首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

2.
Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However, these impacts have not yet been evaluated at the peninsular level. We coupled a hydrological model with a power market model to study three impacts of climate change on the current Iberian power system: changes in hydropower production caused by changes in precipitation and temperature, changes in temporal patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes in precipitation will reduce runoff, decrease hydropower production (with accompanying increases in thermal generation), and increase irrigation water use, while higher temperatures will shift power demand from winter to summer months. The combined impact of these effects will generally make it more challenging to balance agricultural, power, and environmental objectives in the operation of Iberian reservoirs, though some impacts could be mitigated by better alignment between temporal patterns of irrigation and power demands.  相似文献   

3.
Global climate change will impact the hydrologic cycle by increasing the capacity of the atmosphere to hold moisture. Anticipated impacts are generally increased evaporation at low latitudes and increased precipitation at middle and high latitudes. General Circulation Models (GCMs) used to simulate climate disagree on whether the U.S. as a whole and its constituent regions will receive more or less precipitation as global warming occurs. The impacts on specific regions will depend on changes in weather patterns and are certain to be complex. Here we apply the suite of 12 potential climate change scenarios, previously described in Part 1, to the Hydrologic Unit Model of the United States (HUMUS) to simulate water supply in the conterminous United States in reference to a baseline scenario. We examine the sufficiency of this water supply to meet changing demands of irrigated agriculture. The changes in water supply driven by changes in climate will likely be most consequential in the semi-arid western parts of the country where water yield is currently scarce and the resource is intensively managed. Changes of greater than ±50% with respect to present day water yield are projected in parts of the Midwest and Southwest U.S. Interannual variability in the water supply is likely to increase where conditions become drier and to decrease under wetter conditions.  相似文献   

4.
Adapting to Climate Impacts on the Supply and Demand for Water   总被引:1,自引:0,他引:1  
The prospect of climate change adds to future water supply and demand uncertainties and reinforces the need for institutions that facilitate adaptation to changing conditions and promote efficient management of supplies and facilities. High costs and limited opportunities for increasing water supplies with dams, reservoirs, and other infrastructure have curbed the traditional supply-side approach to planning in recent decades. Although new infrastructure may be an appropriate response to climate-induced shifts in hydrologic regimes and water demands, it is difficult to plan for and justify expensive new projects when the magnitude, timing, and even the direction of the changes are unknown. On the other hand, evaluating margins of safety for long-lived structures such as dams and levees should consider the prospect that a greenhouse warming could produce greater hydrologic variability and storm extremes. Integrated river basin management can provide cost-effective increases in reliable supplies in the event of greenhouse warming. With water becoming scarcer and susceptible to variations and changes in the climate, demand management is critical for balancing future demands with supplies. Although regulatory and voluntary measures belong in a comprehensive demand management strategy, greater reliance on markets and prices to allocate supplies and introduce incentives to conserve will help reduce the costs of adapting to climate change. Federal water planning guidelines allow for consideration of plans incorporating changes in existing statutes, regulations, and other institutional arrangements that might be needed to facilitate water transfers and promote efficient management practices in response to changing supply and demand conditions.  相似文献   

5.
Adapting water resources management to global climate change   总被引:1,自引:0,他引:1  
This paper provides an overview of the impact of global climate change on water resources management. Changes in precipitation and temperature of the scale predicted by General Circulation Models for a doubled CO2 level will significantly affect annual runoff, runoff variability, and seasonal runoff. These in turn will affect water supply, flood protection, hydropower generation, and environmental resources. In addition, climate change will significantly affect the geomorphic response of the watershed, increasing soil erosion and altering the hydrologic response of the watershed. These geomorphic changes will in turn affect water supply, flood hazard, and riparian ecosystems.Possible water resources management responses are identified. This includes reallocation of water supply from less valuable irrigated agriculture to municipal uses; changes in agricultural methods; increasing incentives for integrated flood management; increasing incentives for watershed management; integration of ecosystem needs in water resources planning; and the need to redesign the operation of existing water projects.  相似文献   

6.
Anthropogenic climate change does not only affect water resources but also water demand. Future water and food security will depend, among other factors, on the impact of climate change on water demand for irrigation. Using a recently developed global irrigation model, with a spatial resolution of 0.5° by 0.5°, we present the first global analysis of the impact of climate change and climate variability on irrigation water requirements. We compute how long-term average irrigation requirements might change under the climatic conditions of the 2020s and the 2070s, as provided by two climate models, and relate these changes to the variations in irrigation requirements caused by long-term and interannual climate variability in the 20th century. Two-thirds of the global area equipped for irrigation in 1995 will possibly suffer from increased water requirements, and on up to half of the total area (depending on the measure of variability), the negative impact of climate change is more significant than that of climate variability.  相似文献   

7.
Climate change will affect irrigation water demand of rice via changes in rice physiology and phenology, soil water balances, evapotranspiration and effective precipitation. As agriculture is the main sector of water use in Bangladesh, estimation of the agricultural water demand in the changing environment is essential for long-term water resources development and planning. In the present paper, a study has been carried out to estimate the change of irrigation water demand in dry-season Boro rice field in northwest Bangladesh in the context of global climate change. The study shows that there will be no appreciable changes in total irrigation water requirement due to climate change. However, there will be an increase in daily use of water for irrigation. As groundwater is the main source of irrigation in northwest Bangladesh, higher daily pumping rate in dry season may aggravate the situation of groundwater scarcity in the region.  相似文献   

8.
Food production in China is a fundamental component of the national economy and driver of agricultural policy. Sustaining and increasing output to meet growing demand faces significant challenges including climate change, increasing population, agricultural land loss and competing demands for water. Recent warming in China is projected to accelerate by climate models with associated changes in precipitation and frequency of extreme events. How changes in cereal production and water availability due to climate change will interact with other socio-economic pressures is poorly understood. By linking crop and water simulation models and two scenarios of climate (derived from the Regional Climate Model PRECIS) and socio-economic change (downscaled from IPCC SRES A2 and B2) we demonstrate that by the 2040s the absolute effects of climate change are relatively modest. The interactive effects of other drivers are negative, leading to decreases in total production of ?18% (A2) and ?9% (B2). Outcomes are highly dependent on climate scenario, socio-economic development pathway and the effects of CO2 fertilization on crop yields which may almost totally offset the decreases in production. We find that water availability plays a significant limiting role on future cereal production, due to the combined effects of higher crop water requirements (due to climate change) and increasing demand for non-agricultural use of water (due to socio-economic development). Without adaptation, per capita cereal production falls in all cases, by up to 40% of the current baseline.By simulating the effects of three adaptation scenarios we show that for these future scenarios China is able to maintain per capita cereal production, given reasonable assumptions about policies on land and water management and progress in agricultural technology. Our results are optimistic because PRECIS simulates much wetter conditions than a multi-model average, the CO2 crop yield response function is highly uncertain and the effects of extreme events on crop growth and water availability are likely to be underestimated.  相似文献   

9.
Although anuran amphibians are diverse and conspicuous in many vertebrate communities, worldwide population declines have been observed. Climatic change is a global factor that has been implicated in some of these declines. In this paper, we speculate on how Neotropical anurans might respond to changes in climate predicted by Hulme and Viner (1998). We focus on two distinct groups of Neotropical anurans: frogs that live and oviposit in leaf litter and frogs that congregate at ponds to breed. Increased temperature, increased length of dry season, decreased soil moisture, and increased inter-annual rainfall variability will affect Neotropical frogs strongly. We expect that these changes will directly affect frogs by changing reproductive success and breeding periodicity, and indirectly by altering the invertebrate prey base. The individual effects will likely translate into changes at the population and community levels. We also speculate on how climatic change will affect Neotropical amphibians that are restricted ecologically and/or geographically. We suggest directions for future research that will increase our ability to predict how amphibians in the New World tropics will respond to climatic change.  相似文献   

10.
Social, economic, and environmental systems can be vulnerable to disruptions in water supplies that are likely to accompany future climate changes. Coupled with the challenges of tightening environmental regulations, population growth, economic development and fiscal constraints water supply systems are being pushed beyond the limits of their design and capacity for maintenance. In this paper we briefly review key economic concepts, various economic measures and metrics, and methods to estimate the economic effects on water resources from water supply changes that could accompany climate change. We survey some of the recent empirical literature that focuses on estimates developed for U.S. watersheds at both national and regional scales. Reported estimates of potential damage and loss associated with climate and water supply changes that we observe are significant, though often the metrics vary and make valid and consistent direct cross-comparisons difficult. Whether in terms of changes in GDP or in terms of estimated changes in economic welfare based on associated changes in economic costs and benefits, both national and regional estimates suggest that governments and organizations incorporate prudent steps to assess vulnerabilities to plausible future water supply and demand scenarios and develop responsive adaptation strategies.  相似文献   

11.
Engineering Design and Uncertainties Related to Climate Change   总被引:2,自引:0,他引:2  
To explore how uncertain climate events might affect investment decisions that need to be made in the near future, this paper examines (1) the relative magnitude of the uncertainties arising from climate change on engineering design in water resources planning and (2) a restricted set of water resource planning techniques that deal with the repeated choice of investment decisions over time. The classical capacity-expansion model of operations research is exploited to show the relative impacts upon engineering design choices for variations in future demand attributable to changes in the climate or other factors and the possible shortfall of supply due to climate change. The type of engineering decisions considered in the paper are sequential, enabling adjustments to revealed uncertainty in subsequent decisions. The range of possible impacts analyzed in the paper lead to similar engineering design decisions. This result means that engineers must be on their guard with respect to under-design or over-design of systems with and without the threat of climate change, but that the sequential nature of the decision-making does not call for drastic action in the early time periods.  相似文献   

12.
This study uses recent GCM forecasts, improved plant science and water supply data and refined economic modeling capabilities to reassess the economic consequences of long-term climate change on U.S. agriculture. Changes in crop yields, crop water demand and irrigation water arising from climate change result in changes in economic welfare. Economic consequences of the three GCM scenarios are mixed; GISS and GFDL-QFlux result in aggregate economic gains, UKMO implies losses. As in previous studies, the yield enhancing effects of atmospheric CO2 are an important determinant of potential economic consequences. Inclusion of changes in world food production and associated export changes generally have a positive affect on U.S. agriculture. As with previous studies, the magnitude of economic effects estimated here are a small percentage of U.S. agricultural value.  相似文献   

13.
近十年来我国气候变暖影响研究的若干进展   总被引:51,自引:12,他引:51       下载免费PDF全文
近年来,我国政府和科技界十分关注气候王馥棠变暖对我国经济发展可能影响的评估, 开展了许多重大项目和课题的研究。该文仅就气候变暖对我国自然植被、农业、森林、水资源、能源利用和区域海平面上升等领域影响评估研究的若干有意义的初步结果简要归纳和评述如下:取自不同GCM模型的未来气候变化情景下的影响评估模拟表明,我国的特征性自然植被类型将会发生明显的变化。同当前气候(1951~1980年)下的模拟分布相比,到2050年我国几乎所有地方的农业种植制度均将发生较大变化;气候变暖将导致复种指数增加和种植方式多样化,但降水与蒸散之间可能出现的负平衡和土壤水分胁迫的增加以及生育期的可能缩短,最终将导致我国主要作物的产量下降。气候变暖对我国水资源最明显的影响将会发生在黄淮海流域,这个区域的水资源供需短缺将大大提高。同时,气候变暖将改变我国室内取暖和降温的能源需求关系:北方冬季取暖的能源消耗将减少, 而南方夏季降温的能源消耗将会增加。海平面的上升将使我国三个主要沿海低洼脆弱区,即珠江三角洲、长江三角洲和黄河三角洲,面临部分遭受海水淹没的威胁。  相似文献   

14.
Climate change: impacts on electricity markets in Western Europe   总被引:1,自引:0,他引:1  
This paper studies some impacts of climate change on electricity markets, focusing on three climate effects. First, demand for electricity is affected because of changes in the temperature. Second, changes in precipitation and temperature have impact on supply of hydro electric production through a shift in the inflow of water. Third, plant efficiency for thermal generation will decrease because the temperature of water used to cool equipment increases. To find the magnitude of these partial effects, as well as the overall effects, on Western European energy markets, we use the multi-market equilibrium model LIBEMOD. We find that each of the three partial effects changes the average electricity producer price by less than 2%, while the net effect is an increase of only 1%. The partial effects on total electricity supply are small, and the net effect is a decrease of 4%. The greatest effects are found for Nordic countries with a large market share for reservoir hydro. In these countries, annual production of electricity increases by 8%, reflecting more inflow of water, while net exports doubles. In addition, because of lower inflow in summer and higher in winter, the reservoir filling needed to transfer water from summer to winter is drastically reduced in the Nordic countries.  相似文献   

15.
Droughts are natural hazards characterized by a prolonged period of below-average precipitation. Water scarcity is defined as insufficient water resources to meet demands in a region. This paper examines three regions (Spain, California, and the Murray-Darling Basin in Australia) which share similar social and climatic characteristics and face severe water-scarcity problems. The frequency and persistence of droughts in these regions over the last few decades have triggered changes in water laws as well as in the behaviour of water users and managers. This paper compares the major water reforms in these regions and the achievements and failures of the various approaches implemented. This comparison shows how, despite the differences in institutions and governance regarding water allocation in the three regions, recent droughts have catalysed the creation of institutions and the implementation of sophisticated long-term measures to mitigate the impact of future droughts. A deeper understanding of the effectiveness of mechanisms and regulations is necessary to better manage droughts since the uncertain impacts of climate change will require responses of a more effective nature.  相似文献   

16.
Food security in China, the world’s most populous country, has long been a concern because of the challenges of population growth, water shortages, and loss of cropland through urbanization, soil degradation, and climate change. Here, we present an integrated analysis of China’s food demand and supply under IPCC Special Report on Emissions Scenarios A1, A2, B1, and B2 in 2020, 2050, and 2080, based on official statistics and future development scenarios. Our analysis accounts for future socioeconomic, technological, and resource developments, as well the impact of climate change. We present a covariant relationship between changes in cereal productivity due to climate change and the cereal harvest area required to satisfy China’s food demand. We also estimated the effects of changing harvested areas on the productivity required to satisfy the food demand; of productivity changes due to climate change on the harvest area required to satisfy food demand; and of productivity and land use changes on the population at risk of undernutrition. China could be able to feed herself without disturbing the global food market in the twenty-first century, but whether the government will choose self-sufficiency or increased food imports may depend on the cost of change, which remains unknown.  相似文献   

17.
One of the major unresolved questions in the study of vulnerability to climate change is how human migration will respond in low and middle-income countries. The present study directly addresses this lacuna by using census data on migration from 4 million individuals from three middle-income African countries over a 22-year period. We link these individuals to climate exposures in their origins and estimate climatic effects on migration using a fixed-effects regression model. We show that climate anomalies affect mobility in all three countries. Specifically, mobility declines by 19% with a 1-standard deviation increase in temperature in Botswana. Equivalent changes in precipitation cause declines in migration in Botswana (11%) and Kenya (10%), and increases in migration in Zambia (24%). The mechanisms underlying these effects appear to differ by country. Negative associations between precipitation anomalies, unemployment, and inactivity suggest migration declines may be due to an increased local demand for workers to offset production risk, while migration increases may be indicative of new opportunities in destinations. These country-specific findings highlight the contextually-specific nature of climate-migration relationships, and do not support claims that climate change is widely contributing to urbanization across Africa.  相似文献   

18.
We propose an approach for screening future infrastructure and demand management investments for large water supply systems subject to uncertain future conditions. The approach is demonstrated using the London water supply system. Promising portfolios of interventions (e.g., new supplies, water conservation schemes, etc.) that meet London’s estimated water supply demands in 2035 are shown to face significant trade-offs between financial, engineering and environmental measures of performance. Robust portfolios are identified by contrasting the multi-objective results attained for (1) historically observed baseline conditions versus (2) future global change scenarios. An ensemble of global change scenarios is computed using climate change impacted hydrological flows, plausible water demands, environmentally motivated abstraction reductions, and future energy prices. The proposed multi-scenario trade-off analysis screens for robust investments that provide benefits over a wide range of futures, including those with little change. Our results suggest that 60 percent of intervention portfolios identified as Pareto optimal under historical conditions would fail under future scenarios considered relevant by stakeholders. Those that are able to maintain good performance under historical conditions can no longer be considered to perform optimally under future scenarios. The individual investment options differ significantly in their ability to cope with varying conditions. Visualizing the individual infrastructure and demand management interventions implemented in the Pareto optimal portfolios in multi-dimensional space aids the exploration of how the interventions affect the robustness and performance of the system.  相似文献   

19.
One strand of research relates the magnitude of severe weather disasters to climatic and human development factors; another highlights dramatic growth in catastrophe losses. However, there have been few attempts to put the two strands together. Here we use an explicit modeling framework to determine the contribution of climate variability relative to human factors in reported catastrophe losses. We then examine how future climate change can be expected to affect losses from natural disasters. Simultaneous regression models are constructed from three equations in which the dependent variables are U.S. flood loss, U.S. hurricane loss and U.S. catastrophe loss. Then two kinds of simulation under two climate change scenarios explore how climate change would affect losses. The climate change scenarios respectively project 13.5% and 21.5% increases in annual precipitation. The first simulation increases only the mean value of annual precipitation; the second simulation assumes that the mean and standard deviation of annual precipitation change in the same proportion. Results show that the growth in reported losses from weather-related natural disasters is due mainly to three socioeconomic factors: inflation, population growth and growth in per capita real wealth. However, weather variables such as precipitation and the number of hurricanes per period also clearly affect losses. The three stage least squares (3SLS) simultaneous equation model shows that a 1% increase in annual precipitation would enlarge catastrophe loss by as much as 2.8%. These findings are suggestive as planning signals to decision makers.  相似文献   

20.
During this century global warming will lead to changes in global weather and climate, affecting many aspects of our environment. Agriculture is the sector of the United States economy most likely to be directly impacted by climatic changes. We have examined potential changes in dryland agriculture (Part 3) and in water resources necessary for crop production (Part 4) in response to a set of climate change scenarios. In this paper we assess to what extent, under these same scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the US. In addition, we assess the overall impacts of changes in water supply on national grain production. We apply the 12 climate change scenarios described in Part 1 to the water resources and crop growth simulation models described in Part 2 for the conterminous United States. Drawing on data from Parts 3 and 4 we calculate what the aggregate national production would be in those regions in which grain crops are currently produced by applying irrigation where needed and water supplies allow. The total amount of irrigation water applied to crops declines under all climate change scenarios employed in this study. Under certain of the scenarios and in particular regions, precipitation decreases so much that water supplies are too limited; in other regions precipitation becomes so plentiful that little value is derived from irrigation. Nationwide grain crop production is greater when irrigation is applied as needed. Under irrigation, less corn and soybeans are produced under most of the climate change scenarios than is produced under baseline climate conditions. Winter wheat production under irrigation responds significantly to elevated atmospheric carbon dioxide concentrations [CO2] and appears likely to increase under climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号