首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
华莹  周香莲  张军 《海洋通报》2017,36(6):644-651
基于广义Biot动力理论和Longuet-Higgins线性叠加模型,构建波浪-海床-管线动态响应的有限元计算模型,求解随机波作用下,多层砂质海床中管线周围土体孔隙水压力和竖向有效应力的分布。采用基于超静孔隙水压力的液化判断准则,得出液化区的最大深度及横向范围,从而判断海床土体液化情况。考虑海洋波浪的随机性,将海床视为多孔介质,海床动态响应计算模型采用u-p模式,孔隙水压力和位移视为场变量。并考虑孔隙水的可压缩性、海床弹性变形、土体速度、土体加速度以及流体速度的影响,忽略孔隙流体惯性作用。参数研究表明:土体渗透系数、饱和度以及有效波高等参数对海床土体孔隙水压力、竖向有效应力和液化区域分布有显著影响。  相似文献   

2.
海底管道-土体-水体相互作用对土体和管道的稳定性具有重要影响,但波浪作用下海底管道对其周围土体性质的影响仍有待深入研究。通过一系列室内波浪水槽试验,研究了波浪荷载和管道振动作用下海床土体内部的超孔隙水压力响应。实验结果表明,管道的铺设会增大海底土体超孔隙水压力累积程度,当管道发生振动时,海床土体超孔隙水压力累积程度进一步增大,从而增加了土体液化势。此外,波高增加也会导致海床土体的超孔隙水压力累积程度增大。本文研究成果对管道-土体相互作用研究和海底管道维护具有指导意义。  相似文献   

3.
栾一晓 《海洋学报》2017,39(9):101-109
近海区域广泛分布着第四纪新沉积的松散海洋土,波浪荷载作用下松散海床会发生液化进而对近海结构物的稳定性存在巨大威胁。本文采用中国科学院流体-结构-海床相互作用数值计算模型FSSI-CAS 2D,选用Pastor-Zienkiewicz-Mark Ⅲ(PZⅢ)弹塑性本构研究了波浪诱发的松散海床液化问题。分析了波浪荷载引起的松散海床内超孔隙水压力、有效应力以及应力角的时程变化特性,并预测了松散海床的渐进液化过程。计算结果表明,波浪荷载作用下松散海床内残余孔压会累积增长,海床表面最先发生液化,然后逐渐向下发展至液化最大深度。同时指出海床内超孔隙水压力的竖向分布特征和应力角的变化时程均可以作为判断海床液化的间接参数。最后,通过应力状态分析,讨论了海床渐进式液化的发展过程和趋势。  相似文献   

4.
波浪作用下粉质土海床的液化是影响海上平台、海底管线等海洋构筑物安全的灾害之一。在进行构筑物设计中应考虑海床液化的深度问题,而液化土体对下部海床的界面波压力是计算海床孔隙水压力增长以及液化深度的重要参量。本文基于波致粉土海床自上而下的渐进液化模式,利用双层流体波动理论,推导了考虑海床土体黏性的海床界面波压力表达式,并与不考虑黏性时的界面波压力进行了比较分析。结果表明,计算液化后土体界面波压力时,是否考虑液化土体的黏性对结果影响较大,进而可能影响粉质土海床液化深度的确定。  相似文献   

5.
单桩基础周围斜坡海床中的波致孔隙水压力响应与纯斜坡海床存在较大差异。为了解不同波高、波周期条件下,单桩基础周围波浪传播变形及其对斜坡海床孔压振荡响应的影响,在波浪水槽末端铺设了长6 m、坡度1∶16的斜坡砂床进行试验。通过改变桩身位置和波浪参数,测量斜坡段各处波面形态,采集单桩周围孔隙水压力,分析了桩身位置及波浪参数对斜坡海床孔压响应的影响。结果表明:相同入射波条件下,随距坡脚水平距离增加,波高、近底流速和桩周孔隙水压力幅值都随之增大;桩周孔隙水压力幅值分布规律为:桩前孔压幅值明显大于桩侧与桩后孔压幅值。当Keulegan-Carpenter数大于6时,随着波高和波周期增大,马蹄涡产生的负压区使得桩侧海床孔隙水压力与纯斜坡海床孔隙水压力差值迅速增加。  相似文献   

6.
波浪会对海床产生反复的作用力,由此引起的土体颗粒间孔隙水压力变化是造成土体液化的主要原因。使用自行研发的孔压监测设备,对黄河口埕岛海域易液化区海底孔压进行了长时间、高精度的观测,并对孔隙水压力、波高以及潮位间的关系进行分析。监测结果显示,本次监测条件下波浪最大作用深度介于0.5~1.5 m之间,超过该作用深度后孔压无明显变化。土体内部孔隙水压力的变化主要由潮位和波高决定,潮位的作用可使孔压缓慢平滑的变化且对超孔压无影响;波高的作用可使孔压快速、剧烈地振荡并导致超孔压的出现。  相似文献   

7.
王岳  刘春  刘晓磊  刘辉  李亚沙 《海洋学报》2021,43(11):88-95
海床土层在波浪的循环荷载作用下会逐渐累积孔压,降低土层的稳定性,并威胁海上工程。为了研究孔隙水压力的累积机制,本文提出离散元孔隙密度流方法,并改进研发离散元分析软件MatDEM,实现了海床沉积物孔压的累积过程模拟。基于现场试验装置及土体力学参数建立离散元模型,通过对比试验和数值模拟结果发现:对海床沉积物施加波浪荷载后,表层土体中产生较高孔压,并逐渐向深层传递;在循环波浪荷载作用下,土颗粒间孔压累积范围逐渐增加;当孔压累积时间足够长时,土层中孔压收敛于所施加最大荷载与最小荷载的平均值,此时若孔压达到初始有效应力,土体将发生液化,内部土颗粒成为再悬浮沉积物;在周期性波浪荷载作用下,土颗粒液化悬浮后发生移动,浅层颗粒位移量大,土体整体表现为圆弧形移动。  相似文献   

8.
海床不稳定性的现象很多都是海底液化引起的。根据之前的研究,粉土在液化之后有效应力会依然存在,关于波浪作用下海床液化之后有效应力变化的研究很少。采用波浪水槽实验,在未液化和液化2种情况下,分别施加不同波高的波浪,对底床各层位土体孔隙水压力进行采集,并对比研究。实验结果表明,液化后有效应力的相对值相对于液化前有很明显的减小,并且在深度上表现出显著的差异性,这种差异性随着波高的增大而减小。当相同深度处同一种波高作用一定时间时,有效应力会出现极大值,然后有效应力会减小。  相似文献   

9.
波浪作用下黄河口粉土海床粗化室内模型试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用室内水槽模型实验,对黄河口粉质海床土在波浪荷载下的粗化现象进行了研究,试验中观测了土体表层沉积物的变化,测量了土体内孔隙水压力及土的粒径变化,结合高密度电阻率法探测结果分析探讨了波浪作用下土体粗化机理.研究表明,波浪作用会使粉质海床土发生明显的粗化现象;土体液化是波浪导致粉土粗化的首要条件;土体内超孔隙水压力累积及消散是细颗粒物质迁移的主要动力.该结果对于研究黄河口粉土海床地貌的形成有一定参考意义.  相似文献   

10.
波浪作用下孔隙海床-管线动力相互作用分析   总被引:1,自引:0,他引:1  
波浪作用下海床中的孔隙水压力与有效应力是影响海底管线稳定性的主要因素。然而,在目前的海床响应分析中一般将管线假定为刚性,并不能合理地考虑海床与管线之间的相互作用效应,同时也没有考虑土体和管线加速度对海床动力响应的惯性影响,从而无法确定由此所引起的管线内应力。为此考虑管线的柔性,分别采用饱和孔隙介质的Biot动力固结理论和弹性动力学理论列出了海床与管线的控制方程,进而采用摩擦接触理论考虑海床与管线之间的相互作用效应,基于有限元方法建立了海床-管线相互作用的计算模型及其数值算法。通过变动参数对比计算讨论了管线几何尺寸、海床土性参数对波浪所引起的管线周围海床孔隙水压力和管线内应力的影响。  相似文献   

11.
D.-S. Jeng  H. Zhang   《Ocean Engineering》2005,32(16):1950-1967
The evaluation of the wave-induced liquefaction potential is particularly important for coastal engineers involved in the design of marine structures. Most previous investigations of the wave-induced liquefaction have been limited to two-dimensional non-breaking waves. In this paper, the integrated three-dimensional poro-elastic model for the wave-seabed interaction proposed by [Zhang, H., Jeng, D.-S., 2005. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: I. A sloping seabed. Ocean Engineering 32(5/6), 701–729.] is further extended to simulate the seabed liquefaction potential with breaking wave loading. Based on the parametric study, we conclude: (1) the liquefaction depth due to breaking waves is smaller than that of due to non-breaking waves; (2) the degree of saturation significantly affects the wave-induced liquefaction depth, and no liquefaction occurs in full saturated seabed, and (3) soil permeability does not only significantly affect the pore pressure, but also the shear stresses distribution.  相似文献   

12.
Seabed instability caused by soil liquefaction due to build-up of excess pore pressure within the sedimentary seabed represents a serious threat to coastal structures. Models of varying sophistication exist for predicting the liquefaction process but most previous calculations are limited to regular waves while the real waves are random. In this study, a numerical study of liquefaction potential of a sand bed under narrow-band random waves is carried out employing ensemble modelling techniques. The aim of the work is to investigate the effect of random waves on excess pore pressure build-up and liquefaction processes and study the probability distribution of the maximum liquefaction depth. The computational results using a 1D liquefaction model indicate that the random wave-induced liquefaction can be much deeper than that of the corresponding regular waves with the largest individual waves in the random wave time series playing a dominant role in determining the maximum liquefaction depth. It is also found that the time for the maximum liquefaction depth to be reached can vary considerably from one random wave series to another, which suggests that in random waves notable densification may occur within the same timeframe as that for liquefaction.  相似文献   

13.
The evaluation of seabed response under wave loading is important for prediction of stability of foundations of offshore structures. In this study, a stochastic finite element model which integrates the Karhunen-Loève expansion random field simulation and finite element modeling of wave-induced seabed response is established. The wave-induced oscillatory response in a spatially random heterogeneous porous seabed considering cross-correlated multiple soil properties is investigated. The effects of multiple spatial random soil properties, correlation length and the trend function (the relation of the mean value versus depth) on oscillatory pore water pressure and momentary liquefaction are discussed. The stochastic analyses show that the uncertainty bounds of oscillatory pore water pressure are wider for the case with multiple spatially random soil properties compared with those with the single random soil property. The mean pore water pressure of the stochastic analysis is greater than the one obtained by the deterministic analysis. Therefore, the average momentary liquefaction zone in the stochastic analysis is shallower than the deterministic one. The median of momentary liquefaction depth generally decreases with the increase of vertical correlation length. When the slope of the trend function increases, the uncertainty of pore water pressure is greatly reduced at deeper depth of the seabed. Without considering the trend of soil properties, the wave-induced momentary liquefaction potential may be underestimated.  相似文献   

14.
Wave-induced liquefaction in a porous seabed around submarine pipeline may cause catastrophic consequences such as large horizontal displacements of pipelines on the seabed, sinking or floatation of buried pipelines. Most previous studies in relation to the wave and seabed interactions with embedded pipeline dealt with the wave-induced instaneous seabed response and possible resulting momentary liquefaction (where the soil is liquefied instantaneously during the passage of a wave trough), using theory of poro-elasticity. Studies for the interactions between a buried pipeline and a soil undergoing build-up of pore pressure and residual liquefaction have been comparatively rare. In this paper, this complicated process was investigated by using a new developed integrated numerical model with RANS (Reynolds averaged Navier–Stokes) equations used for governing the incompressible flow in the wave field and Biot consolidation equations used for linking the solid–pore fluid interactions in a porous seabed with embedded pipeline. Regarding the wave-induced residual soil response, a two-dimensional poro-elastoplastic solution with the new definition of the source term was developed, where the pre-consolidation analysis of seabed foundation under gravitational forces including the body forces of a pipeline was incorporated. The proposed numerical model was verified with laboratory experiment to demonstrate its accuracy and effectiveness. The numerical results indicate that residual liquefaction is more likely to occur in the vicinity of the pipeline compared to that in the far-field. The inclusion of body forces of a pipeline in the pre-consolidation analysis of seabed foundation significantly affects the potential for residual liquefaction in the vicinity of the pipeline, especially for a shallow-embedded case. Parametric studies reveal that the gradients of maximum liquefaction depth with various wave and soil characteristics become steeper as pipeline burial depth decreases.  相似文献   

15.
Experiments on three types of soil (d50=0.287, 0.057 and 0.034 mm) with pipeline(D=4 cm) either half buried or resting on the seabed under regular wave or combined with current actions were conducted in a large wave flume to investigate characteristics of soil responses. The pore pressures were measured through the soil depth and across the pipeline. When pipeline is present the measured pore pressures in sandy soil nearby the pipeline deviate considerably from that predicted by the poro-elasticity theory. The buried pipeline seems to provide a degree of resistance to soil liquefaction in the two finer soil seabeds. In the silt bed, a negative power relationship was found between maximum values of excess pore pressure pmax and test intervals under the same wave conditions due to soil densification and dissipation of the pore pressure. In the case of wave combined with current, pore pressures in sandy soil show slightly decrease with time, whereas in silt soil, the current causes an increase in the excess pore pressure build-up, especially at the deeper depth. Comparing liquefaction depth with scour depth underneath the pipeline indicates that the occurrence of liquefaction is accompanied with larger scour depth under the same pipeline-bed configuration.  相似文献   

16.
近年来,在各种近海建筑物的建设中,桩基础被越来越广泛地应用。关于海床内桩基各层位对波浪动力响应相位差的研究,国内外学者研究的重点主要集中在海床内各层位孔隙水压力的相位变化。而关于波浪作用下海床各层位土体总压力相位的研究则很少。本研究采用波浪水槽实验,在土床未扰动和土床扰动液化两种工况下,分别施加不同波高的波浪,对底床各层位土体总压力的相位进行对比研究。实验结果表明,当土体未运动时,在渗透性和饱和度均匀的土体中,各层位土体之间不存在相位差。当底床液化后,土体出现显著分层现象,在液化土层和不动土层间存在显著的相位差。此时,总压力振幅呈现先增大后减小的现象,且在床面下-10cm处出现最大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号