首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of regular wave experiments have been done in a large-scale wave flume to investigate the wave-induced pore pressure around the submarine shallowly embedded pipelines.The model pipelines are buried in three kinds of soils,including gravel,sand and silt with different burial depth.The input waves change with height and period.The results show that the amplitudes of wave-induced pore pressure increase as the wave period increase,and decay from the surface to the bottom of seabed.Higher pore pressures are recorded at the pipeline top and the lower pore pressures at the bottom,especially in the sand seabed.The normalized pressure around pipeline decreases as the relative water depth,burial depth or scattering parameters increase.For the silt seabed,the wavelet transform has been successfully used to analyze the signals of wave-induced pore pressure,and the oscillatory and residual pore pressure can be extracted by wavelet analysis.Higher oscillatory pressures are recorded at the bottom and the lower pressures at the top of the pipeline.However,higher residual pressures are recorded at the top and the lower pressures at the bottom of the pipeline.  相似文献   

2.
A two-dimensional finite-element simulation of the wave-induced hydrodynamic uplift force acting on a submarine pipeline buried in sandy seabed sediments subject to continuous loading of sinusoidal surface waves is presented. Neglecting inertia forces, a linear-elastic stress-strain relationship for the soil and Darcy's law for the flow of pore fluid are assumed. The model takes into account the compressibility of both components (i.e., pore fluid and soil skeleton) of the two-phase medium.The results of numerical analysis are presented and discussed with respect to soil and pore fluid parameters where special attention is paid to the question of soil saturation conditions. The meaning of the results is also related to surface wave conditions. As a general conclusion, the practical, engineering recommendation is given in order to make a realistic, safe and economic estimation of the wave-induced uplift force acting on a buried submarine pipeline.  相似文献   

3.
Experiments on three types of soil (d50=0.287, 0.057 and 0.034 mm) with pipeline(D=4 cm) either half buried or resting on the seabed under regular wave or combined with current actions were conducted in a large wave flume to investigate characteristics of soil responses. The pore pressures were measured through the soil depth and across the pipeline. When pipeline is present the measured pore pressures in sandy soil nearby the pipeline deviate considerably from that predicted by the poro-elasticity theory. The buried pipeline seems to provide a degree of resistance to soil liquefaction in the two finer soil seabeds. In the silt bed, a negative power relationship was found between maximum values of excess pore pressure pmax and test intervals under the same wave conditions due to soil densification and dissipation of the pore pressure. In the case of wave combined with current, pore pressures in sandy soil show slightly decrease with time, whereas in silt soil, the current causes an increase in the excess pore pressure build-up, especially at the deeper depth. Comparing liquefaction depth with scour depth underneath the pipeline indicates that the occurrence of liquefaction is accompanied with larger scour depth under the same pipeline-bed configuration.  相似文献   

4.
Experimental investigations are carried out on wave-induced pressures and uplift forces on a submarine pipeline (exposed, half buried and fully buried) in clayey soil of different consistency index both in regular and random waves. A study on scour under the pipeline resting on the clay bed is also carried out. It is found that the uplift force can be reduced by about 70%, if the pipeline is just buried in clay soil. The equilibrium scour depth below the pipeline is estimated as 42% of the pipe diameter for consistency index of 0.17 and is 34% of the pipe diameter for consistency index of 0.23. The results of the present investigations are compared with the results on sandy soil by Cheng and Liu (Appl. Ocean Res., 8(1986) 22) to acknowledge the benefit of cohesive soil in reducing the high pore pressure on buried pipeline compared to cohesionless soil.  相似文献   

5.
Wave-induced liquefaction in a porous seabed around submarine pipeline may cause catastrophic consequences such as large horizontal displacements of pipelines on the seabed, sinking or floatation of buried pipelines. Most previous studies in relation to the wave and seabed interactions with embedded pipeline dealt with the wave-induced instaneous seabed response and possible resulting momentary liquefaction (where the soil is liquefied instantaneously during the passage of a wave trough), using theory of poro-elasticity. Studies for the interactions between a buried pipeline and a soil undergoing build-up of pore pressure and residual liquefaction have been comparatively rare. In this paper, this complicated process was investigated by using a new developed integrated numerical model with RANS (Reynolds averaged Navier–Stokes) equations used for governing the incompressible flow in the wave field and Biot consolidation equations used for linking the solid–pore fluid interactions in a porous seabed with embedded pipeline. Regarding the wave-induced residual soil response, a two-dimensional poro-elastoplastic solution with the new definition of the source term was developed, where the pre-consolidation analysis of seabed foundation under gravitational forces including the body forces of a pipeline was incorporated. The proposed numerical model was verified with laboratory experiment to demonstrate its accuracy and effectiveness. The numerical results indicate that residual liquefaction is more likely to occur in the vicinity of the pipeline compared to that in the far-field. The inclusion of body forces of a pipeline in the pre-consolidation analysis of seabed foundation significantly affects the potential for residual liquefaction in the vicinity of the pipeline, especially for a shallow-embedded case. Parametric studies reveal that the gradients of maximum liquefaction depth with various wave and soil characteristics become steeper as pipeline burial depth decreases.  相似文献   

6.
In engineering practice, a cover layer of coarser material has been used to protect a buried marine pipeline from wave-induced seabed instability. However, most previous investigations of the wave–seabed–pipe interaction problem have been concerned only with such a problem either in an isotropic single layer or a rigid pipe. This paper proposes a two-dimensional finite element model by employing the principle of repeatability to investigate the wave-induced soil response around a buried pipeline. The elastic anisotropic soil bahavior and geometry of cover layer are included in the present model, while the pipe is considered to be an elastic medium. This study focuses on the effects of a cover layer (including thickness B and width W of the cover layer) on the wave-induced pore pressure in the vicinity of a buried pipeline.  相似文献   

7.
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-lineafity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.  相似文献   

8.
Most previous investigations for the wave-induced soil response have only considered the quasi-static soil behavior under linear wave loading. However, it is expected that the dynamic soil behavior and wave non-linearity will play an important role in the evaluation of wave-induced seabed response. In this paper, we include dynamic soil behavior and wave non-linearity into new analytical models. Based on the analytical solution derived, the effects of wave non-linearity on the wave-induced seabed response with dynamic soil behavior are examined. Numerical results demonstrate the significant effects of wave non-linearity and dynamic soil behavior on the wave-induced effective stresses. The applicable range of dynamic and quasi-static approximations is also clarified for engineering practice.  相似文献   

9.
D.-S. Jeng  H. Zhang   《Ocean Engineering》2005,32(16):1950-1967
The evaluation of the wave-induced liquefaction potential is particularly important for coastal engineers involved in the design of marine structures. Most previous investigations of the wave-induced liquefaction have been limited to two-dimensional non-breaking waves. In this paper, the integrated three-dimensional poro-elastic model for the wave-seabed interaction proposed by [Zhang, H., Jeng, D.-S., 2005. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: I. A sloping seabed. Ocean Engineering 32(5/6), 701–729.] is further extended to simulate the seabed liquefaction potential with breaking wave loading. Based on the parametric study, we conclude: (1) the liquefaction depth due to breaking waves is smaller than that of due to non-breaking waves; (2) the degree of saturation significantly affects the wave-induced liquefaction depth, and no liquefaction occurs in full saturated seabed, and (3) soil permeability does not only significantly affect the pore pressure, but also the shear stresses distribution.  相似文献   

10.
The wave pressure and uplift force due to random waves on a submarine pipeline (resting on bed, partially buried and fully buried) in clayey soil are measured. The influence of various parameters viz., wave period, wave height, water depth, burial depth and consistency index of the soil on wave pressures around and uplift force on the submarine pipeline was investigated. The wave pressures were measured at three locations around the submarine pipeline (each at 120° to the adjacent one). It is found that the wave pressure and uplift force spectrum at high consistency index of the soil is smaller compared to that of low consistency index. Just burying the pipeline (e/D=1.0) in clayey soil reduces the uplift force to less than 60% of the force experienced by a pipeline resting on the seabed (e/D=0.0) for Ic=0.33.  相似文献   

11.
《Coastal Engineering》2001,44(2):153-190
This paper summarizes the results of the European Union Marine Science and Technology (EU MAST) III project “Scour Around Coastal Structures” (SCARCOST). The summary is presented under three headings: (1) Introduction; (2) Flow and scour processes with the subheadings: flow and scour processes around vertical cylinders; flow and scour processes at detached breakwaters; flow and scour processes at submerged breakwaters; and the effect of turbulence on sediment transport; and (3) Sediment behaviour close to the structure with the subheadings: field measurement and analysis of wave-induced pore pressures and effective stresses around a bottom seated cylinder; non-linear soil modelling with respect to wave-induced pore pressures and gradients; wave-induced pressures on the bottom for non-linear coastal waves, including also wave kinematics; development of a numerical model (linear soil modelling) to calculate wave-induced pore pressures—the effect of liquefaction on sediment transport; penetration of blocks in non-consolidated fine soil; and cyclic stiffness of loose sand.The paper also includes a discussion of the role of scale effects in laboratory testing and the applicability of the results obtained in supporting engineering design.  相似文献   

12.
To simulate the wave-induced response of coupled pore fluids and a solid skeleton in shallow water, a set of solutions with different formulations (fully dynamic, partly dynamic, and quasi-static) corresponding to each soil behavior assumption is presented. To deal with Jacobian elliptic functions involved in the cnoidal theory, a Fourier series approximation is adopted for expanding the boundary conditions on the seabed surface. The parametric study indicates the significant effect of nonlinearity for shallow water wave, which also enhances the effect of soil characteristics. The investigation of the applicability of reduced formulations reveals the necessity of a partly or even fully dynamic formulation for the wave-induced seabed response problem in shallow water, especially for thickened seabed. The analysis of liquefaction in the seabed indicates that the maximum depth of liquefaction is shallower, and the width of liquefaction is broader under cnoidal wave loading. The present analytical model can provide more reasonable result for the wave-induced seabed response in the range of shallow water wave.  相似文献   

13.
Models based on the theoretical framework of soil mechanics are presented to evaluate storm wave-induced silty seabed instability and geo-hazards through a case study in the Yellow River delta. First, the transient and residual mechanisms of wave-induced pore pressure are analyzed. Three typical models (i.e., elastic model, pore pressure development mode and elasto-plastic model) are proposed to calculate wave-induced stresses in the seabed. Next, mechanisms and calculation methods of wave-induced seabed instability modes such as scour, liquefaction, seepage instability and shear slide are proposed. Typical results of storm wave-induced excess pore pressure and seabed instability are given and relevant discussions are made. At last, the formation mechanism of geo-hazards in the Yellow River delta is analyzed based on the proposed mechanism and calculated results. Results and analysis indicate that both transient and residual mechanisms are important to storm wave-induced response of silty seabed and hence the elasto-plastic model is more appropriate. Complete liquefaction does not happen, while other types of instability occur mostly within 2–6 m under the seabed surface. Wave-induced scour, seepage instability and shear slide are all possible instability modes under the 1-year storm waves, and scour is predominant for the 50-year storm waves. The formation mechanism of geo-hazards such as shallow slide and storm wave reactivation, pockmarks, silt flow and gully, disturbed stratum and hard crust in the Yellow River are well explained based on the proposed mechanisms and calculated results of storm wave-induced silty seabed instability.  相似文献   

14.
This paper presents an analysis of pore pressure around a caisson-type breakwater subjected to dynamic wave loading. Unlike previous investigations for wave-seabed-caisson interaction, cross-anisotropic soil behaviour is considered in this paper. Based on a linear poro-elastic theory, a finite element model is developed. A parametric study related to the effects of wave parameters, soil characteristics and geometry of caisson and rubble mound base on the pore pressure around a caisson is performed. The numerical results indicate that the effects of anisotropic soil behaviour on the wave-induced pore pressure in a sandy bed beneath a caisson are not negligible.  相似文献   

15.
Response of a porous seabed around breakwater heads   总被引:1,自引:0,他引:1  
J. Li  D.-S. Jeng   《Ocean Engineering》2008,35(8-9):864-886
The evaluation of wave-induced pore pressures and effective stresses in a porous seabed near a breakwater head is important for coastal engineers involved in the design of marine structures. Most previous studies have been limited to two-dimensional (2D) or three-dimensional (3D) cases in front of a breakwater. In this study, we focus on the problem near breakwater heads that consists of incident, reflected and diffracted waves. Both wave-induced oscillatory and residual liquefactions will be considered in our new models. The mistake in the previous work [Jeng, D.-S., 1996. Wave-induced liquefaction potential at the tip of a breakwater. Applied Ocean Research 18(5), 229–241] for oscillatory mechanism is corrected, while a new 3D boundary value problem describing residual mechanism is established. A parametric study is conducted to investigate the influences of several wave and soil parameters on wave-induced oscillatory and residual liquefactions around breakwater heads.  相似文献   

16.
Wave induced forces around buried pipelines   总被引:1,自引:0,他引:1  
This work refers to an experimental investigation carried out to analyze wave induced pressures on a pipeline buried in a permeable seabed. In this investigation, the model tests were performed on a pipeline buried in the soil test bed. The wave flume used was 30 m long, 2 m wide and 1.7 m deep, 96 number of tests were conducted with waves generated for different wave heights. A pipeline 200 mm in diameter was buried in the sandy bed at different burial depth ratios. The pipeline was laid perpendicular to the wave direction, pressure was measured with 12 transducers along the outer circumference of the pipeline. The results show that wave induced pressures are significantly controlled by the wave period analyzed in terms of the scattering parameter (ka). Higher pressures were recorded at the top and the lower pressures were recorded at the bottom.  相似文献   

17.
波浪作用下孔隙海床-管线动力相互作用分析   总被引:1,自引:0,他引:1  
波浪作用下海床中的孔隙水压力与有效应力是影响海底管线稳定性的主要因素。然而,在目前的海床响应分析中一般将管线假定为刚性,并不能合理地考虑海床与管线之间的相互作用效应,同时也没有考虑土体和管线加速度对海床动力响应的惯性影响,从而无法确定由此所引起的管线内应力。为此考虑管线的柔性,分别采用饱和孔隙介质的Biot动力固结理论和弹性动力学理论列出了海床与管线的控制方程,进而采用摩擦接触理论考虑海床与管线之间的相互作用效应,基于有限元方法建立了海床-管线相互作用的计算模型及其数值算法。通过变动参数对比计算讨论了管线几何尺寸、海床土性参数对波浪所引起的管线周围海床孔隙水压力和管线内应力的影响。  相似文献   

18.
In this paper, a finite difference scheme with an efficient 2-D numerical wave absorber for solving the extended Boussinesq equations as derived by Nwogu (Nwogu, O., 1993. Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterway, Port, Coastal and Ocean Engineering, ASCE 119, 618–638) is proposed. The alternate direction iterative method combined with an efficient predictor-corrector scheme are adopted for the numerical solution of the governing differential equations. To parameterize the contribution of unresolved small-scale motions, the philosophy of the large eddy simulation is applied on the horizontal plane. The proposed method is verified by two test cases where experimental data are available for comparison. The first case is wave diffraction around a semi-infinite breakwater studied by Briggs et al. (Briggs, M.J., Thompson, E.F., Vincent, C.L., 1995. Wave diffraction around breakwater. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE 121, 23–35). The other case is wave concentration by a navigation channel as reported by Yu et al. (Yu, Y.-X., Liu, S.-X., Li, Y.S., Wai, O.W.H., 2000. Refraction and diffraction of random waves through breakwater. Ocean Engineering 27, 489–509). Numerical results agree very well with the corresponding experimental data in both cases.  相似文献   

19.
Vertical variations of wave-induced radiation stress tensor   总被引:3,自引:0,他引:3  
INTRODUcrIONThe concept of radiation stress was deve1oPed by tonguet--Higgins and Stewart (1964 ),who intreduced the definition of radiation stress as the excess mornentum due to the presence ofwaves, on the basis of time-averaged laws of Newtonian fluid mechanics and the assmption ofa unifOrm velocity distribution over depth. Subequently, the theory has been applied success-fully in the investigation of phenomena such as wave set-up and set--down (Bowen et al.,l968), longshore currents …  相似文献   

20.
One of the important design considerations for marine structures situated on sand deposits is the potential for instability caused by the development of excess pore pressure as a result of wave loading. A build-up of excess pore pressure may lead to initial liquefaction. The current practice of liquefaction analysis in marine deposits neglects the effects of structures over seabed deposits. However, analyses both in terrestrial and marine deposits have shown that the presence of a structure, depending on the nature of the structure and initial soil conditions, may decrease or increase the liquefaction potential of underlying deposits. In the present study, a wave-induced liquefaction analysis is carried out using mechanisms similar to earthquake-induced liquefaction. The liquefaction potential is first evaluated using wave-induced liquefaction analysis methods for a free field. Then by applying a structure force on the underlying sand deposits, the effect of the structure on the liquefaction potential is evaluated. Results showed that depending on the initial density of the sand deposits and different structures, water depths and wave characteristics, the presence of a structure may increase or decrease the liquefaction potential of the underlying sand deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号