首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The Tomino–Bereznyaki ore field lies in the western part of the East Urals volcanic megazone (20–30 km southwest of Chelyabinsk). The commercial Tomino porphyry (Mo, Au)–Cu deposit is localized in the east of the field, within a small mesoabyssal intrusion of quartz–diorite composition. The epithermal Au–Ag Bereznyaki deposit is confined to subvolcanic dioritic porphyrites in the west of the field. The western and eastern parts of the ore field have a tectonic boundary. Granitoids belong to a single volcanoplutonic complex of K–Na-quartz–diorite composition. The U–Pb concordant age of zircons from the ore-bearing dioritic porphyrite of the Tomino and Bereznyaki deposits is 428 ± 3 Ma (MSWD = 0.9) and 427 ± 6 Ma (MSWD = 1.1), respectively. A Silurian absolute age has been established for the Urals porphyry Cu ore-magmatic system for the first time. The diorites and acid metasomatites of both deposits contain a unique three-mica assemblage (Mu, Pa, and Mu0.36Pa0.64). The metasomatized diorites are of similar isotope-petrogeochemical compositions; they have close total REE contents (24–52 ppm) and REE patterns. Their Zr–Hf, Nb–Ta, and La–Ce diagrams show similar trends. The obtained data indicate the close time of formation of the porphyry and epithermal deposits and their probable genetic unity. The vertical evolution of the porphyry Cu column from meso- and hypabyssal to subvolcanic level includes the isotope (Sr, S, and O) crust–mantle interaction. The deposits formed at different depths expose on the modern surface as a result of the block tectonic processes in the ore field.  相似文献   

2.
The Zijinshan ore district occurs as one of the largest porphyry-epithermal Cu–Au–Mo ore systems in South China, including the giant Zijinshan epithermal Cu–Au deposit and the large Luoboling porphyry Cu–Mo deposit. The mineralization is intimately related to Late Mesozoic large-scale tectono-magmatic and hydrothermal events. The Cu–Au–Mo mineralization occurs around intermediate-felsic volcanic rocks and hypabyssal porphyry intrusions. In this study, we summarize previously available Re–Os isotopes, zircon U–Pb age and trace elements, and Sr–Nd–Pb isotope data, and present new Pb–S and Re–Os isotope data and zircon trace elements data for ore-related granitoids from the Zijinshan high-sulfidation epithermal Cu–Au deposit and the Luoboling porphyry Cu–Mo deposit, in an attempt to explore the relationship between the two ore systems for a better understanding of their geneses. The ore-bearing porphyritic dacite from the Zijinshan deposit shows a zircon U-Pb age of 108–106 Ma and has higher zircon Ce4+/Ce3+ ratios (92–1568, average 609) but lower Ti-in-zircon temperatures (588–753 °C, average 666 °C) when compared with the barren intrusions in the Zijinshan ore district. Relative to the Zijinshan porphyritic dacite, the ore-bearing granodiorite porphyry from the Luoboling deposit show a slightly younger zircon U–Pb age of 103 Ma, but has similar or even higher zircon Ce4+/Ce3+ ratios (213–2621, average 786) and similar Ti-in-zircon temperatures (595–752 °C, average 675 °C). These data suggest that the ore-bearing magmatic rocks crystallized from relatively oxidized and hydrous magmas. Combined with the high rhenium contents (78.6–451 ppm) of molybdenites, the Pb and S isotopic compositions of magmatic feldspars and sulfides suggest that the porphyry and ore-forming materials in the Luoboling Cu–Mo deposit mainly originated from an enriched mantle source. In contrast, the ore-bearing porphyritic dacite in the Zijinshan Cu–Au deposit might be derived from crustal materials mixing with the Cathaysia enriched mantle. The fact that the Zijinshan Cu–Au deposit and the Luoboling Cu–Mo deposit show different origin of ore-forming materials and slightly different metallogenic timing indicates that these two deposits may have been formed from two separate magmatic-hydrothermal systems. Crustal materials might provide the dominant Cu and Au in the Zijinshan epithermal deposit. Cu and Au show vertical zoning and different fertility because the gold transports at low oxygen fugacity and precipitates during the decreasing of temperature, pressure and changing of pH conditions. It is suggested that there is a large Cu–Mo potential for the deeper part of the Zijinshan epithermal Cu–Au deposit, where further deep drilling and exploration are encouraged.  相似文献   

3.
金属铼(Re)是支撑航空航天等高科技产业高质量发展的重要原材料,具不可替代性。研究表明,世界上绝大部分的Re都赋存在斑岩型矿床的辉钼矿之中,且Re含量在矿床、矿石、矿物颗粒等不同尺度上均存在较大差异,但目前学术界对导致这些差异的影响因素尚不清楚。本文通过对全球斑岩型Cu(Mo)、Mo(Cu)矿床中Mo品位、辉钼矿的微量元素组成和Re-Os年龄、成矿岩体的化学组成、Sr-Nd同位素等数据的汇总,深入探讨了影响该类矿床辉钼矿中Re含量变化的主要因素。结果显示,Re含量与矿床中钼的平均品位呈负相关,地幔物质的加入可能是形成高Re辉钼矿的基础。本研究证实,辉钼矿Re含量与其成矿时代不具耦合关系,并且Re的含量与辉钼矿沉淀的位置、以及辉钼矿多型之间亦无明显相关性,而可能与成矿岩体的成分、岩浆分异程度、成矿流体的性质、热液蚀变及表生作用过程有关。  相似文献   

4.
Compared to other Mo provinces, few studies focused on the South China Mo Province(SCMP), especially for Early Cretaceous Mo mineralization. The Lufeng porphyry Mo deposit in the SCMP is characterized by disseminated and veinlet-type mineralization in granite porphyry, gneiss, and rhyolite. In this study, six molybdenite samples yield a Re–Os isochron age of 108.0±1.8 Ma, which is consistent with the zircon U–Pb age of the granite porphyry(108.4±0.8 Ma). The coincidence of magmatic and hydrothermal activities indicates that Mo mineralization was associated with the intrusion of granite porphyry during the late Early Cretaceous. A compilation of U–Pb and Re–Os chronological data suggests that an extensive and intensive Mo mineralization event occurred in the SCMP during the late Early Cretaceous. The marked difference in molybdenite Re contents between Cu-bearing(85–536 ppm) and Cu-barren(1.3–59 ppm) Mo deposits of the late Early Cretaceous indicates that the ore-forming materials were derived from strong crust–mantle interactions. Together with regional petrological and geochemical data, this study suggests that late Early Cretaceous Mo mineralization in the SCMP occurred in an extensional setting associated with the roll-back of the Paleo-Pacific slab.  相似文献   

5.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

6.
The Dexing porphyry copper deposit, part of the circum-Pacific porphyry copper ore belt, is the largest porphyry copper deposit in China. We present new LA–ICP–MS zircon U–Pb and molybdenite Re–Os dating, bulk-rock elemental and Sr–Nd–Pb isotopic as well as in situ zircon Hf isotopic geochemistry for these ore-bearing porphyries, in an attempt to better constrain their petrogenesis. LA–ICP–MS zircon U–Pb dating shows that the Dexing porphyries were emplaced in the early Middle Jurassic (~171 Ma); molybdenite Re–Os dating indicates that the associated Cu–Mo mineralization was contemporaneous (~171 Ma) with the igneous intrusion. The rocks are mainly high-K calc-alkaline and show adakitic affinities, including high Sr and low Y and Yb contents, high Sr/Y and La/Yb ratios, and high Mg# (higher than pure crustal melts). These porphyries have initial 87Sr/86Sr ratios of 0.7044?0.7047, ?Nd(T) values of –1.5 to?+0.6, and ?Hf(T) (in situ zircon) values of?+2.6 to?+4.6. They show unusually radiogenic Pb isotopic compositions with initial 206Pb/204Pb ratios up to 18.41 and 207Pb/204Pb up to 15.61. These isotopic compositions are distinctly different from either Pacific MORB or Yangtze lower crust but are similar to the subducting sediments in the western Pacific trenches. Detailed elemental and isotopic data suggest that the Dexing porphyries were emplaced in a continental arc setting coupled with westward subduction of the palaeo-Pacific plate. Partial melting involved the subducted slab (mainly the overlying sediments), with generated melts interacting with the lithospheric mantle wedge, thereby forming the investigated high-K calc-alkaline porphyry magmas.  相似文献   

7.
This is a brief research report about the recently-discovered and currently being explored Dahutang tungsten deposit (or ore field) in northwestern Jiangxi, south-central China. The deposit is located south of the Middle–Lower Yangtze River valley Cu–Au–Mo–Fe porphyry–skarn belt (YRB). The mineralization is genetically associated with Cretaceous porphyritic biotite granite and fine-grained biotite granite and is mainly hosted within a Neoproterozoic biotite granodiorite batholith. The Dahutang ore field comprises veinlets-disseminated (~ 95% of the total reserve), breccia (~ 4%) and wolframite–scheelite quartz vein (~ 1%) ore styles. The mineralization and alteration are close to the pegmatite shell between the Cretaceous porphyritic biotite granite and Neoproterozoic biotite granodiorite and the three styles of ore bodies mentioned above are related to zoned hydrothermal alteration that includes greisenization, K-feldspar alteration, silicification, carbonatization, chloritization and fluoritization arranged in time (early to late) and space (bottom to top).Five samples of molybdenite from the three types of ores have been collected for Re/Os dating. The results show Re/Os model ages ranging from 138.4 Ma to 143.8 Ma, with an isochron age of 139.18 ± 0.97 Ma (MSWD = 2.9). The quite low Re content in molybdenite falls between 0.5 ppm and 7.8 ppm that is indicative of the upper crustal source. This is quite different from molybdenites in the YRB Cu–Au–Mo–Fe porphyry–skarn deposits that contain between 53 ppm and 1169 ppm Re, indicating a mantle source.The Dahutang tungsten system is sub-parallel with the YRB porphyry–skarn Cu–Au–Mo–Fe system. Both are situated in the north margin of the Yangtze Craton and have a close spatial–temporal relationship. This possibly indicates a comparable tectonic setting but different metal sources. Both systems are related to subduction of the Paleo-Pacific plate beneath the Eurasian continent in Early Cretaceous. The Cu–Au–Mo–Fe porphyry–skarn ores are believed genetically related to granitoids derived from the subducting slab, whereas the porphyry W deposits are associated with S-type granitoids produced by remelting of the upper crust by heat from upwelling asthenoshere.  相似文献   

8.
The investigation of melt inclusions in the minerals of volcanic rocks from the massive sulfide deposits of Siberia and the Urals revealed some specific features in the development of their magmatic ore systems. It was shown that the petrochemical and rare earth element compositions of melt inclusions reflect the geodynamic conditions of their formation: island arc conditions for the massive sulfide deposits of Rudny Altai, eastern Tuva, and the Salair Range and a back arc basin environment for the Yaman-Kasy deposit. The silicic melts of inclusions from the volcanic rocks of massive sulfide deposits show some specific features with respect to the contents of volatile components. In all of the ore deposits studied, fluorine content was always low (0.03–0.08 wt %), whereas chlorine content (0.13–0.28 wt %) was higher than the average value for silicic melts (0.17 wt %). There is a strong differentiation of water content in melt inclusions, both between deposits and between various volcanics from a single deposit. Ore-bearing melts show the highest water contents of 3.34–4.07 wt %. High Cu contents in the silicic melts of the Yubileinoe and Kyzyl-Tashtyg deposits (up to 7118 and 3228 ppm, respectively) may indicate the affinity of some ore components to particular silicic magmas. This is supported by the elevated contents of Cu in the porphyry Cu deposits of Romania (Valea Morii), Mongolia (Bayan Ula), and Bolivia. On the other hand, the silicic melts of inclusions from the molybdenum-uranium deposit of the Strel’tsovka ore field show high contents of another group of ore components (U and F).  相似文献   

9.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

10.
The Sanjiang Tethyan Metallogenic Domain (STMD) is an important part of the Tethyan giant metallogenic belt. The Yidun Arc is a part of the STMD in the eastern Tibetan Plateau. Recently, four newly discovered Mo–Cu–(W) ore deposits related to granitic intrusions were found distributed along the north-south strike in the southern Yidun Arc, which are identified as the Xiuwacu, Relin, Hongshan, and Tongchanggou deposits herein. These four deposits formed along high-angle north-northwest or north-west strike-slip faults, with vein-type and porphyry-type Mo–Cu mineralization developed in the intrusions. Molybdenite Re–Os and zircon U–Pb dating together with zircon Hf isotopes and whole-rock geochemistry of the intrusions were studied to discern the relationship between mineralization and magmatism, metallogenesis, and tectonic settings. Molybdenite from skarn-type mineralization at the Hongshan deposit has a Re–Os isochron age of 81.2 ± 2.6 Ma (MSWD = 1.3, n = 5) consistent with previously published zircon U–Pb ages and Re–Os ages of porphyry-type Mo mineralization. These results indicate that the Hongshan is a Late Cretaceous porphyry-skarn Cu–Mo deposit. Zircon U–Pb ages of the granitic intrusions in the Xiuwacu, Relin, and Tongchanggou deposits varying from ~ 87.4 Ma to ~ 82.7 Ma. Combined with published molybdenite Re–Os age spectrum (~ 85 Ma to ~ 81.2 Ma), it is proposed that the Mo–Cu–(W) mineralization in the Shangri-La region is spatially, temporally, and probably genetically related to the Late Cretaceous granitic intrusions. The Relin, Hongshan, and Tongchanggou intrusions have high SiO2 (65.2–70.0 wt.%), Sr (363–905 ppm), Sr/Y (22–72), and La/Yb (37–69) ratios, and low Y (11.6–17.0 ppm) and Yb (0.97–1.59 ppm), which displayed adakitic affinities. Their low MgO (0.66–1.44 wt.%), Mg# (25–46), variable negative zircon εHf(t) values (− 7.9 to − 2.3), and Proterozoic two-stages Hf model ages (TDM2 = 1.13–1.62 Ga) suggest that they were probably dominantly derived from partial melting of thickened lower continental crust. According to the tectonic evolution of the Bangong Meso-Tethys Ocean during the Late Mesozoic, the Late Cretaceous igneous event and mineralization in the Yidun Arc likely formed under a late- or post-collision extensional environment, probably related to the collision between the Lhasa and Qiangtang terranes during the Late Cretaceous.  相似文献   

11.
The Lakange porphyry Cu–Mo deposit within the Gangdese metallogenic belt of Tibet is located in the southern–central part of the eastern Lhasa block, in the Tibetan Tethyan tectonic domain. This deposit is one of the largest identified by a joint Qinghai–Tibetan Plateau geological survey project undertaken in recent years. Here, we present the results of the systematic logging of drillholes and provide new petrological, zircon U–Pb age, and molybdenite Re–Os age data for the deposit. The ore‐bearing porphyritic granodiorite contains elevated concentrations of silica and alkali elements but low concentrations of MgO and CaO. It is metaluminous to weakly peraluminous and has A/CNK values of 0.90–1.01. The samples contain low total REE concentrations and show light REE/heavy REE (LREE/HREE) ratios of 17.51–19.77 and (La/Yb)N values of 29.65–41.05. The intrusion is enriched in the large‐ion lithophile elements (LILE) and depleted in the HREE and high field‐strength elements (HFSE). The ore‐bearing porphyritic granodiorite yielded a Miocene zircon U–Pb crystallization age of 13.58 ± 0.42 Ma, whereas the mineralization within the Lakange deposit yielded Miocene molybdenite Re–Os ages of 13.20 ± 0.20 and 13.64 ± 0.21, with a weighted mean of 13.38 ± 0.15 Ma and an isochron age of 13.12 ± 0.44 Ma. This indicates that the crystallization and mineralization of the Lakange porphyry were contemporaneous. The ore‐bearing porphyritic granodiorite yielded zircon εHf(t) values between ?3.99 and 4.49 (mean, ?0.14) and two‐stage model ages between 1349 and 808 Myr (mean, 1103 Myr). The molybdenite within the deposit contains 343.6–835.7 ppm Re (mean, 557.8 ppm). These data indicate that the mineralized porphyritic granodiorite within the Lakange deposit is adakitic and formed from parental magmas derived mainly from juvenile crustal material that partly mixed with older continental crust during the evolution of the magmas. The Lakange porphyry Cu–Mo deposit and numerous associated porphyry–skarn deposits in the eastern Gangdese porphyry copper belt (17–13 Ma) formed in an extensional tectonic setting during the India–Asia continental collision.  相似文献   

12.
Geochemical anomaly separation using the concentration–number (C–N) method at the Haftcheshmeh porphyry system in NW Iran is the aim of this study. We used lithogeochemical data sets to explore Cu, Mo, Au and Re mineralization in gabbroic, dioritic and monzonitic units at the Haftcheshmeh Cu–Mo porphyry system. The obtained results were interpreted using a rather extensive set of information available for each mineralized area, consisting of detailed geological mapping, structural interpretation and alteration data. Threshold values of elemental anomalies for the mineralized zone were computed and compared with the statistical methods based on the data obtained from chemical analyses of samples for the lithological units. Several anomalies at local scale were identified for Cu (40 ppm), Mo (12 ppm), Au (79 ppb), and Re (0.02 ppm), and the results suggest the existence of local Cu anomalies whose magnitude generally is above 500 ppm. The log–log plots show the existence of three stages of Cu and Mo enrichment, and two enrichment stages for Au and Re. The third and most important mineralization event is responsible for presence of Cu at grades above 159 ppm. The identified anomalies in Haftcheshmeh porphyry system, and distribution of the rock types, are mainly gabbrodiorite–monzodiorite, granodiorite and monzodiorite–diorite that have special correlation with Cu–Mo and gabbroic and monzonitic rocks, especially the gabbrodiorite–monzodiorite type, which is of considerable importance. The study shows that these elemental anomalous parts have been concentrated dominantly by potassic and phyllic, argillic and propylitic alterations within the gabbroic, monzonitic and dioritic rocks especially in the gabrodioritic type in certain parts of the area. The results, which were compared with fault distribution patterns, revealed a positive correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   

13.
Rare-metal mineralization in Karelia is represented by V, Be, U deposits and In, Re, Nb, Ta, Li, Ce, La, and Y occurrences, which are combined into 17 types of magmatic, pegmatite, albitite–greisen, hydrothermal–metasomatic, sedimentary, and epigenetic groups. The main vanadium resources are localized in the Onega ore district. These are deposits of the Padma group (556 kt) and the Pudozhgorsky complex (1.5 Mt). The REE occurrences are primarily characterized by Ce–La specialization. The perspective of HREE is related to the Eletozero–Tiksheozero alkaline and Salmi anorthosite–rapakivi granite complexes. Rare-metal pegmatites bear complex mineralization with insignificant low-grade resources. The Lobash and Jalonvaara porphyry Cu–Mo deposits are potential sources of rhenium: Re contents in molybdenite are 20–70 and 50–246 ppm and hypothetical resources are 12 and 7.5 t, respectively. The high-grade (~100 ppm) and metallogenic potential of indium (~2400 t) make the deposits of the Pitkäranta ore district leading in the category of Russian ore objects most prospective for indium. Despite the diverse rare-metal mineralization known in Karelia, the current state of this kind of mineral commodities at the world market leaves real metallogenic perspective only for V, U, Re, In, and Nb.  相似文献   

14.
Geochemical anomaly separation using the concentration–area (C–A) method at Kahang (Gor Gor) porphyry system in Central Iran is studied in this work. Lithogeochemical data sets were used in this geochemical survey which was conducted for the exploration for Cu mineralization in dioritic and andesitic units at Kahang Cu–Mo porphyry system. Similar surveys were also carried out for Mo and Au exploration in these rock units. The obtained results have been interpreted using rather extensive set of information available for each mineralized area, consists of detailed geological mapping, structural interpretation and alteration data. Anomalous threshold values for the mineralized zone were computed and compared with the statistical methods based on the data obtained from chemical analysis of samples for the lithological units. Several anomalies at a local scale were identified for Cu (224 ppm), Mo (63 ppm), and Au (31 ppb), and the obtained results suggests existence of local Cu anomalies whose magnitude generally is above 1000 ppm. The correlation between these threshold values and ore grades is clearly interpreted in this investigation. Also, the log–log plots show existence of three stages of Cu enrichment, and two enrichment stages for Mo and Au. The third and most important mineralization event is responsible for the presence of Cu at grades above 1995 ppm. The identified anomalies in Kahang porphyry system, and distribution of the rock types, are mainly monzodiorite and andesitic units, do have special correlation with Cu and monzonitic and dioritic rocks, especially monzodioritic type, which is of considerable emphasis. The threshold values obtained for each element are always lower than their mean content in the rocks. The study shows threshold values for Cu is clearly above the mean rock content, being a consequence of the occurrence of anomalous accumulations of phyllic, argillic and propyllitic alterations within the monzonitic and dioritic rocks especially in monzodioritic type. The obtained results were compared with fault distribution patterns which reveal a positive direct correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   

15.
The Kukaazi Pb–Zn–Cu–W polymetallic deposit, located in the Western Kunlun orogenic belt, is a newly discovered skarn-type deposit. Ore bodies mainly occur in the forms of lenses and veins along beddings of the Mesoproterozoic metamorphic rocks. Three ore blocks, KI, KII, and KIII, have been outlined in different parts of the Kukaazi deposit in terms of mineral assemblages. The KI ore block is mainly composed of chalcopyrite, scheelite, pyrrhotite, sphalerite, galena and minor pyrite, arsenopyrite, and molybdenite, whereas the other two ore blocks are made up of galena, sphalerite, magnetite and minor arsenopyrite and pyrite. In this study, we obtained a molybdenite isochron Re–Os age of 450.5 ± 6.4 Ma (2σ, MSWD = 0.057) and a scheelite Sm–Nd isochron age of 426 ± 59 Ma (2σ, MSWD = 0.49) for the KI ore block. They are broadly comparable to the ages of granitoid in the region. Scheelite grains from the KI ore block contain high abundances of rare earth elements (REE, 42.0–95.7 ppm) and are enriched in light REE compared to heavy REE, with negative Eu anomalies (δEu = 0.13–0.55). They display similar REE patterns and Sm/Nd ratios to those of the coeval granitoids in the region. Moreover, they also have similar Sr and Nd isotopes [87Sr/86Sr = 0.7107–0.7118; εNd(t) = ?4.1 to ?4.0] to those of such granitoids, implying that the tungsten-bearing fluids in the Kukaazi deposit probably originate from the granitic magmas. Our results first defined that the Early Paleozoic granitoids could lead to economic Mo–W–(Cu) mineralization at some favorable districts in the Western Kunlun orogenic belt and could be prospecting exploration targets.  相似文献   

16.
铼作为战略性关键金属之一,越来越受到人们的关注.Re主要以类质同象的形式赋存在辉钼矿中,然而,不同成因、不同类型矿床的辉钼矿中Re含量差异较大.在钨、锡矿床中Re含量较低,在斑岩型铜(钼)矿床中Re含量较高,后者是全球Re资源的主要载体.前人对于辉钼矿中Re元素的研究主要基于Re-Os同位素年代学,而对于不同区域、不同时代、不同类型斑岩型铜矿床中辉钼矿Re含量的变化规律及其控制因素的研究较少.文章通过汇总前人发表的斑岩型铜(钼)矿床的Re-Os同位素数据,从含矿斑岩的Sr、Nd、Hf等数据与辉钼矿中平均Re含量的关系等角度,探讨了其变化规律及控制因素.结果表明:中国斑岩型铜(钼)中Re含量随着成矿物质从地幔到地壳,依次减少;成矿流体的氧逸度、辉钼矿的产状、与其伴生的硫化物种类及不同的成矿阶段等因素共同控制了辉钼矿中Re的含量.  相似文献   

17.
The newly-discovered Donglufang Moe Cu porphyry-skarn deposit is located in the southern Yidun Terrane, southeast Tibet, with more than 80 million tonnes(Mt) of reserves(grading 0.15 wt.% Mo and0.48 wt.% Cu) hosted in Triassic strata and Late Cretaceous granodiorite porphyry. Ree Os dating of molybdenum ore yielded a weighted mean age of 84.9 ± 1.0 Ma and an isochron age of 85.2 ± 0.6 Ma.LA-ICP-MS Ue Pb dating of zircons from the granodiorite porphyry yielded206 Pb/238 U ages ranging from 87.4 Ma to 84.2 Ma with a weighted mean206 Pb/238 U age of 85.1 ±0.5 Ma, indicating a temporal linkage between granitic magmatism and Moe Cu mineralization. Geochemical analyses show that the granodiorite porphyries are I-type granites with Si O_2 contents of 64.3 -66.7 wt.%. These rocks are typically metaluminous with high K_2 O/Na_2 O ratios, low Mg O(1.32 -1.56 wt.%), Cr(5.6 -12.9 ppm), Ni(3.79 -10.81 ppm), Mg#(43 -52) values, and high Sr(304 -844 ppm), Sr/Y(21.2 -50.8) and La/Yb ratios(37.0 -60.1). They are enriched in light rare-earth elements(LREE) relative to heavy rare-earth elements(HREE), with slightly negative Eu anomalies, and are enriched in Th, U and large ion lithophile elements(LILE, e.g., K and Rb), and depleted in high field strength elements(HFSE, e.g., Nb, Ta, P and Ti). They also show negative zircon εHf(t) values(-6.7 to -2.3) and negative whole rock εNd(t) values(à5.2 to-4.3), as well as old Hfe Nd model ages, indicating the magmas were derived from a thickened ancient lower crust within the garneteamphibolite facies. Considering the tectonic evolution of the Yidun Terrane, geochemical characteristics of granodiorite porphyry, and the ages of mineralization obtained in this study. We suggest that the Donglufang deposit was formed in a post-collisional setting, which has a genetic relationship with the emplacement of the granodiorite porphyry. The present study provide key information for the exploration of the Late Cretaceous metallogeny in the Yidun Terrane.  相似文献   

18.
The Dawan Mo–Zn–Fe deposit located in the Northern Taihang Mountains in the middle of the North China Craton (NCC) contains large Mo‐dominant deposits. The mineralization of the Dawan Mo–Zn–Fe deposit is associated with the Mesozoic Wanganzhen granitoid complex and is mainly hosted within Archean metamorphic rocks and Proterozoic–Paleozoic dolomites. Rhyolite porphyry and quartz monzonite both occur in the ore field and potassic alteration, strong silicic–phyllic alteration, and propylitic alteration occur from the center of the rhyolite porphyry outward. The Mo mineralization is spacially related to silicic and potassic alteration. The Fe orebody is mainly found in serpentinized skarn in the external contact zone between the quartz monzonite and dolomite. Six samples of molybdenite were collected for Re–Os dating. Results show that the Re–Os model ages range from 136.2 Ma to 138.1 Ma with an isochron age of 138 ± 2 Ma (MSWD = 1.2). U–Pb zircon ages determined by laser ablation inductively coupled plasma mass spectrometry yield crystallization ages of 141.2 ± 0.7 (MSWD = 0.38) and 130.7 ± 0.6 Ma (MSWD = 0.73) for the rhyolite porphyry and quartz monzonite, respectively. The ore‐bearing rhyolite porphyry shows higher K2O/Na2O ratios, ranging from 58.0 to 68.7 (wt%), than those of quartz monzonite. All of the rock samples are classified in the shoshonitic series and characterized by enrichment in large ion lithophile elements; depletion in Mg, Fe, Ta, Ni, P, and Y; enrichment in light rare earth elements with high (La/Yb)n ratios. Geochronology results indicate that skarn‐type Fe mineralization associated with quartz monzonite (130.7 ± 0.6 Ma) formed eight million years later than Mo and Zn mineralization (138 ± 2 Ma) in the Dawan deposit. From Re concentrations in molybdenite and previously presented Pb and S isotope data, we conclude that the ore‐forming material of the deposit was derived from a crust‐mantle mixed source. The porphyry‐skarn type Cu–Mo–Zn mineralization around the Wanganzhen complex is related to the primary magmatic activity, and the skarn‐type Fe mineralization is formed at the late period magmatism. The Dawan Mo–Zn–Fe porphyry‐skarn ores are related to the magmatism that was associated with lithospheric thinning in the NCC.  相似文献   

19.
The Karamay porphyry Mo–Cu deposit, discovered in 2010, is located in the West Junggar region of Xinjiang of northwest China. The deposit is hosted within the Karamay granodiorite porphyry that intruded into Early Carboniferous sedimentary strata and its exo‐contact zone. The LA‐ICPMS U–Pb method was used to date the zircons from the granodiorite samples of the porphyry. Analyses of 12 spots of zircons from the granodiorite samples yield a U–Pb weighted mean age of 300.8 ± 2.1 Ma (2σ). Re–Os dating for five molybdenite samples obtained from two prospecting trenches and three outcrops in the deposit yield a Re–Os isochron age of 294.6 ± 4.6 Ma (2σ), with an initial 187Os/188Os of 0.0 ± 1.1. The isochron age is within the error of the Re–Os model ages, demonstrating that the age result is reliable. The Re–Os isochron age of the molybdenite is consistent with the U–Pb age of the granodiorite porphyry, which indicates that the deposit is genetically related with an Early Permian porphyry system. The ages of the Karamay Mo–Cu deposit and the ore‐bearing porphyry are similar to the ages of intermediate‐acid intrusions and Cu–Mo–Au polymetallic deposits in the West Junggar region. This consistency suggests the same geodynamic process to the magmatism and related mineralization.  相似文献   

20.
《International Geology Review》2012,54(11):1332-1352
The Early Cretaceous Washan dioritic porphyry is spatially and temporally associated with Kiruna-type iron oxide deposits in the Ningwu basin, Middle-Lower Yangtze River Valley (MLYRV). We present new LA-ICP-MS U–Pb dating + zircon Lu–Hf isotopic studies, as well as bulk-rock major + trace element and Sr + Nd isotopic compositions of the porphyry. LA-ICP-MS U–Pb zircon analyses suggest that the pluton formed at 130.8?±?0.9 Ma. Analysed zircon ?Hf(t) values range from –7.0 to –4.1. The dioritic rocks are significantly enriched in Pb and light rare earth elements, relative to high-field strength elements (Nb + Ti), coupled in the absence of significant Eu anomalies. They exhibit age-corrected ?Nd(t) (t?=?130 million years) values of??3.5 to??3.9 and initial 87Sr/86Sr ratios of 0.70553–0.70653. The ore-bearing dioritic porphyry was derived from a parental basaltic liquid that was produced by partial melting of an enriched spinel-facies lherzolite in the Yangtze lithospheric mantle. This basaltic melt underwent a fractionation of plagioclase and clinopyroxene during ascent towards the surface, which led to the relative enrichment of iron in the residual melt. This type of magma was widespread in the MLYRV area but did not generate widespread Fe mineralization. In the Ningwu area, the dioritic magma was modified by minor assimilation of phosphorus-bearing rocks in the Yangtze upper crust. The special crustal characteristics of the Ningwu basin, i.e. phosphorus-rich strata, were likely a crucial factor controlling the formation of Kiruna-type iron oxide deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号