首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seabed instability caused by soil liquefaction due to build-up of excess pore pressure within the sedimentary seabed represents a serious threat to coastal structures. Models of varying sophistication exist for predicting the liquefaction process but most previous calculations are limited to regular waves while the real waves are random. In this study, a numerical study of liquefaction potential of a sand bed under narrow-band random waves is carried out employing ensemble modelling techniques. The aim of the work is to investigate the effect of random waves on excess pore pressure build-up and liquefaction processes and study the probability distribution of the maximum liquefaction depth. The computational results using a 1D liquefaction model indicate that the random wave-induced liquefaction can be much deeper than that of the corresponding regular waves with the largest individual waves in the random wave time series playing a dominant role in determining the maximum liquefaction depth. It is also found that the time for the maximum liquefaction depth to be reached can vary considerably from one random wave series to another, which suggests that in random waves notable densification may occur within the same timeframe as that for liquefaction.  相似文献   

2.
D.-S. Jeng  H. Zhang   《Ocean Engineering》2005,32(16):1950-1967
The evaluation of the wave-induced liquefaction potential is particularly important for coastal engineers involved in the design of marine structures. Most previous investigations of the wave-induced liquefaction have been limited to two-dimensional non-breaking waves. In this paper, the integrated three-dimensional poro-elastic model for the wave-seabed interaction proposed by [Zhang, H., Jeng, D.-S., 2005. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: I. A sloping seabed. Ocean Engineering 32(5/6), 701–729.] is further extended to simulate the seabed liquefaction potential with breaking wave loading. Based on the parametric study, we conclude: (1) the liquefaction depth due to breaking waves is smaller than that of due to non-breaking waves; (2) the degree of saturation significantly affects the wave-induced liquefaction depth, and no liquefaction occurs in full saturated seabed, and (3) soil permeability does not only significantly affect the pore pressure, but also the shear stresses distribution.  相似文献   

3.
波浪作用下粉质土海床的液化是影响海上平台、海底管线等海洋构筑物安全的灾害之一。在进行构筑物设计中应考虑海床液化的深度问题,而液化土体对下部海床的界面波压力是计算海床孔隙水压力增长以及液化深度的重要参量。本文基于波致粉土海床自上而下的渐进液化模式,利用双层流体波动理论,推导了考虑海床土体黏性的海床界面波压力表达式,并与不考虑黏性时的界面波压力进行了比较分析。结果表明,计算液化后土体界面波压力时,是否考虑液化土体的黏性对结果影响较大,进而可能影响粉质土海床液化深度的确定。  相似文献   

4.
The evaluation of seabed response under wave loading is important for prediction of stability of foundations of offshore structures. In this study, a stochastic finite element model which integrates the Karhunen-Loève expansion random field simulation and finite element modeling of wave-induced seabed response is established. The wave-induced oscillatory response in a spatially random heterogeneous porous seabed considering cross-correlated multiple soil properties is investigated. The effects of multiple spatial random soil properties, correlation length and the trend function (the relation of the mean value versus depth) on oscillatory pore water pressure and momentary liquefaction are discussed. The stochastic analyses show that the uncertainty bounds of oscillatory pore water pressure are wider for the case with multiple spatially random soil properties compared with those with the single random soil property. The mean pore water pressure of the stochastic analysis is greater than the one obtained by the deterministic analysis. Therefore, the average momentary liquefaction zone in the stochastic analysis is shallower than the deterministic one. The median of momentary liquefaction depth generally decreases with the increase of vertical correlation length. When the slope of the trend function increases, the uncertainty of pore water pressure is greatly reduced at deeper depth of the seabed. Without considering the trend of soil properties, the wave-induced momentary liquefaction potential may be underestimated.  相似文献   

5.
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-lineafity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.  相似文献   

6.
波浪作用下单桩基础周围海床液化机制研究   总被引:1,自引:1,他引:0  
建立波浪作用下单桩周围三维海床动力响应模型,考虑自重影响下的海床长时间固结过程。采用已有物理模型试验数据对模型进行验证,证实其具有较好的适用性。模拟波浪作用下单桩周围三维海床液化区域,通过定量分析超孔隙水压力和土体初始有效应力的变化,讨论单桩插入深度对海床液化的影响机制。研究表明,单桩插入深度发生变化时,土体初始有效应力对海床液化的影响要大于超孔隙水压力,且影响程度随着插入深度的增加而逐渐增大。  相似文献   

7.
The failure of marine structures is often attributed to liquefaction in loose sand deposits that are subjected to ocean waves. In this study, a two-dimensional integrated numerical model is developed to characterize the liquefaction behaviours of loosely deposited seabed foundations under various types of ocean waves. In the present model, Reynolds-Averaged Navier–Stokes (RANS) equations are used to simulate the surface wave motion, and Biot's consolidation equations are used to link the solid-pore fluid interactions in a porous medium. A poro-elasto-plastic solution is used to reproduce foundation behaviour under cyclic shearing. Unlike previous investigations, both oscillatory and residual soil responses were considered; they are coupled in an instantaneous approach. Verification of the model results to the previous centrifugal wave tests is carried out, obtaining fairly good agreement. Numerical examples show that foundation behaviour under various types of wave loading, particularly standing waves or a solitary wave, embodies a completely two-dimensional process in terms of residual pore pressure development. The parametric studies demonstrate that liquefaction caused by the build-up of pore pressures is more likely to occur in loosely deposited sand foundations with poor drainage and under large waves.  相似文献   

8.
Abstract

The excess pore pressure accumulation is a key factor when estimating the formation mechanism of large pockmarks, as it determines the liquefaction potential of marine sediments due to water waves. The governing equations for excess pore pressure may have different forms for various types of sediments and then shall reflect the cyclic plasticity of the soil. For water waves propagating over a porous seabed, the liquefaction area induced by waves is generally progressive, which indicates that the liquefaction area will move forward following the wave train. Therefore, the excess pore pressure accumulation can be used to explain the occurrence of the large pockmarks, but the dimension of the pockmark may be related to the heterogeneity of sediment or the wave properties affected by the topography in the subaqueous Yellow River Delta.  相似文献   

9.
Models based on the theoretical framework of soil mechanics are presented to evaluate storm wave-induced silty seabed instability and geo-hazards through a case study in the Yellow River delta. First, the transient and residual mechanisms of wave-induced pore pressure are analyzed. Three typical models (i.e., elastic model, pore pressure development mode and elasto-plastic model) are proposed to calculate wave-induced stresses in the seabed. Next, mechanisms and calculation methods of wave-induced seabed instability modes such as scour, liquefaction, seepage instability and shear slide are proposed. Typical results of storm wave-induced excess pore pressure and seabed instability are given and relevant discussions are made. At last, the formation mechanism of geo-hazards in the Yellow River delta is analyzed based on the proposed mechanism and calculated results. Results and analysis indicate that both transient and residual mechanisms are important to storm wave-induced response of silty seabed and hence the elasto-plastic model is more appropriate. Complete liquefaction does not happen, while other types of instability occur mostly within 2–6 m under the seabed surface. Wave-induced scour, seepage instability and shear slide are all possible instability modes under the 1-year storm waves, and scour is predominant for the 50-year storm waves. The formation mechanism of geo-hazards such as shallow slide and storm wave reactivation, pockmarks, silt flow and gully, disturbed stratum and hard crust in the Yellow River are well explained based on the proposed mechanisms and calculated results of storm wave-induced silty seabed instability.  相似文献   

10.
Abstract

An elastoplastic, dynamic, finite-difference method was applied to study the effects of nonlinear seismic soil–pile interaction on the liquefaction potential of marine sand with piles. The developed model was well validated using the centrifuge test. The results showed that acceleration, bending moment, and excess pore water pressure complied well with centrifuge test results. The effect of different affecting parameters on liquefaction potential was investigated using parametric study. Using a sensitivity analysis, the pile embedment parameter was shown to be the most influential parameter. Finally, applying the evolutionary polynomial regression technique, a new model for predicting the liquefaction potential was presented.  相似文献   

11.
Wave-induced liquefaction in a porous seabed around submarine pipeline may cause catastrophic consequences such as large horizontal displacements of pipelines on the seabed, sinking or floatation of buried pipelines. Most previous studies in relation to the wave and seabed interactions with embedded pipeline dealt with the wave-induced instaneous seabed response and possible resulting momentary liquefaction (where the soil is liquefied instantaneously during the passage of a wave trough), using theory of poro-elasticity. Studies for the interactions between a buried pipeline and a soil undergoing build-up of pore pressure and residual liquefaction have been comparatively rare. In this paper, this complicated process was investigated by using a new developed integrated numerical model with RANS (Reynolds averaged Navier–Stokes) equations used for governing the incompressible flow in the wave field and Biot consolidation equations used for linking the solid–pore fluid interactions in a porous seabed with embedded pipeline. Regarding the wave-induced residual soil response, a two-dimensional poro-elastoplastic solution with the new definition of the source term was developed, where the pre-consolidation analysis of seabed foundation under gravitational forces including the body forces of a pipeline was incorporated. The proposed numerical model was verified with laboratory experiment to demonstrate its accuracy and effectiveness. The numerical results indicate that residual liquefaction is more likely to occur in the vicinity of the pipeline compared to that in the far-field. The inclusion of body forces of a pipeline in the pre-consolidation analysis of seabed foundation significantly affects the potential for residual liquefaction in the vicinity of the pipeline, especially for a shallow-embedded case. Parametric studies reveal that the gradients of maximum liquefaction depth with various wave and soil characteristics become steeper as pipeline burial depth decreases.  相似文献   

12.
Response of a porous seabed around breakwater heads   总被引:1,自引:0,他引:1  
J. Li  D.-S. Jeng   《Ocean Engineering》2008,35(8-9):864-886
The evaluation of wave-induced pore pressures and effective stresses in a porous seabed near a breakwater head is important for coastal engineers involved in the design of marine structures. Most previous studies have been limited to two-dimensional (2D) or three-dimensional (3D) cases in front of a breakwater. In this study, we focus on the problem near breakwater heads that consists of incident, reflected and diffracted waves. Both wave-induced oscillatory and residual liquefactions will be considered in our new models. The mistake in the previous work [Jeng, D.-S., 1996. Wave-induced liquefaction potential at the tip of a breakwater. Applied Ocean Research 18(5), 229–241] for oscillatory mechanism is corrected, while a new 3D boundary value problem describing residual mechanism is established. A parametric study is conducted to investigate the influences of several wave and soil parameters on wave-induced oscillatory and residual liquefactions around breakwater heads.  相似文献   

13.
《Coastal Engineering》2001,44(2):153-190
This paper summarizes the results of the European Union Marine Science and Technology (EU MAST) III project “Scour Around Coastal Structures” (SCARCOST). The summary is presented under three headings: (1) Introduction; (2) Flow and scour processes with the subheadings: flow and scour processes around vertical cylinders; flow and scour processes at detached breakwaters; flow and scour processes at submerged breakwaters; and the effect of turbulence on sediment transport; and (3) Sediment behaviour close to the structure with the subheadings: field measurement and analysis of wave-induced pore pressures and effective stresses around a bottom seated cylinder; non-linear soil modelling with respect to wave-induced pore pressures and gradients; wave-induced pressures on the bottom for non-linear coastal waves, including also wave kinematics; development of a numerical model (linear soil modelling) to calculate wave-induced pore pressures—the effect of liquefaction on sediment transport; penetration of blocks in non-consolidated fine soil; and cyclic stiffness of loose sand.The paper also includes a discussion of the role of scale effects in laboratory testing and the applicability of the results obtained in supporting engineering design.  相似文献   

14.
Wave-induced seabed instability in front of a breakwater   总被引:2,自引:0,他引:2  
D.S. Jeng 《Ocean Engineering》1997,24(10):887-917
The wave-induced soil response in a porous seabed has become an important factor for the stability of offshore facilities, because many marine structures may have failed due to seabed instability and concomitant subsidence. An analytical solution is presented for the wave-induced soil response under the action of a three-dimensional wave system. Based on this general solution, the mechanism of seabed instability is then investigated. The general solutions for pore pressure and effective stresses are readily reducible to two dimensions for progressive waves, and are compared to theoretical and experimental work available. Some dominant factors affecting the wave-induced seabed instability are discussed; including permeability, seabed thickness and degree of saturation.  相似文献   

15.
栾一晓 《海洋学报》2017,39(9):101-109
近海区域广泛分布着第四纪新沉积的松散海洋土,波浪荷载作用下松散海床会发生液化进而对近海结构物的稳定性存在巨大威胁。本文采用中国科学院流体-结构-海床相互作用数值计算模型FSSI-CAS 2D,选用Pastor-Zienkiewicz-Mark Ⅲ(PZⅢ)弹塑性本构研究了波浪诱发的松散海床液化问题。分析了波浪荷载引起的松散海床内超孔隙水压力、有效应力以及应力角的时程变化特性,并预测了松散海床的渐进液化过程。计算结果表明,波浪荷载作用下松散海床内残余孔压会累积增长,海床表面最先发生液化,然后逐渐向下发展至液化最大深度。同时指出海床内超孔隙水压力的竖向分布特征和应力角的变化时程均可以作为判断海床液化的间接参数。最后,通过应力状态分析,讨论了海床渐进式液化的发展过程和趋势。  相似文献   

16.
A series of regular wave experiments have been done in a large-scale wave flume to investigate the wave-induced pore pressure around the submarine shallowly embedded pipelines.The model pipelines are buried in three kinds of soils,including gravel,sand and silt with different burial depth.The input waves change with height and period.The results show that the amplitudes of wave-induced pore pressure increase as the wave period increase,and decay from the surface to the bottom of seabed.Higher pore pressures are recorded at the pipeline top and the lower pore pressures at the bottom,especially in the sand seabed.The normalized pressure around pipeline decreases as the relative water depth,burial depth or scattering parameters increase.For the silt seabed,the wavelet transform has been successfully used to analyze the signals of wave-induced pore pressure,and the oscillatory and residual pore pressure can be extracted by wavelet analysis.Higher oscillatory pressures are recorded at the bottom and the lower pressures at the top of the pipeline.However,higher residual pressures are recorded at the top and the lower pressures at the bottom of the pipeline.  相似文献   

17.
A seabed instrument called Lancelot has been developed to measure pore pressure characteristics within potentially unstable marine sediment deposits, in any water depth. An estimate of the coefficient of consolidation can be obtained from the sediment pore pressure dissipation response that occurs following penetration into the seabed. This data can be used to calculate the coefficient of hydraulic conductivity, which is useful in analyzing the seepage velocity of pore fluids moving within the sediment mass. Pore-water pressures in excess of the normal hydrostatic profile are detected and used in static and dynamic liquefaction analyses, with a view toward understanding the origin of unusual seabed features such as pockmarks, as well as short-term instability caused by wave loading. An example of static liquefaction due to seepage stress is given for sites in and adjacent to the well-known 1929 Grand Banks debris flow, along with an example of incomplete liquefaction caused by dynamic wave loading within Miramichi Inner Harbor, New Brunswick. The adoption of in situ measurement techniques is shown to produce data of a quality not normally obtainable from recovered core samples, due to pressure relief and sampling disturbance effects.  相似文献   

18.
It is common practice to compute wave-induced loads on the immersed surface of gravity structures exposed to the wave motion and disregard the pore-water pressure variation on the foundation surface. However, when the soil is porous, wave-induced pressures propagate within the soil under the structure and result in a rather significant contribution to overall loads. This paper describes a practical method for numerical modeling of the pore pressure under a gravity platform foundation for compressible water and a rigid, but porous soil. The porous soil may be bounded by an impermeable horizontal layer at some arbitrary depth.

The paper outlines the basic boundary element procedure for pore pressure analysis and presents numerical results for a typical gravity structure as well as results for comparison with an existing analytical solution for a vertical circular cylinder.  相似文献   


19.
In the last few decades, considerable efforts have been devoted to the phenomenon of wave-induced liquefactions, because it is one of the most important factors for analysing the seabed and designing marine structures. Although numerous studies of wave-induced liquefaction have been carried out, comparatively little is known about the impact of liquefaction on marine structures. Furthermore, most previous researches have focused on complicated mathematical theories and some laboratory work. In the present study, a data dependent approach for the prediction of the wave-induced liquefaction depth in a porous seabed is proposed, based on a multi-artificial neural network (MANN) method. Numerical results indicate that the MANN model can provide an accurate prediction of the wave-induced maximum liquefaction depth with 10% of the original database. This study demonstrates the capacity of the proposed MANN model and provides coastal engineers with another effective tool to analyse the stability of the marine sediment.  相似文献   

20.
作为一种常见的近海海底灾害地质现象,波致海床液化严重威胁着黄河三角洲地区海底工程设施的安全。粉质海床液化后,海底粉土的结构、物理和力学性质均发生了改变,研究该变化规律尤其是评估液化后海底粉土再次发生液化的可能性具有重要的理论意义和应用价值。本文利用室内动三轴仪对取自黄河三角洲已液化和未液化海底粉土开展了液化试验对比研究,讨论了已液化和未液化海底粉土在孔压增长模式和轴向动应变发展趋势方面的异同,对比分析了二者的液化势。研究结果表明:应变标准比孔压标准更适用于评估黄河三角洲地区海底粉土的液化势;孔压和动应变发展模式均表明与未液化粉土相比,已液化海底粉土再次发生液化的抗力有所提高;已液化和未液化海底粉土归一化孔压比ud3与循环加载次数比N/Nf间相关关系可采用双曲线或指数函数模型进行定量化描述;未液化海底粉土的波致液化临界循环应力比约为0.20,已液化海底粉土的临界循环应力比约为0.35。研究成果有助于加深对海底粉土波致液化特性的认识,亦可为循环应力历史影响下的土体力学性质研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号