首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Climate change in many agricultural contexts will increase tensions between farming and non-farming populations over adaptations in land use and water conservation strategies. How adequately these future tensions may be mitigated will be partially determined by each groups' beliefs about climate change. A voluminous literature shows that climate change beliefs are crucial for understanding engagement with climate change mitigation and adaptation strategies, and that values motivate climate change beliefs, but the role of values remains unclear, and comparisons of farming and non-farming populations are scant. We develop a model of climate change beliefs that integrates four main motivating factors - values, political ideology, knowledge, and worldview - and we explicitly compare members of farming and non-farming populations in an agricultural watershed in the Central Great Plains, USA. Our findings highlight the role of held values in motivating climate change beliefs and point to areas of potential consensus and tension within and among members of these two groups. The results provide an empirical basis for developing future climate change engagement strategies in contexts of growing divides and conflicts among farming and non-farming groups.  相似文献   

2.
土地是人类赖以生存的重要资源,在受气候变化影响的同时其状况变化也在气候系统中起着关键作用。IPCC最新发布的气候变化与土地特别报告(SRCCL)系统反映了关于荒漠化、土地退化、可持续土地管理、粮食安全和陆地生态系统碳通量方面的最新科学认知,并探讨了如何进行更加可持续性的土地利用和管理以应对与土地相关的气候变化问题。文中从极端事件变化及其影响的角度,结合SRCCL与其他相关文献,予以分析和总结。结果表明,在全球变暖的背景下,极端天气气候事件的变化已经并将继续影响荒漠化和土地退化进程并对粮食安全造成冲击;而土地对气候系统的反馈作用,又会加剧气候变化并提高极端事件发生的概率和严重程度。面对气候变化尤其是极端事件给土地带来的巨大压力,必须坚持可持续的土地管理,通过减少包括土地和粮食系统在内的所有行业的排放,才有可能实现到21世纪末将全球平均升温控制在相对工业化前水平2℃以内的目标,以减轻气候变化对土地和粮食系统的负面影响。  相似文献   

3.
Climatic change impacts on the ecohydrology of Mediterranean watersheds   总被引:2,自引:0,他引:2  
Impact of climate change on ecohydrologic processes of Mediterranean watersheds are significant and require quick action toward improving adaptation and management of fragile system. Increase in water shortages and land use can alter the water balance and ecological health of the watershed systems. Intensification of land use, increase in water abstraction, and decline in water quality can be enhanced by changes in temperature and precipitation regimes. Ecohydrologic changes from climatic impacts alter runoff, evapotranspiration, surface storage, and soil moisture that directly affect biota and habitat of the region. This paper reviews expected impacts of climatic change on the ecohydrology of watershed systems of the Mediterranean and identifies adaptation strategies to increase the resilience of the systems. A spatial assessment of changes in temperature and precipitation estimates from a multimodel ensemble is used to identify potential climatic impacts on watershed systems. This is augmented with literature on ecohydrologic impacts in watershed systems of the region. Hydrologic implications are discussed through the lens of geographic distribution and upstream-downstream dynamics in watershed systems. Specific implications of climatic change studied are on runoff, evapotranspiration, soil moisture, lake levels, water quality, habitat, species distribution, biodiversity, and economic status of countries. It is observed that climatic change can have significant impacts on the ecohydrologic processes in the Mediterranean watersheds. Vulnerability varied depending on the geography, landscape characteristics, and human activities in a watershed. Increasing the resilience of watershed systems can be an effective strategy to adapt to climatic impacts. Several strategies are identified that can increase the resilience of the watersheds to climatic and land use change stress. Understanding the ecohydrologic processes is vital to development of effective long-term strategies to improve the resilience of watersheds. There is need for further research into ecohydrologic dynamics at multiple scales, improved resolution of climatic predictions to local scales, and implications of disruptions on regional economies.  相似文献   

4.
Reconciling food, fiber and energy production with biodiversity conservation is among the greatest challenges of the century, especially in the face of climate change. Model-based scenarios linking climate, land use and biodiversity can be exceptionally useful tools for decision support in this context. We present a modeling framework that links climate projections, private land use decisions including farming, forest and urban uses and the abundances of common birds as an indicator of biodiversity. Our major innovation is to simultaneously integrate the direct impacts of climate change and land use on biodiversity as well as indirect impacts mediated by climate change effects on land use, all at very fine spatial resolution. In addition, our framework can be used to evaluate incentive-based conservation policies in terms of land use and biodiversity over several decades. The results for our case study in France indicate that the projected effects of climate change dominate the effects of land use on bird abundances. As a conservation policy, implementing a spatially uniform payment for pastures has a positive effect in relatively few locations and only on the least vulnerable bird species.  相似文献   

5.
Climate Change and Water Resources   总被引:13,自引:1,他引:13  
Current perspectives on global climate change based on recent reports of the Intergovernmental Panel on Climate Change (IPCC) are presented. Impacts of a greenhouse warming that are likely to affect water planning and evaluation include changes in precipitation and runoff patterns, sea level rise, land use and population shifts following from these effects, and changes in water demands. Irrigation water demands are particularly sensitive to changes in precipitation, temperature, and carbon dioxide levels. Despite recent advances in climate change science, great uncertainty remains as to how and when climate will change and how these changes will affect the supply and demand for water at the river basin and watershed levels, which are of most interest to planners. To place the climate-induced uncertainties in perspective, the influence on the supply and demand for water of non-climate factors such as population, technology, economic conditions, social and political factors, and the values society places on alternative water uses are considered.  相似文献   

6.
Land use and land cover interact with atmospheric conditions to determine current climate conditions, as well, as the impact of climate change and environmental variability on ecological systems. Such interactions are ubiquitous, yet changes in LULC are generally made without regard to their biophysical implications. This review considers the potential for LULC to compound, confound, or even contradict changes expected from climate change alone. These properties give LULC the potential to be used as powerful tools capable of modifying local climate and contributing significantly to the net impact of climate change. Management practices based modifications of LULC patterns and processes could be applied strategically to increase the resilience of vulnerable ecological systems and facilitate climate adaptation. These interventions build on the traditional competencies of land management and land protection organizations and suggest that these institutions have a central role in determining the ecological impact of climate change and the development of strategies for adaptation. The practical limits to the use of LULC-based tools also suggest important inflection points between manageable and dangerous levels of climate change.  相似文献   

7.
Carbon sequestration in agroforestry systems   总被引:2,自引:0,他引:2  
《Climate Policy》2013,13(4):367-377
Abstract

Management of trees in agroecosystems such as agroforestry, ethnoforests, and trees outside forests can mitigate green house gas (GHG) emissions under the Kyoto Protocol. Agroforestry systems are a better climate change mitigation option than oceanic, and other terrestrial options because of the secondary environmental benefits such as helping to attain food security and secure land tenure in developing countries, increasing farm income, restoring and maintaining above-ground and below-ground biodiversity, corridors between protected forests, as CH4 sinks, maintaining watershed hydrology, and soil conservation. Agroforestry also mitigates the demand for wood and reduces pressure on natural forests. Promoting woodcarving industry facilitates long-term locking-up of carbon in carved wood and new sequestration through intensified tree growing. By making use of local knowledge, equity, livelihood security, trade and industry, can be supported. There is need to support development of suitable policies, assisted by robust country-wide scientific studies aimed at better understanding the potential of agroforestry and ethnoforestry for climate change mitigation and human well-being.  相似文献   

8.
 A multi-fingerprint analysis is applied to the detection and attribution of anthropogenic climate change. While a single fingerprint is optimal for the detection of climate change, further tests of the statistical consistency of the detected climate change signal with model predictions for different candidate forcing mechanisms require the simultaneous application of several fingerprints. Model-predicted climate change signals are derived from three anthropogenic global warming simulations for the period 1880 to 2049 and two simulations forced by estimated changes in solar radiation from 1700 to 1992. In the first global warming simulation, the forcing is by greenhouse gas only, while in the remaining two simulations the direct influence of sulfate aerosols is also included. From the climate change signals of the greenhouse gas only and the average of the two greenhouse gas-plus-aerosol simulations, two optimized fingerprint patterns are derived by weighting the model-predicted climate change patterns towards low-noise directions. The optimized fingerprint patterns are then applied as a filter to the observed near-surface temperature trend patterns, yielding several detection variables. The space-time structure of natural climate variability needed to determine the optimal fingerprint pattern and the resultant signal-to-noise ratio of the detection variable is estimated from several multi-century control simulations with different CGCMs and from instrumental data over the last 136 y. Applying the combined greenhouse gas-plus-aerosol fingerprint in the same way as the greenhouse gas only fingerprint in a previous work, the recent 30-y trends (1966–1995) of annual mean near surface temperature are again found to represent a significant climate change at the 97.5% confidence level. However, using both the greenhouse gas and the combined forcing fingerprints in a two-pattern analysis, a substantially better agreement between observations and the climate model prediction is found for the combined forcing simulation. Anticipating that the influence of the aerosol forcing is strongest for longer term temperature trends in summer, application of the detection and attribution test to the latest observed 50-y trend pattern of summer temperature yielded statistical consistency with the greenhouse gas-plus-aerosol simulation with respect to both the pattern and amplitude of the signal. In contrast, the observations are inconsistent with the greenhouse-gas only climate change signal at a 95% confidence level for all estimates of climate variability. The observed trend 1943–1992 is furthermore inconsistent with a hypothesized solar radiation change alone at an estimated 90% confidence level. Thus, in contrast to the single pattern analysis, the two pattern analysis is able to discriminate between different forcing hypotheses in the observed climate change signal. The results are subject to uncertainties associated with the forcing history, which is poorly known for the solar and aerosol forcing, the possible omission of other important forcings, and inevitable model errors in the computation of the response to the forcing. Further uncertainties in the estimated significance levels arise from the use of model internal variability simulations and relatively short instrumental observations (after subtraction of an estimated greenhouse gas signal) to estimate the natural climate variability. The resulting confidence limits accordingly vary for different estimates using different variability data. Despite these uncertainties, however, we consider our results sufficiently robust to have some confidence in our finding that the observed climate change is consistent with a combined greenhouse gas and aerosol forcing, but inconsistent with greenhouse gas or solar forcing alone. Received: 28 April 1996 / Accepted: 27 January 1997  相似文献   

9.
Climate change and human activities: a case study in Xinjiang, China   总被引:4,自引:0,他引:4  
We examined both long-term climate variability and anthropogenic contributions to current climate change for Xinjiang province of northwest China. Xinjiang encompasses several mountain ranges and inter-mountain basins and is comprised of a northern semiarid region and a more arid southern region. Climate over the last three centuries was reconstructed from tree rings and temperature series were calculated for the past 50 years using weather station data. Three major conclusions from these analyses are: (1) Although temperature varied considerably in Xinjiang over the last 200 years, it was non-directional until the last 50 years when a substantial warming trend occurred; (2) The semiarid North Xinjiang was representative of the northern hemisphere climate, while the more arid South Xinjiang resembled the southern hemisphere climate, meanwhile, (3) The entire Xinjiang province captured the global-scale climate signal. We also compared human contributions to global change between North and South Xinjiang, including land cover/land use, population, and greenhouse gas production. For both regions, urban areas acted as heat islands; and large areas of grassland and forest were converted to barren land, especially in North Xinjiang. Additionally, North Xinjiang also showed larger increase in population and greenhouse gas emissions mainly associated with animal production than those in South Xinjiang. Although Xinjiang province is a geographically coupled mountain–basin system, the two regions have distinct climate patterns and anthropogenic activities related to land cover conversion and greenhouse gas production.  相似文献   

10.
With global concern on climate change impacts, developing countries are given special attention due their susceptibility. In this paper, change and variability in climate, land use and farmers' perception, adaptation and response to change are examined in Danangou watershed in the Chinese Loess Plateau. The first focus is to look at how climate data recorded at meteorological stations recently have evolved, and how farmers perceived these changes. Further, we want to see how the farmers respond and adapt to climate variability and what the resulting impact on land use is. Finally, other factors causing change in land use are considered. Local precipitation and temperature instrumental data and interview data from farmers were used. The instrumental data shows that the climate is getting warmer and drier, the latter despite large interannual variability. The trend is seen on the local and regional level. Farmers' perception of climatic variability corresponds well with the data record. During the last 20 years, the farmers have become less dependent on agriculture by adopting a more diversified livelihood. This adaptation makes them less vulnerable to climate variability. It was found that government policies and reforms had a stronger influence on land use than climate variability. Small-scale farmers should therefore be considered as adaptive to changing situations, planned and non-consciously planned.  相似文献   

11.
In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  相似文献   

12.
The potential impact of climate variability and climate change on agricultural production in the United States and Canada varies generally by latitude. Largest reductions are projected in southern crop areas due to increased temperatures and reduced water availability. A longer growing season and projected increases in CO2 may enhance crop yields in northern growing areas. Major factors in these scenarios analyzes are increased drought tendencies and more extreme weather events, both of which are detrimental to agriculture. Increasing competition for water between agriculture and non-agricultural users also focuses attention on water management issues. Agriculture also has impact on the greenhouse gas balance. Forests and soils are natural sinks for CO2. Removal of forests and changes in land use, associated with the conversion from rural to urban domains, alters these natural sinks. Agricultural livestock and rice cultivation are leading contributors to methane emission into the atmosphere. The application of fertilizers is also a significant contributor to nitrous oxide emission into the atmosphere. Thus, efficient management strategies in agriculture can play an important role in managing the sources and sinks of greenhouse gases. Forest and land management can be effective tools in mitigating the greenhouse effect.  相似文献   

13.
We use an integrated assessment model of climate change to analyze how alternative decision-making criteria affect preferred investments into greenhouse gas mitigation, the distribution of outcomes, the robustness of the strategies, and the economic value of information. We define robustness as trading a small decrease in a strategy’s expected performance for a significant increase in a strategy’s performance in the worst cases. Specifically, we modify the Dynamic Integrated model of Climate and the Economy (DICE-07) to include a simple representation of a climate threshold response, parametric uncertainty, structural uncertainty, learning, and different decision-making criteria. Economic analyses of climate change strategies typically adopt the expected utility maximization (EUM) framework. We compare EUM with two decision criteria adopted from the finance literature, namely Limited Degree of Confidence (LDC) and Safety First (SF). Both criteria increase the relative weight of the performance under the worst-case scenarios compared to EUM. We show that the LDC and SF criteria provide a computationally feasible foundation for identifying greenhouse gas mitigation strategies that may prove more robust than those identified by the EUM criterion. More robust strategies show higher near-term investments in emissions abatement. Reducing uncertainty has a higher economic value of information for the LDC and SF decision criteria than for EUM.  相似文献   

14.
The purpose of this paper is to exemplify a means by which an integrated assessment can be made of global and regional effects on land use of climate change. This is achieved by use of data on the effects of climate change on world food prices as inputs to a regional land use allocation model.Data on world prices are drawn from a recent global study of climate change and crop yields. In a case study of England and Wales a land allocation model is used to infer changes of land use that are the product of the integrated effect of climate-induced global price changes and climate-related changes of yield in England and Wales. This combination of changed prices and yield potential is used to calculate the land use providing the highest returns for each of 155,235 1 km2 cells of land in England and Wales for a future assumed for the year 2060 (without climate change) and then for that same environment with climate change. The difference between these two is then treated as an estimated effect resulting from climate change.  相似文献   

15.
Terrestrial ecosystems provide a range of important services to humans, including global and regional climate regulation. These services arise from natural ecosystem functioning as governed by drivers such as climate, atmospheric carbon dioxide mixing ratio, and land-use change. From the perspective of carbon sequestration, numerous studies have assessed trends and projections of the past and future terrestrial carbon cycle, but links to the ecosystem service concept have been hindered by the lack of appropriate quantitative service metrics. The recently introduced concept of the Greenhouse Gas Value (GHGV) accounts for the land-atmosphere exchanges of multiple greenhouse gases by taking into consideration the associated ecosystem pool sizes, annual exchange fluxes and probable effects of natural disturbance in a time-sensitive manner.We use here GHGV as an indicator for the carbon sequestration aspects of the climate regulation ecosystem service, and quantify it at global scale using the LPJ-GUESS dynamic global vegetation model. The response of ecosystem dynamics and ecosystem state variables to trends in climate, atmospheric carbon dioxide levels and land use simulated by LPJ-GUESS are used to calculate the contribution of carbon dioxide to GHGV. We evaluate global variations in GHGV over historical periods and for future scenarios (1850–2100) on a biome basis following a high and a low emission scenario.GHGV is found to vary substantially depending on the biogeochemical processes represented in LPJ-GUESS (e.g. carbon–nitrogen coupling, representation of land use). The consideration of disturbance events that occur as part of an ecosystem's natural dynamics is crucial for realistic GHGV assessments; their omission results in unrealistically high GHGV. By considering the biome-specific response to current climate and land use, and their projections for the future, we highlight the importance of all forest biomes for maintaining and increasing biogeochemical carbon sequestration. Under future climate and carbon dioxide levels following a high emission scenario GHGV values are projected to increase, especially so in tropical forests, but land-use change (e.g. deforestation) opposes this trend. The GHGV of ecosystems, especially when assessed over large areas, is an appropriate metric to assess the contribution of different greenhouse gases to climate and forms a basis for the monetary valuation of the climate regulation service ecosystems provide.  相似文献   

16.
We use the global atmospheric GCM aerosol model ECHAM5-HAM to asses possible impacts of future air pollution mitigation strategies on climate. Air quality control strategies focus on the reduction of aerosol emissions. Here we investigate the extreme case of a maximum feasible end-of-pipe abatement of aerosols in the near term future (2030) in combination with increasing greenhouse gas (GHG) concentrations. The temperature response of increasing GHG concentrations and reduced aerosol emissions leads to a global annual mean equilibrium temperature response of 2.18 K. When aerosols are maximally abated only in the Industry and Powerplant sector, while other sectors stay with currently enforced regulations, the temperature response is 1.89 K. A maximum feasible abatement applied in the Domestic and Transport sector, while other sectors remain with the current legislation, leads to a temperature response of 1.39 K. Increasing GHG concentrations alone lead to a temperature response of 1.20 K. We also simulate 2–5% increases in global mean precipitation among all scenarios considered, and the hydrological sensitivity is found to be significantly higher for aerosols than for GHGs. Our study, thus highlights the huge potential impact of future air pollution mitigation strategies on climate and supports the need for urgent GHG emission reductions. GHG and aerosol forcings are not independent as both affect and are influenced by changes in the hydrological cycle. However, within the given range of changes in aerosol emissions and GHG concentrations considered in this study, the climate response towards increasing GHG concentrations and decreasing aerosols emissions is additive.  相似文献   

17.
Is the prospect of possible climate change relevant to water resources decisions being made today? And, if so, how ought that prospect be considered? These questions can be addressed by decision analysis, which we apply to two investments in the Great Lakes region: a regulatory structure for Lake Erie, and breakwaters to protect Presque Isle State Park, PA. These two decisions have the elements that potentially make climate change relevant: long lived, "one shot" investments; benefits or costs that are affected by climate-influenced variables; and irreversibilities. The decision analyses include the option of waiting to obtain better information, using Bayesian analysis to detect whether climate change has altered water supplies. The analyses find that beliefs about climate change can indeed affect optimal decisions. Furthermore, ignoring the possibility of climate change can lead to significant opportunity losses—in the cases here, as much as 10% or more of the construction cost. Yet the consequences of climate uncertainty for Great Lakes management do not appear to be qualitatively different from those of other risks, and thus do not deserve different treatment. The methods of sensitivity analysis, scenario planning, and decision analysis, all of which are encouraged under US federal guidelines for water planning, are applicable. We recommend increased use of decision trees and Bayesian analysis to consider not only climate change risks, but also other important social and environmental uncertainties.  相似文献   

18.
Increased water yield and baseflow and decreased peak flow are common goals of watershed service programs. However, is the forest management often used in such programs likely to provide these beneficial watershed services? Many watershed service investments such as water funds typically change less than 10% of watershed land cover. We simulate the effects of 10% forest-cover change on water yield, low flow, and high flow in hydrologic models of 29 watersheds around the world. The forest-cover changes considered are: forest restoration from degraded natural lands or agriculture, forest conversion to agriculture, and forest conversion to urban cover. We do not consider grassland restoration by removal of alien tree species from riparian zones, which does increase water yield and low flow. Forest restoration from locally-predominant agricultural land resulted in median loss in annual water yield of 1.4%. Forest restoration reduced low flow and high flow by ∼3%. After forest restoration, low flow increased in ∼25% of cases while high flow and water yield declined in nearly all cases. Development of forest to agriculture or urban cover resulted in a 1–2% median increase in water yield, a 0.25–1% increase in low flow, and a 5–7% increase in high flow. We show that hydrologic responses to forest cover changes are not linearly related to climate, physiography, initial land cover, nor a multitude of watershed characteristics in most cases. These results suggest that enhanced streamflow watershed services anticipated from forest restoration or conservation of 10% or less of a watershed are generally modest.  相似文献   

19.
BCC_CSM1.1全球模式中极端气温变化的归因分析   总被引:1,自引:0,他引:1  
利用1°×1°的ERA-Interim再分析资料和气候系统模式BCC_CSM1.1历史模拟(Historical)试验及气候归因试验(只考虑温室气体变化Historica1GHG试验和只考虑自然强迫变化的Historica1Nat试验)的结果,考查了BCC_CSM1.1模式对中国和全球陆地地区极端气温指数的模拟能力,并在此基础上分析了温室气体和自然强迫这两种外强迫的变化对极端气温变化的贡献。结果表明:BCC_CSM1.1可以对中国乃至全球陆地区域极端气温指数的气候态及其变化趋势进行合理模拟,主要偏差表现为模式对极端低温指数模拟值偏低,而对极端高温指数模拟值偏高。对于20世纪末极端气温指数的变化,只有考虑了温室气体变化的外强迫时,模式可以再现再分析资料中极端气温的变化趋势。这表明温室气体的变化对极端气温的变化有着关键性的影响。  相似文献   

20.
In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10–18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24–36 % of total cropland by 2100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号