首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.  相似文献   

2.
We used dendroclimatology to quantify inter-annual to multi-decadal climatic variation effects on white spruce radial growth in southwest Yukon, Canada. Local climate is dry and cold, such that tree growth was primarily moisture- rather than temperature-limited, although the mechanisms varied temporally. During the 20th century, significant increases in precipitation countered warming temperatures, so that heat?moisture indices have not changed significantly. Directional climatic change, superimposed on variation due to the Pacific Decadal Oscillation (PDO), resulted in unstable climate?growth relations. Prior to 1977, ring widths were positively correlated with previous growing season precipitation and warm temperatures had a negative impact, exacerbating moisture limitations in dry years especially during the cool, dry negative PDO phase (1946?1976). After 1977, correlations with previous growing season precipitation became negative and correlations with previous fall and winter precipitation and current year July and August temperatures became positive, although not statistically significant. These changes suggest precipitation and temperature increases over recent decades benefitted white spruce growth. Climate projections for this region include further temperature and precipitation increases, which may promote white spruce growth depending on the seasonality and interactions between temperature and precipitation. This study demonstrated the complexity of potential responses of white spruce to climate variation and change.  相似文献   

3.
A regional tree ring-width index chronology prepared from various tree core samples of the western Himalaya has been analyzed in relation to climate fluctuations. The correlation analysis of tree ring chronology shows significant positive correlations with regional rainfall and standardized precipitation evapotranspiration index (SPEI) and negative correlations with temperature and vapor pressure (VP) during the spring season. The correlation coefficients (CCs) of tree ring-width index chronology with rainfall, temperature, SPEI, and VP during 1901–1990 are 0.50, −0.49, 0.65, and −0.51, respectively. All CCs are significant at 0.1% level. The highly significant CCs between tree ring-width index chronology and SPEI indicate that tree growth over the western Himalaya is more sensitive to soil moisture availability than rainfall, whereas the rising VP is found to have a significant moisture stress condition to tree growth by accelerating the evapotranspiration, which is not conducive for the development of tree growth in the region. So, based on the strong association between tree ring-width index chronology and SPEI; the reconstructions of SPEI and VP are developed back to AD 1861, that show the long period of dryness during 1936–1963.  相似文献   

4.
The persistence of light surface winds (less than or equal to 3 m s?1 or 7 mi h?1) is one meteorological factor in air pollution potential. Surface wind data were obtained from 111 Canadian synoptic and aviation weather stations for the period 1957–66. Generally speaking, persistent light winds occur most frequently in British Columbia, the Yukon and northern Alberta. In the ten provinces of Canada, the frequency of occurrence of light winds is a minimum in the spring and a maximum in the winter. In the Yukon and the Northwest Territories it is a minimum in the summer and a maximum in the winter. The seasonal variation is least in the mountain valleys and greatest elsewhere. The spatial and seasonal variations in persistent light winds suggest that, in the mountain valleys, topography is the major factor, while in other regions synoptic weather patterns are relatively important.  相似文献   

5.
青藏高原积雪与亚洲季风环流年代际变化的关系   总被引:12,自引:1,他引:12  
利用高原测站的月平均雪深资料和NCEP/NCAR再分析资料,分析了20世纪70年代末以来,青藏高原积雪的显著增多与亚洲季风环流转变的联系。研究表明,高原南侧冬春季西风的增强及西风扰动的活跃是造成青藏高原冬春积雪显著增多的主要原因,高原积雪的增多与亚洲夏季风的减弱均是亚洲季风环流转变的结果;20世纪70年代末以来,夏季华东降水的增多、华南降水的减少及华北的干旱化与青藏高原冬春积雪增多及东亚夏季风的减弱是基本同步的,高原冬春积雪与华东夏季降水的正相关、与华北及华南夏季降水的负相关主要是建立在年代际时间尺度上,因此,高原积雪与我国夏季降水关系的研究应以亚洲季风环流的年代际变化为背景。  相似文献   

6.
青藏高原冬春季积雪异常对中国春夏季降水的影响   总被引:27,自引:3,他引:27  
利用1956年12月~1998年12月共42a,青藏高原及其附近地区78个积雪观测站的雪深和我国160站月降水的距平资料,分析了其气候特征,并用SVD方法分析了冬春季积雪异常与春夏季我国降水异常的关系。用区域气候模式RegCM2模拟了青藏高原积雪异常的气候效应并检验了诊断分析的结果。分析表明,雪深异常,尤其是冬季雪深异常是影响中国降水的一个因子。研究证明,高原冬季雪深异常对后期中国区域降水的影响比春季雪深异常的影响更为重要。数值模拟的结果表明,高原雪深和雪盖的正异常推迟了东亚夏季风的爆发日期,减弱了季风强度,造成华南和华北降水减少,而长江和淮河流域降水增加。冬季雪深异常比冬季雪盖异常和春季雪深异常对降水的影响更为显著。机理分析指出,高原及其邻近地区的积雪异常首先通过融雪改变土壤湿度和地表温度,从而改变了地面到大气的热量、水汽和辐射通量。由此所引起的大气环流变化又反过来影响下垫面的特征和通量输送。在湿土壤和大气之间,这样一种长时间的相互作用是造成后期气候变化的关键过程。与干土壤和大气的相互作用过程有本质差别。  相似文献   

7.
欧亚大陆春季融雪量与东亚夏季风的可能联系   总被引:4,自引:3,他引:1  
许立言  武炳义 《大气科学》2012,36(6):1180-1190
通过对观测资料的分析, 本文研究了春季欧亚大陆融雪量与东亚夏季风的关系, 并初步讨论了其可能联系机制。研究表明, 春季融雪量EOF (Empirical Orthogonal Function) 第一模态表现出年代际变化特征, 这与东亚夏季风和中国夏季降水的年代际转型具有非常好的一致性。而EOF第二模态与东亚夏季风在年际尺度上具有同位相变化关系, 当春季融雪量在东西伯利亚和巴尔喀什湖附近异常偏多时, 后期在东亚地区容易出现由高纬至低纬的“负—正—负”经向波列结构。融雪量异常偏少时, 情况则相反。文中初步分析了春季融雪量异常与后期夏季东亚地区大气环流出现经向波列结构的可能联系机制, 指出东西伯利亚以及巴尔喀什湖附近异常偏多的春季融雪量能够在该地区促使位势高度场表现为正异常, 随着时间的演变, 巴尔喀什湖附近地区的高压向东移动发展, 东西伯利亚地区的高压一部分向低纬移动, 可能造成夏季东亚地区的经向波列结构, 进而对东亚的天气和气候产生影响。  相似文献   

8.
Based on observed snow and precipitation data and NCEP/NCAR reanalysis data,the relationship between the number of winter snow cover days in Northeast China and the following summer’s rainfall in the northern part of southern China is analyzed and the possible underlying mechanisms are discussed.The results indicate that a negative relationship is significant throughout the study period,especially more obvious after the 1980s.The pre-winter circulation patterns in years with more snow cover days and less summer rainfall in the south bank of the Yangtze River are almost the same.In years with more snow cover days,lower temperatures at the lower level over Northeast China are found in winter and spring.The winter monsoon is weaker and retreats later in these years than in those with fewer snow cover days.In spring of years with more snow cover days,anomalous cyclonic circulation is observed over Northeast China,and anomalous northerly wind is found in eastern China.In summer of these years,anomalous northeasterly wind at the lower level is found from the area south of the Yangtze River to the East China Sea and Yellow Sea;and with less southwesterly water vapor transport,the rainfall in the area south of the Yangtze River is less than normal,and the opposite patterns are true in years with fewer snow cover days.In recent years,the stable relationship between winter snow cover in Northeast China and summer rainfall in the Yangtze River basin can be used for summer rainfall prediction.The results are of great importance to short-term climate prediction for summer rainfall.  相似文献   

9.
Large trees (>76 cm breast-height diameter) are vital components of Sierra Nevada/Cascades mixed-conifer ecosystems because of their fire resistance, ability to sequester large amounts of carbon, and role as preferred habitat for sensitive species such as the California spotted owl. To investigate the likely performance of large trees in a rapidly changing climate, we analyzed growth rings of five conifer species against 20th century climate trends from local weather stations. Over the local station period of record, there were no temporal trends in precipitation, but maximum temperatures increased by 0.10 to 0.13 °C/decade (summer and autumn), and minimum temperatures increased by 0.11 to 0.19 °C/decade in all seasons. All species responded positively to precipitation, but more variation was explained by a significant positive response to minimum winter temperatures. High maximum summer temperature adversely affected growth of two species, and maximum spring temperatures in the year prior to ring formation were negatively associated with growth of one species. The strong coherent response to increasing minimum temperatures bodes well for growth of large trees in Sierra/Cascades region mixed conifer forest under continued climatic warming, but these trees will still be under threat by the increased fire intensity that is a indirect effect of warming.  相似文献   

10.
A full global atmosphere-ocean-land vegetation model is used to examine the coupled climate/vegetation changes in the extratropics between modern and mid-Holocene (6,000 year BP) times and to assess the feedback of vegetation cover changes on the climate response. The model produces a relatively realistic natural vegetation cover and a climate sensitivity comparable to that realized in previous studies. The simulated mid-Holocene climate led to an expansion of boreal forest cover into polar tundra areas (mainly due to increased summer/fall warmth) and an expansion of middle latitude grass cover (due to a combination of enhanced temperature seasonality with cold winters and interior drying of the continents). The simulated poleward expansion of boreal forest and middle latitude expansion of grass cover are consistent with previous modeling studies. The feedback effect of expanding boreal forest in polar latitudes induced a significant spring warming and reduced snow cover that partially countered the response produced by the orbitally induced changes in radiative forcing. The expansion of grass cover in middle latitudes worked to reinforce the orbital forcing by contributing a spring cooling, enhanced snow cover, and a delayed soil water input by snow melt. Locally, summer rains tended to increase (decrease) in areas with greatest tree cover increases (decreases); however, for the broad-scale polar and middle latitude domains the climate responses produced by the changes in vegetation are relatively much smaller in summer/fall than found in previous studies. This study highlights the need to develop a more comprehensive strategy for investigating vegetation feedbacks.  相似文献   

11.
In this study, we investigated the response of trees growing at the cold margins of the boreal forest to climate variation in the 20th century. Working at eight sites at and near alpine and arctic treeline in three regions in Alaska, we compared tree growth (from measured tree ring-widths) to historical climate data to document how growth has responded to climate variation in the 20th century. We found that there was substantial regional variability in response to climate variation. Contrary to our expectations, we found that after 1950 warmer temperatures were associated with decreased tree growth in all but the wettest region, the Alaska Range. Although tree growth increased from 1900–1950 at almost all sites, significant declines in tree growth were common after 1950 in all but the Alaska Range sites. We also found that there was substantial variability in response to climate variation according to distance to treeline. Inverse growth responses to temperature were more common at sites below the forest margin than at sites at the forest margin. Together, these results suggest that inverse responses to temperature are widespread, affecting even the coldest parts of the boreal forest. Even in such close proximity to treeline, warm temperatures after 1950 have been associated with reduced tree growth. Growth declines were most common in the warmer and drier sites, and thus support the hypothesis that drought-stress may accompany increased warming in the boreal forest.  相似文献   

12.
Tree-ring series from living trees near the timberline or timbers buried in the surroundings are exceptionally valuable both for climate reconstruction and investigations of the consequences of climate change to ecosystems. This paper is a critical assessment of the past and potential contributions of dendroecology and dendroclimatology in mountain environments. Problems addressed are the spatial variability of both climate and tree sites, the temporal variability of ecological growth conditions and the reconstruction of signals other than high frequency ones. A synoptic approach appears to be the only way to take into account both the spatial and temporal variability of tree-growth, allowing for a better comparison of spatial climatological patterns with spatial growth patterns.  相似文献   

13.
Glaciers around the world retreated as the climate warmed substantially. For the majority of alpine and arctic areas, however, the lack of meteorological data over a long period makes it difficult to build long-term climate and glacial fluctuation relationships, emphasizing the importance of natural proxy archives. Here we use the 230-year record of stem radial growth of birch trees (Betula ermanii) from the treeline forests above the receding glaciers in eastern maritime Kamchatka to analyse temporal variations of climate as well as glacial advance and retreat. Glaciers in Kamchatka Peninsula represent the southern limit of glaciation in far eastern Eurasia, which makes them prone to global warming. Using instrumental climate data (1930–1996) from local meteorological stations, we find that the July temperature had most prominent positive impact on birch growth. On the contrary, smaller ring increments are associated with the positive summer and net annual ice mass balance of Koryto Glacier. The prevailing trend of higher summer temperatures and lower snowfall over the past 70 years has enhanced tree growth while causing the glacier’s surface to lower by about 35 m and its front to retreat by about 490 m. Assuming these same relationships between climate, tree growth, and glacier mass balance also existed in the past, we use tree rings as a proxy record of climatically induced temporary halts in the glacier’s retreat over the past two centuries, which in total was over 1,000 m. Both direct observations and tree ring proxies indicate several prolonged warm periods (1990s, 1960s, 1930–1940s, 1880–1900s) interspersed with cooler periods (1984–1985, 1970–1976, 1953–1957, 1912–1926, 1855–1875, 1830–1845, 1805–1820 and 1770–1780) when the glacier re-advanced, creating several consecutive terminal moraine ridges. We conclude that birch tree-rings are suitable for assessing tree growth/climate/glacial relationships over a longer timescale in maritime Kamchatka.  相似文献   

14.
青藏高原积雪对中国夏季风气候的影响   总被引:39,自引:7,他引:32  
利用SVD等方法对青藏高原积雪与中国区域降水的关系作了诊断分析。并用区域气候模式(RegCM2)对高原积雪的气候效应进行了模拟。结果表明:青藏高原积雪对中国夏季风气候的影响是显著的。积雪的增加会明显减弱亚洲夏季风的强度,使华南的降水减少,江淮流域的降水增多。高原冬季积雪深度的增加,比积雪面积的扩大和春季积雪深度的增加对后期气候的影响更大。  相似文献   

15.
青藏高原冬春季雪盖对东亚夏季大气环流影响的研究   总被引:17,自引:7,他引:17  
罗勇 《高原气象》1995,14(4):505-512
通过分析青藏高原积雪的基本特征,指出高原冬春季雪盖在东亚夏季气候形成与异常中的重要作用,同时分别总结了高原冬春季积雪对东亚夏季大气环流影响的诊断研究和数值试验进展,提出了高原冬春季雪盖对气候影响的可能机制。  相似文献   

16.
指出了中国东部夏季气候在20世纪80年代末出现了一次明显的年代际气候转型.伴随着这次年代际转型,80年代末以后中国东部南方地区降水明显增多,500 hPa西太平洋副热带高压西伸且南北范围变大,西北太平洋上空850 hPa反气旋增强.中国东部夏季80年代后期出现南方多雨的年代际转型与欧亚大陆春季积雪、西北太平洋夏季海面温度的年代际变化存在密切联系,它们也都在80年代末出现年代际转型.从80年代末以后,伴随着欧亚大陆春季积雪明显减少和西北太平洋夏季海面温度明显增高,中国夏季南方降水明显增加.文中分析了欧亚大陆春季积雪和西北太平洋夏季海面温度影响中国降水的物理过程,指出欧亚大陆春季积雪能够在500 hPa激发出大气中的遥相关波列,所激发出的波列可以从春季一直持续到夏季,造成中国北方为高压控制,南方为微弱低压控制,使得降水出现在中国南方.西北太平洋夏季海面温度的升高能够减小海陆热力差异,使得夏季风减弱,导致中国南方地区降水增多.  相似文献   

17.
In this paper, it is pointed out that a notable decadal shift of, the summer climate in eastern China occurred in the late 1980s. In association with this decadal climate shift, after the late 1980s more precipitation appeared in the southern region of eastern China (namely South China), the western Pacific subtropical high stretched farther westward with a larger south-north extent, and a strengthened anticyclone at 850 hPa appeared in the northwestern Pacific. The decadal climate shift of the summer precipitation in South China was accompanied with decadal changes of the Eurasian snow cover in boreal spring and sea surface temperature (SST) in western North Pacific in boreal summer in the late 1980s. After the late 1980s, the spring Eurasian snow cover apparently became less and the summer SST in western North Pacific increased obviously, which were well correlated with the increase of the South China precipitation. The physical processes are also investigated on how the summer precipitation in China was affected by the spring Eurasian snow cover and summer SST in western North Pacific. The change of the spring Eurasian snow cover could excite a wave-train in higher latitudes, which lasted from spring to summer. Because of the wave-train, an abnormal high appeared over North China and a weak depression over South China, leading to more precipitation in South China. The increase of the summer SST in the western North Pacific reduced the land-sea thermal contrast and thus weakened the East Asian summer monsoon, also leading to more precipitation in South China.  相似文献   

18.
为整体地分析中蒙干旱半干旱区(中蒙干旱区)夏季气温的时空变化特征,利用中蒙干旱区内分布相对均匀的104个站点(包括5个“人造站”)1961—1997年7月的平均地面气温资料等,首先分析了该区夏季的平均气温场、气温年较差及日较差等背景;然后,对标准化的7月平均气温距平资料分别作了EOF和REOF分析。结果表明:(1)中蒙干旱区夏季的热量资源充足。夏季气温场分布的区域性特色更明显。(2)受纬度、地形高度及远离海洋等的影响,中蒙干旱区地面气温的年较差大,日较差也大,呈典型大陆性气候(大陆度高)的特色,但是区内的夏季气温年际变化小。(3)根据气温的EOF分析,中蒙干旱区夏季气温异常可粗分为全区一致型、准东西差异型、准南北差异型及准东北—西南差异型等4种常见分布模态;再根据REOF分析,可将该区夏季气温异常进一步细分为青海高原、高原东北侧、南疆、北疆、陕西甘南区、蒙古国西北部及东南部等7个分区。(4)近37年来,中蒙干旱区夏季气温增暖主要出现在高原东北侧和南疆区,强度比冬春季弱;在青海高原及蒙古国东南部气温还在变凉,区内各分区夏季气温变化也约有3~4年的周期。  相似文献   

19.
基于云南省、贵州省和广西壮族自治区共163个站点气候资料和主要经济作物产地分布数据,应用作物生态学和农业气象学原理,分析云南气候特征与经济作物种植的气候适宜性关系.结果表明,受季风气候、高原山地气候、低纬气候的影响,云南干湿季节分明、夏季气温偏低、春秋季长、气温日较差大、干季日照较多,具有气候区域性和层次性差异特点,由...  相似文献   

20.
Two ensemble experiments were conducted using a general atmospheric circulation model. These experiments were used to investigate the impacts of initial snow anomalies over the Tibetan Plateau(TP) on China precipitation prediction. In one of the experiments, the initial snow conditions over the TP were climatological values; while in the other experiment, the initial snow anomalies were snow depth estimates derived from the passive microwave remote-sensing data. In the current study, the difference between these two experiments was assessed to evaluate the impact of initial snow anomalies over the TP on simulated precipitation. The results indicated that the model simulation for precipitation over eastern China had certain improvements while applying a more realistic initial snow anomaly, especially for spring precipitation over Northeast China and North China and for summer precipitation over North China and Southeast China. The results suggest that seasonal prediction could be enhanced by using more realistic initial snow conditions over TP, and microwave remote-sensing snow data could be used to initialize climate models and improve the simulation of eastern China precipitation during spring and summer. Further analyses showed that higher snow anomalies over TP cooled the surface, resulting in lower near- surface air temperature over the TP in spring and summer. The surface cooling over TP weakened the Asian summer monsoon and brought more precipitation in South China in spring and more precipitation to Southeast China during summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号