尼泊尔地震主震(MW7.8)和最大余震(MW7.3)的发震构造.余震大致沿北西向的高喜马拉雅山前缘呈条带状分布,主要分布在低喜马拉雅山区内.剖面上,余震大致分布在主喜马拉雅断裂的上盘推覆体内,推测尼泊尔MW7.8地震时深部断坡发生错动,其地震位移沿深部断坡-断坪向南传播引起上盘的褶皱带缩短变形,进而触发低喜马拉雅和次喜马拉雅褶皱带内产生次级破裂从而产生余震.  相似文献   

3.
2015年4月25日尼泊尔发生了MW7.8地震, 本文基于震前、 震后两景Sentinel-1A雷达影像, 采用D-InSAR两轨差分干涉法提取了此次地震的同震形变场。 结果显示, 同震形变场位于喜马拉雅造山带—主边界逆冲断裂(MBT)和主前锋逆冲断裂(MFT)附近, 形变场整体表现为自西北向往东南方向延伸近150 km的纺锤形包络状, 以大面积隆起抬升形变为主, 视线向最大隆升形变达1.18 m, 抬升区北侧存在一小沉陷区, 以InSAR观测值定位同震最大形变中心。 基于均匀介质弹性半空间模型(Okada模型)与InSAR观测数据反演了断层滑动分布。 反演结果表明该地震属于典型逆冲型地震, 发震断层为主喜马拉雅逆冲断裂(MHT), 同震破裂从主喜马拉雅逆冲断裂(MHT)向上沿着主前锋逆冲断裂(MFT)传递。 基于InSAR同震形变场局部形变细节, 结合震区地质背景、 断裂分布及断层运动特征, 获得了同震破裂拟出露地表迹线。  相似文献   

4.
Thermal demagnetization results (316 samples) are presented for the Tertiary succession of the Riasi thrust sheet (Jammu foothills, northwestern Himalaya). Primary and secondary magnetization directions of Murree Group red beds (Miocene to Upper Eocene) sampled northeast of Jammu indicate, for this part of the Riasi thrust sheet, a clockwise rotation over about 45° with respect to the Indian shield since Late Eocene/Early Miocene time. This accords with clockwise rotations of similar magnitude observed in the Panjal Nappe and the Krol Belt, and is interpreted as representative for the northwestern Himalaya. Results from the western part of the Kalakot inlier, sampled northwest of Jammu, i.e. basal Murree claystone (Middle Eocene) and carbonate from the Subathu Group (lower Middle to Lower Eocene), indicate an aberrant 20–25° counterclockwise rotation which is of local importance only. Available observations on rotation of Himalayan thrust sheets with respect to the Indian shield, indicate that the Himalayan Arc has formed through oroclinal bending. This supports Powell and Conaghan's and Veevers et al.'s model of Greater India with large-scale intracontinental underthrusting along the Main Central Thrust beneath the Tibetan Plateau. Minimal magnitudes of underthrusting of 550 km in the Krol Belt and 650 km in the Thakkhola region are concluded. Palaeolatitude observations (herein and in [1[) agree with absolute positioning of the Indian plate based on India-Africa relative movement data fixed to a hotspot frame in the Atlantic Ocean, and with palaeolatitude observations from DSDP cores on the Indian plate. Collision-related secondary magnetic components observed both to the north and to the south of the Indus-Tsangpo Suture zone show palaeolatitudes between the equator and 7°N. Comparison of both datasets indicates that initial contact between Greater India and south-central Asia had been established in the Hindu Kush—Karakorum region by about 60 Ma ago whereas eastwards progressive suturing had advanced to the Lhasa Block segment of the Indus-Tsangpo Suture zone before 50 Ma ago.  相似文献   

5.
Ladakh (India) provides a complete geological section through the northwestern part of the Himalayas from Kashmir to Tibet. Within this section the magmatic, metamorphic and geotectonic evolution of the northern Himalayan orogeny has been studied using petrographic, geochemical and isotope analytical techniques.The beginning of the Himalayan cycle was marked by large basaltic extrusions (Panjal Trap) of Permian to Lower Triassic age at the “northern” margin of the Gondwana continent (Indian Shield). These continental type tholeiitic basalts were followed by a more alkaline volcanism within the Triassic to Jurassic Lamayuru unit of the Gondwana continental margin.Lower Jurassic to Cretaceous oceanic crust and sediments (ophiolitic mélange s.s.) accompany the Triassic to Cretaceous flysch deposits within the Indus-Tsangpo suture zone, the major structural divide between the Indian Shield (High Himalaya) and the Tibetan Platform. So far, no relic of Paleozoic oceanic crust has been found.Subduction of the Tethyan oceanic crust during Upper Jurassic and Cretaceous time produced an island arc represented by tholeiitic and calc-alkaline volcanic rock series (Dras volcanics) and related intrusives accompanied by volcaniclastic flysch deposits towards the Tibetan continental margin.Subsequent to the subduction of oceanic crust, large volumes of calc-alkaline plutons (Trans-Himalayan or Kangdese plutons) intruded the Tibetan continental margin over a distance of 2000 km and partly the Dras island arc in the Ladakh region.The collision of the Indian Shield and Tibetan Platform started during the middle to upper Eocene and caused large-scale, still active intracrustal thrusting as well as the piling up of the Himalayan nappes. The tectonically highest of these nappes is built up of oceanic crust and huge slices of peridotitic oceanic mantle (Spongtang klippe).In the High Himalayas the tectonic activity was accompanied and outlasted by a Barrovian-type metamorphism that affected Triassic sediments of the Kashmir-Nun-Kun synclinorium up to kyanite/staurolite grade and the deeper-seated units up to sillimanite grade. Cooling ages of micas are around 20 m.y. (muscovite) and 13 m.y. (biotite). Towards the Indus-Tsangpo suture zone metamorphism decreases with no obvious discontinuity through greenschist, prehnite-pumpellyite to zeolite grade. Remnants of possibly an Eo-Himalayan blueschist metamorphism have been found within thrust zones accompanying ophiolitic mélange in the suture zone.  相似文献   

6.
宋方敏  俞维贤 《地震地质》1997,19(3):20-217
小江断裂带中段新生代发育的系列盆地,根据其发育阶段可分为始新世—渐新世、上新世—早更新世、中更新世—晚更新世和晚更新世—全新世4个阶段,并根据发育持续性可分为继承性、阶段性、复活性、新生性4种类型。由大比例尺填图所获资料及前人成果,介绍了各阶段盆地的分布特征和成因机制,讨论了盆地发育与区域构造运动、断裂活动的关系  相似文献   

7.
During the Pamir Himalayan project in the year 1975 seismic refraction and wide-angle reflection data were recorded along a 270 km long Lawrencepur-Astor (Sango Sar) profile in the northwest Himalayas. The profile starts in the Indus plains and crosses the Main Central Thrust (MCT), the Hazara Syntaxis, the Main Mantle Thrust (MMT) and ends to the east of Nanga Parbat. The seismic data, as published by Guerra et al. (1983), are reinterpreted using the travel-time ray inversion method of Zelt and Smith (1992) and the results of inversion are constrained in terms of parameter resolution and uncertainty estimation. The present model shows that the High Himalayan Crystallines (HHC, velocity 5.4 km s−1) overlie the Indian basement (velocity 5.8–6.0 km s−1). The crust consists of four layers of velocity 5.8–6.0, 6.2, 6.4 and 6.8 km s−1 followed by the upper mantle velocity of 8.2 km s−1 at a depth of about 60 km.  相似文献   

8.
The seismic hazard has been computed for the city of Dehradun, Uttarakhand, India. The city lies in the Himalayan foothills between two faults: the Main Boundary Thrust (MBT) and the Himalayan Frontal Fault (HFF). The contributions from these two faults have been modelled differently in a probabilistic model. While the MBT has been modelled with a Poissonian earthquake distribution, the HFF has been modelled both with a characteristic earthquake recurrence model and a Poissonian model. The hazard scenarios reveal different patterns depending on the classical approaches and the characteristic models applied, and the obtained results indicate that Dehradun may experience PGA shaking around 2.2?m/s2 for 225 years return period and around 4.6?m/s2 for a 2,500?years return period.  相似文献   

9.
Successions of Lower to lower Middle Cambrian, Upper Permian to Upper Triassic and Lower Tertiary carbonates and arenites have been sampled in five sections, representative of the three main segments of the Mianwali reentrant in the (Trans-Indus) Salt Range (northern Pakistan), i.e.: the southern Khisor Range, the northern Surghar Range and the western Salt Range. Comparison of primary and secondary magnetization directions with the Indian APWP demonstrates the secondary origin of the Mianwali reentrant and shows a pattern of rotations which varies in sense and magnitude along the reentrant with the main structural trends. Data from the Trans-Indus and western Salt Range and published Early Cambrian, Early Permian and Late Tertiary palaeomagnetic results from the southern Salt Range and the Potwar Plateau show that the Hazara Arc underwent a 20–45° counterclockwise rotation relative to the Indian Shield. A contrasting clockwise rotation over about 45° has recently been established for thrust sheets in the opposing eastern limb of the Western Himalayan Syntaxis, i.e. for the Panjal Nappe [1] and the Riasi thrust sheet [2]. These palaeomagnetically established rotations conform with the about 75° azimuthal change in structural trend along the Syntaxis, and support Crawford's [3] suggestion that the Salt Range was originally in line with the northwestern Himalaya. The Salt Range front prograded and moved southwards as part of the Hazara Arc thrust sheet, detached from basement along the evaporitic Salt Range Formation. The Mianwali reentrant originated through obstruction of the southwards advancing thrust sheet by moulding around basement topography of the northwest oriented Sarghoda Ridge.  相似文献   

10.
Himalaya is an active fold and thrust belt formed due to continent-continent collision between the Eurasian and Indian plates. It comprises a 3000 km long chain of mountains that span ∼1000 km across, with major boundary thrusts viz., Main Central Thrust (MCT), Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). MFT is marked as mountain front and is the most active thrust; however, evidence of tectonic activity along MCT and MBT also exists.Tectonic activity along MFT created uplifted terraces which now serve as geomorphic archives of past tectonic events. The present study focussed on a glacial-fed river Sankosh that originates in northern Bhutan, and crosses MCT, MBT and MFT before joining the Brahmaputra River in Assam. Due to tectonic uplift, the river shows a deflection at MFT, incising and thus forming four levels of strath terraces. Luminescence chronology, geomorphic studies and analysis of satellite images suggest four levels of terraces T4 (highest level, 195 m asl), T3, T2 and T1 (lowest level, 120 m asl).The quartz was found insensitive for luminescence dating, and thus fading corrected Infra-Red Stimulated Luminescence (IRSL) ages on feldspar minerals were measured that provided ages of 143-77 ka (T4), 65-36 ka (T2) and 35-14 ka (T1), respectively. The T3 terrace was present only on the right bank of the river and could not be accessed. These ages accord with other studies at the Chalsa and Malbazar, North Bengal (west of the study area) and this regional disposition of similar ages suggest that these formed during glacial-interglacial periods. The strath terraces indicate a time-averaged tectonic uplift with a 0.5 mm/year rate over the past 150 ka.  相似文献   

11.
Geospatial techniques play a crucial role in geomorphic studies, particularly in the challenging terrains like mountainous regions, inaccessible areas and densely vegetated landscapes, where geomorphic features cannot be recorded easily. Tectono-geomorphologic observations provide important clues regarding the landscape evolution, morpho-dynamics and ongoing tectonism of the region. The present study has been carried out in the Zanskar Basin (ZB), located to the south of the Indus Tsangpo Suture Zone (ITSZ), in the hinterland of the NW Himalaya. This study has been carried out to assess and evaluate active tectonics by employing tectono-geomorphic analysis, dynamics in drainage networks, geomorphological field observations and the Geographic Information System (GIS) environment. High-resolution satellite images, topographic maps and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) were used to generate primary data sets, which were corroborated with field investigations for valid inferences. The geometry of the ZB suggests that continuous tectonic activity exerts first-order control on the overall shape, size and structure of the ZB. This first-order response is clearly reflected in the landforms modified by tectonic processes, namely, linear mountain fronts, elongated shape and tilting of the basin, braided and meandering river courses and lower stream length gradient index values in hard rock terrain. The ZB exhibits several eye-catching geomorphic features, such as well-defined triangular facets with wide base lengths and wine-glass valleys with small outlets along the footwall block of the Zanskar Shear Zone/South Tibetan Detachment System (ZSZ/STDS), as well as the presence of wind gaps, water gaps, bedrock incision, incised and entrenched valleys, narrow gorges and a high incision rate inferring active tectonics and recent uplift in the region. In addition, the existence of uplifted river terraces, as well as the stepped morphology of fans and strath terraces, suggests that the region is experiencing recent activity and ongoing tectonic uplift. These modified geomorphic characteristics suggest that the hinterland, which is part of the NW Himalaya, is tectonically quite active and has experienced a differential rate of tectonics during its evolution. The quantified geomorphic indices and their relations with the tectonics, climate and erosion activity infer that the basin geometry is mostly controlled by the ZSZ/STDS that dips 20°–70° NE, the south-dipping Zanskar Counter Thrust (ZCT) and other local tectonic elements like the Choksti Thrust (CT), Stondgey Thrust, Zangla Thrust and tectonic structures. The synergised results of quantified geomorphic indices and tectono-geomorphic evidence in the ZB strongly indicate that both the past and ongoing tectonism have significantly shaped and modified geomorphology of the ZB.  相似文献   

12.
Western disturbances (WDs) and Indian summer monsoon (ISM) led precipitation play a central role in the Himalayan water budget. Estimating their contributions to water resource is although a challenging but essential for hydrologic understanding and effective water resource management. In this study, we used stable water isotope data of precipitation and surface waters to estimate the contribution of ISM and WDs to the water resources in three mountainous river basins - Indus, Bhagirathi and Teesta river basins of western, central and Eastern Himalayas. The study reveals distinct seasonality in isotope characteristics of precipitation and surface waters in each river basin is due to changes in moisture source, hydrometeorology and relief. Despite steady spatial variance in the slope and intercept of regression lines from the Teesta to Indus and the Bhagirathi river basins, the slope and intercept are close to the global meteoric water line and reported local meteoric water line of other regions in the Himalayas and the Tibetan Plateau. The two-component end-member mixing method using d-excess as tracer were used to estimate the contribution from ISM and WD led precipitation to surface water in aforementioned river basins. The results suggest that the influence of the ISM on the water resources is high (>72% to annual river flow) in Teesta river basin (eastern Himalayas), while as the WDs led precipitation is dominantly contributing (>70% average annual river flow) to the surface waters in the Indus river basin (western Himalayas). The contribution of ISM and WD led precipitation in Bhagirathi river basin is 60% and 40%, respectively. The findings demonstrate that the unusual changes in the ISM and WD moisture dynamics have the potential to affect the economy and food security of the region, which is dependent on the availability of water resources. The obtained results are of assistance to policy makers/mangers to make use of the information for better understanding hydrologic response amid unusual behaviour of the dual monsoon system over the region.  相似文献   

13.
Detailed analysis of intensity for ten damaging historical earthquakes in the central arcuate belt between the Himachal and Darjeeling Himalayas was carried out in the backdrop of isoseismal eccentricity, source depth and Indian plate obliquity. Results indicate that the elongated axes of the isoseismals and strike of ruptures for shallow earthquakes are almost parallel with strike of the Himalayan arc, and clearly conformable with the obliquity. An empirical power law relationship between eccentricity and focal depth established under the present study illustrates that the deeper events are more influenced by the bending of the penetrating Indian lithosphere, whereas the shallower events are principally controlled by the obliquity. A positive correlation between eccentricities and obliquity obviously supports this inference. The present study further reveals that the constant decrease in Indian plate obliquity from Himachal to Nepal-Bihar Himalaya is well compatible with the graben structures and horizontal shearing along this arcuate segment.  相似文献   

14.
Modeling of multimode surface wave group velocity dispersion data sampling the eastern and the western Ganga basins, reveals a three layer crust with an average Vs of 3.7 km s?1, draped by ~2.5 km foreland sediments. The Moho is at a depth of 43 ± 2 km and 41 ± 2 km beneath the eastern and the western Ganga basins respectively. Crustal Vp/Vs shows a felsic upper and middle crust beneath the eastern Ganga basin (1.70) compared to a more mafic western Ganga basin crust (1.77). Due to higher radiogenic heat production in felsic than mafic rocks, a lateral thermal heterogeneity will be present in the foreland basin crust. This heterogeneity had been previously observed in the north Indian Shield immediately south of the foreland basin and must also continue northward below the Himalaya. The high heat producing felsic crust, underthrust below the Himalayas could be an important cause for melting of midcrustal rocks and emplacement of leucogranites. This is a plausible explanation for abundance of leucogranites in the east-central Himalaya compared to the west. The uppermost mantle Vs is also significantly lower beneath the eastern Ganga basin (4.30 km s?1) compared to the west (4.44 km s?1).  相似文献   

15.
The paper analyzes available seismic data of the Geophysical Survey of the Russian Academy of Sciences on the catastrophic earthquake with Ms = 7.9 occurred in Nepal on April 25, 2015. It is shown that this earthquake (also called Gorkha) in its coseismic stage reflected the dynamic situation in the collision zone between the Indian and Eurasian plates, and occurred in the area of the Main Frontal Thrust in the Himalayas. In the last 15 years, the seismicity of this area has demonstrated the features of strong earthquake preparation. The study results are presented for the early postseismic stage (in the first month after the mainshock). It is found that the pattern of a decrease in aftershock activity is similar to that obtained by Tatevossian and Aptekman (2008) for the world’s earthquakes with M > 8. It is regular in the first 11–16 days and can be described by the Omori law, whereas on 17th day after the mainshock, the exponent characterizing the rate of change in the flow of events becomes to irregular. The spatial and temporal distribution of aftershocks of the 2015 Gorkha earthquake qualitatively and quantitatively indicates the heterogeneity of a seismogenic interface of the Himalayan arc collision zone between the Indian and Eurasian plates.  相似文献   

16.
Detailed petrography and modal analysis of 35 sandstone thin sections was carried out to determine petrotectonic setting of the provenance of the Lower Siwalik molasse of southeastern Kumaun Himalaya. The sandstones are fine‐ to coarse‐grained (0.14–0.63 mm), poorly‐ to moderately‐sorted and comprise lithic arenites, sublithic arenites and lithic greywackes. The sandstones invariably belong to the quartzolithic QtFL (Qt, total quartz; F, feldspar; L, lithic grains) and QmFLt (Qm, monocrystalline quartz; Lt, lithic grains plus polycrystalline quartz) petrofacies, and indicate their derivation from a quartzose‐ and transitional‐recycled orogen provenance under sub‐humid climatic conditions. The framework composition of the sandstones comprises abundant monocrystalline and polycrystalline quartz and low‐ to high‐grade metamorphic rock fragments, along with subordinate feldspar, characterized by low ratios of plagioclase to total feldspar, and accessory minerals. The framework composition and petrofacies characters of these texturally submature sandstones suggest their derivation mainly from the nearby located Great Himalaya terrane and subordinately from the Tethys and Lesser Himalayan terranes. A comparison of the data presented here with the previous similar data from Lower Siwalik of northwestern Pakistan, northwestern India, south‐central Kumaun, western Nepal and southeastern Nepal reveals that like the Lower Siwalik rivers in other sections, the Lower Siwalik rivers of the southeastern Kumaun too drained large parts of the Great Himalayan terrane and some parts of the Tethys and Lesser Himalayan terranes.  相似文献   

17.
Bengal Fan Miocene sediments were collected during International Ocean Discovery Program Expedition 354 and investigated using petrographic and detrital garnet chemistry analyses. The Miocene Siwalik Group, which is composed of sediments deposited in the Himalayan foreland basin, was also analyzed for comparison with the Bengal Fan data for the provenance change during the Miocene. Our petrographic analyses revealed that the Miocene sediments of the Bengal Fan and Siwalik Group consist predominantly of Higher Himalayan Crystalline (HHC)-derived detritus such as chloritoid, staurolite, sillimanite, and/or kyanite, which appear among the accessory minerals. The chemistry of the detrital garnet varies across the stratigraphy; most of the garnet is rich in almandine and poor in spessartine and pyrope. However, pyrope-rich garnet, which is considered to originate from the HHC core (granulite facies), was found in the lower to upper Miocene deposits. The deposition of HHC-derived detrital garnet began before the Middle Miocene (15 Ma) and before the Late Miocene (10–9 Ma) in the Siwalik Group. The Bengal Fan data, by contrast, indicated that pyrope-rich garnet appeared in the Early Miocene (17.3 Ma) and Late Miocene (8.5–6.5 Ma). We conclude that the Bengal Fan sediments record the erosion of the HHC zone since the Early Miocene that appears in the Siwalik sediments. Furthermore, we found that the HHC-derived inputs decreased from the late Middle Miocene (12 Ma) to the early Middle Miocene (10 Ma) in both the Nepal Himalaya foreland basin and the Bengal Fan. The disappearance of the HHC-derived detritus is probably the result of dilution by Lesser Himalayan detritus, which suggests that the Lesser Himalayan zone, which is composed of metamorphosed and unmetamorphosed sedimentary rocks, was uplifted.  相似文献   

18.
J.M. Buttle  M.C. Eimers   《Journal of Hydrology》2009,374(3-4):360-372
Relationships explaining streamflow behaviour in terms of drainage basin physiography greatly assist efforts to extrapolate streamflow metrics from gauged to ungauged basins in the same landscape. The Dorset Environmental Science Centre (DESC) has monitored streamflow from 22 small basins (3.4–190.5 ha) on the Precambrian Shield in south-central Ontario, in some cases since 1976. The basins exhibit regional coherence in their interannual response to precipitation; however, there is often a poor correlation between streamflow metrics from basins separated by as little as 1 km. This study assesses whether inter-basin variations in such metrics can be explained in terms of basin scale and physiography. Several characteristics (annual maximum, minimum and average flow) exhibited simple scaling with basin area, while magnitude, range and timing of annual maximum daily runoff showed scaling behaviour consistent with the Representative Elementary Area (REA) concept. This REA behaviour is partly attributed to convergence of fractional coverage of the two dominant and hydrologically-contrasting land cover types in the DESC region with increasing basin size. Three Principal Components (PCs) explained 82.4% of the variation among basin physiographic properties, and several runoff metrics (magnitude and timing of annual minimum daily runoff, mean number of days per year with 0 streamflow) exhibited significant relationships with one or more PC. Significant relationships were obtained between basin quickflow (QF) production and the PCs on a seasonal and annual basis, almost all of which were superior to simple area-based relationships. Basin physiography influenced QF generation via its control on slope runoff, water storage and hydrologic connectivity; however, this role was minimized during Spring when QF production in response to large rain-on-snow events was relatively uniform across the DESC basins. The PC-based relationships and inter-seasonal changes in their form were consistent with previous research conducted at point, slope and basin scales in the DESC region, and perceptions of key hydrological processes in these small basins may not have been as readily obtained from scaling studies using streamflow from larger basins. This process understanding provides insights into scaling behaviour beyond those derived from simple scaling and REA analyses. The physiography of the study area is representative of large portions of the Precambrian Shield, such that basin streamflow behaviour could potentially be extended across much of south-central Ontario. This would assist predictions of streamflow conditions at ungauged locations, development and testing of hydrological models for this landscape, and interpretation of inter-basin and intra-annual differences in hydrochemical behaviour on the southern Precambrian Shield.  相似文献   

19.
The central part of the Himalaya (Kumaun and Garhwal Provinces of India) is noted for its prolonged seismic quiescence, and therefore, developing a longer-term time series of past earthquakes to understand their recurrence pattern in this segment assumes importance. In addition to direct observations of offsets in stratigraphic exposures or other proxies like paleoliquefaction, deformation preserved within stalagmites (speleothems) in karst system can be analyzed to obtain continuous millennial scale time series of earthquakes. The Central Indian Himalaya hosts natural caves between major active thrusts forming potential storehouses for paleoseismological records. Here, we present results from the limestone caves in the Kumaun Himalaya and discuss the implications of growth perturbations identified in the stalagmites as possible earthquake recorders. This article focuses on three stalagmites from the Dharamjali Cave located in the eastern Kumaun Himalaya, although two other caves, one of them located in the foothills, were also examined for their suitability. The growth anomalies in stalagmites include abrupt tilting or rotation of growth axes, growth termination, and breakage followed by regrowth. The U-Th age data from three specimens allow us to constrain the intervals of growth anomalies, and these were dated at 4273?±?410 years BP (2673–1853 BC), 2782?±?79 years BP (851–693 BC), 2498?±?117 years BP (605–371 BC), 1503?±?245 years BP (262–752 AD), 1346?±?101 years BP (563–765 AD), and 687?±?147 years BP (1176–1470 AD). The dates may correspond to the timings of major/great earthquakes in the region and the youngest event (1176–1470 AD) shows chronological correspondence with either one of the great medieval earthquakes (1050–1250 and 1259–1433 AD) evident from trench excavations across the Himalayan Frontal Thrust.  相似文献   

20.
研究了西藏吉隆—沃马盆地龙骨沟剖面新近纪沉积环境,作了古地磁年代学研究,认为喜马拉雅山北坡新生代断陷盆地发育始于7.2MaB.P., 3.2MaB.P.湖盆萎缩消亡,标志着喜马拉雅山地区在7.2MaB.P.和3.2MaB.P.发生过强烈的隆升事件.沃马盆地龙骨沟剖面所含三趾马动物群化石层年龄大约为7.0~6.7MaB.P.,隐示着此时青藏地区三趾马生活区与当时的华北平原三趾马生活区有着大体相当的地理、气候环境.之后由于喜马拉雅山持续抬升,断陷盆地下沉,并在5.9~3.6MaB.P.期间湖盆面积最为广阔.青藏高原抬升而华北平原沉降, 中国西部地区地形高于东部,东西部气候环境发生重大差异.3.6MaB.P.由于青藏地区持续强烈隆升,西部地区河流切穿古老湖盆,3.20MaB.P.吉隆—沃马湖盆萎缩,于1.7MaB.P.逐渐消失,进入侵蚀切割阶段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号