首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   10篇
自然地理   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
Salt tectonics in the Eastern Persian Gulf (Iran) is linked to a unique salt‐bearing system involving two overlapping ‘autochthonous’ mobile source layers, the Ediacaran–Early Cambrian Hormuz Salt and the Late Oligocene–Early Miocene Fars Salt. Interpretations of reflection seismic profiles and sequential cross‐section restorations are presented to decipher the evolution of salt structures from the two source layers and their kinematic interaction on the style of salt flow. Seismic interpretations illustrate that the Hormuz and Fars salts started flowing in the Early Palaeozoic (likely Cambrian) and Early Miocene, respectively, shortly after their deposition. Differential sedimentary loading (downbuilding) and subsalt basement faults initiated and localized the flow of the Hormuz Salt and the related salt structures. The resultant diapirs grew by passive diapirism until Late Cretaceous, whereas the pillows became inactive during the Mesozoic after a progressive decline of growth in the Late Palaeozoic. The diapirs and pillows were then subjected to a Palaeocene–Eocene contractional deformation event, which squeezed the diapirs. The consequence was significant salt extrusion, leading to the development of allochthonous salt sheets and wings. Subsequent rise of the Hormuz Salt occurred in wider salt stocks and secondary salt walls by coeval passive diapirism and tectonic shortening since Late Oligocene. Evacuation and diapirism of the Fars Salt was driven mainly by differential sedimentary loading in annular and elongate minibasins overlying the salt and locally by downslope gliding around pre‐existing stocks of the Hormuz Salt. At earlier stages, the Fars Salt flowed not only towards the pre‐existing Hormuz stocks but also away from them to initiate ring‐like salt walls and anticlines around some of the stocks. Subsequently, once primary welds developed around these stocks, the Fars Salt flowed outwards to source the peripheral salt walls. Our results reveal that evolving pre‐existing salt structures from an older source layer have triggered the flow of a younger salt layer and controlled the resulting salt structures. This interaction complicates the flow direction of the younger salt layer, the geometry and spatial distribution of its structures, as well as minibasin depocentre migration through time. Even though dealing with a unique case of two ‘autochthonous’ mobile salt layers, this work may also provide constraints on our understanding of the kinematics of salt flow and diapirism in other salt basins having significant ‘allochthonous’ salt that is coevally affected by deformation of the deeper autochthonous salt layer and related structures.  相似文献   
3.
Vegetation indices have been introduced for analyzing and assessing the status of quantitative and qualitative characteristics of vegetation using satellite images. However, choosing the best indices to be used in forest biodiversity and vegetation is one of the important problems faced by the users. The purpose of this research is to evaluate six vegetation indices in the analysis of tree species diversity in the northern forests of Iran. The present research uses LISS III sensor data from IRS-P6 satellite. Geometric rectification of images was performed using ground control points, and Chavez model was used for atmospheric correction of the data. The six spectral vegetation indices included NDVI, IPVI, Ashburn Vegetation Index (AVI), TVI, TTVI, and RVI. Shannon–Wiener species diversity index was used to analyze diversity, and the value of the index was calculated in each sample plot. Then, the spectral values of each sample plot were extracted from different bands. The best subset regression was used to analyze the relationship between species diversity and the related bands. The results obtained from the regression showed that polynomial equations under scrutiny as independent variables can assess tree and shrub species diversity better than other bands and compounds used (R 2?=?0.47). The obtained results also indicated a higher capacity in the case of the AVI index for estimating tree species diversity in the under study area.  相似文献   
4.
Despite the widespread application of nonlinear mathematical models, comparative studies of different models are still a huge task for modellers. This is because a large number of trial and error processes are needed to develop each model, so the workload will be multiplied into an unmanageable level if many types of models are involved. This study presents an efficient approach by using the Gamma test (GT) to select the input variables and the training data length, so that the trial and error workload can be greatly reduced. The methodology is tested in estimating solar radiation at the Brue catchment, UK. Several nonlinear models have been developed efficiently with the aid of the GT, including local linear regression, multi-layer perceptron (MLP), Elman neural network, neural network auto-regressive model with exogenous inputs (NNARX) and adaptive neuro-fuzzy inference system (ANFIS). This work is only feasible within the time and resources constraint, due to the GT in reducing huge workload of the trial and error process.  相似文献   
5.
6.
Karaj Water Conveyance Tunnel (KWCT) is 30-km long and has been designed for transferring 16 m3/s of water from Amir-Kabir dam to northwest of Tehran. Lot No. 1 of this long tunnel, with a length of 16 km, is under construction with a double shield TBM and currently about 8.7 km of the tunnel has been excavated/lined. This paper will offer an overview of the project, concentrating on the TBM operation and will review the results of field performance of the machine. In addition to analysis of the available data including geological and geotechnical information and machine operational parameters, actual penetration and advance rates will be compared to the estimated machine performance using prediction models, such as CSM, NTNU and QTBM. Also, results of analysis to correlate TBM performance parameters to rock mass characteristics will be discussed. This involves statistical analysis of the available data to develop new empirical methods. The preliminary results of this study revealed that the available prediction models need some corrections or modifications to produce a more accurate prediction in geological conditions of this particular project.  相似文献   
7.
Geochemical anomaly separation using the concentration–number (C–N) method at the Haftcheshmeh porphyry system in NW Iran is the aim of this study. We used lithogeochemical data sets to explore Cu, Mo, Au and Re mineralization in gabbroic, dioritic and monzonitic units at the Haftcheshmeh Cu–Mo porphyry system. The obtained results were interpreted using a rather extensive set of information available for each mineralized area, consisting of detailed geological mapping, structural interpretation and alteration data. Threshold values of elemental anomalies for the mineralized zone were computed and compared with the statistical methods based on the data obtained from chemical analyses of samples for the lithological units. Several anomalies at local scale were identified for Cu (40 ppm), Mo (12 ppm), Au (79 ppb), and Re (0.02 ppm), and the results suggest the existence of local Cu anomalies whose magnitude generally is above 500 ppm. The log–log plots show the existence of three stages of Cu and Mo enrichment, and two enrichment stages for Au and Re. The third and most important mineralization event is responsible for presence of Cu at grades above 159 ppm. The identified anomalies in Haftcheshmeh porphyry system, and distribution of the rock types, are mainly gabbrodiorite–monzodiorite, granodiorite and monzodiorite–diorite that have special correlation with Cu–Mo and gabbroic and monzonitic rocks, especially the gabbrodiorite–monzodiorite type, which is of considerable importance. The study shows that these elemental anomalous parts have been concentrated dominantly by potassic and phyllic, argillic and propylitic alterations within the gabbroic, monzonitic and dioritic rocks especially in the gabrodioritic type in certain parts of the area. The results, which were compared with fault distribution patterns, revealed a positive correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   
8.
A Cu-bearing skarn zone occurs north of the Shayvar Mountain in northwestern Iran. Skarn-type metasomatic alteration and mineralization occur along the contact between Upper Cretaceous impure carbonates and a Miocene Cu-bearing granitic stock. Both endoskarn and exoskarn developed in the rocks. Exoskarn is the principal skarn zone and is enclosed by a skarnoid–hornfelsic zone. Skarn formation occured during stages: (1) prograde, (2) middle stage and (3) late stage. In the prograde stage, there were two main processes: (a) metamorphic–bimetasomatic and (b) prograde metasomatic. The metamorphic process began immediately after intrusion of the pluton into the enclosing impure carbonates. The prograde metasomatic stage commenced with segregation and evolution of a fluid phase in the pluton and movement into fractures and micro-fractures in the skarnoid–hornfelsic rocks developed in a metamorphic zone. The introduction of considerable amounts of Fe, Si and Mg led to the development of voluminous medium- to coarse-grained anhydrous calc-silicates. During the middle stage, the previously formed skarn zones were affected by intense multiple hydrofracturing in the Cu-bearing stock. In addition to Fe, Si and Mg, substantial amounts of Cu, Pb and Zn, along with volatile components such as H2S and CO2 were added to the skarn system. Consequently, substantial amounts of hydrous calc-silicates (epidote, tremolite–actinolite), sulfides (pyrite, chalcopyrite and molybdenite), oxides (magnetite, hematite) and carbonates (calcite) replaced the anhydrous calc-silicates. The retrograde stage was synchronous with the incursion of relatively low-temperature, more oxidized fluids into skarn system, resulting in partial alteration of the early-formed calc-silicates and development of a series of very fine-grained aggregates of chlorite, clay, hematite and calcite. Zircon grains from the endoskarn zone provide constraints on the timing of solidification of the granite stock (9.91 ± 0.31 Ma) that caused mineralization in the Anjerd area. One sample of primary hornblende from the monzogranitic Shayvar batholith has an 40Ar/39Ar age of 26.54 ± 0.65 Ma and indicates that intrusion of the Miocene stock and associated Cu skarn formation occurred a considerable time after intrusion of the batholith.  相似文献   
9.
The Haftcheshmeh porphyry Cu-Mo-Au deposit in the Arasbaran metallogenic belt(AMB) of NW Iran contains more than 185 Mt of ore, with a grade ranging from 0.3% to 0.4%. It is hosted within a porphyritic diorite to granodiorite intruded into an older gabbro-diorite intrusion. 40 Ar/39 Ar analyses of primary magmatic hornblende from the granodiorite porphyry and gabbro-diorite show plateau ages of 26.41 ± 0.59 Ma, with an inverse isochron age of 25.9 ± 1.0 Ma and a plateau age of 27.47 ± 0.17 Ma, with an inverse isochron age of 27.48 ± 0.35 Ma for these two rock types, respectively. Comparing these new age data with those from the nearby Sungun(20.69 ± 0.35 Ma) and Kighal porphyry deposits defines a northwest-southeast Cu-Mo-Au mineralization zone extending for 20 km over the time span of ~27 to 20 Ma. Geochemically, Haftcheshmeh rocks are calc-alkaline with high potassium affinities with tectonic setting in relation to volcanic arc setting. Large ion lithophile elements(LILE) such as Th, U and K show enrichment on a primitive mantle normalized diagram(specially Pb), and are depleted in high field strength elements(HFSE) such as Ti and Nb, pointing to a mantle magma source contamination with crustal materials by subducted oceanic crust.  相似文献   
10.
Analysis of the spatial variability of soil properties is important to explain the site-specific ecosystems. Spatial patterns of some soil properties such as soil texture, exchangeable sodium percentage (ESP), electrical conductivity (ECe), soil pH and cation exchange capacity (CEC) were analyzed in salt and sodic affected soils in the south of the Ardabil province, in the northwest of Iran, to identify their spatial distribution for performance of a site-specific management. Soil samples were collected from 0 to 30, 30 to 60, 60 to 90, 90 to 120 and 120 to 150 cm soil depths at sampling sites. Data were investigated both statistically and geostatistically on the basis of the semivariogram. The spatial distribution model and spatial dependence level varied in the study area. Among the considered parameters, maximum and minimum spatial variability were observed in EC and pH parameters, respectively. Soil properties showed moderate to strong spatial dependence, except for a few. ECe was strongly spatially dependent in the total soil depth and clay was strongly spatially dependent at the first depth. Sand and pH were moderately spatially dependent for three of the five depths. ESP was strongly spatially dependent and silt was moderate in the total soil depths, except at 90–120 cm depth. Furthermore, CEC had strong spatial dependence for three of the five depths. All geostatistical range values were >1,389 m in this study. It was concluded that the strong spatial dependency of soil properties would lead to extrinsic factors such as bedrock, agricultural pollution, drainage and ground water level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号