首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study is aimed at the evaluation of the hazard of soil erosion and its verification at Boun, Korea, using a Geographic Information System (GIS) and remote sensing. Precipitation, topographic, soil, and land use data were collected, processed, and constructed into a spatial database using GIS and remote sensing data. Areas that had suffered soil erosion were analysed and mapped using the Universal Soil Loss Equation (USLE). The factors that influence soil erosion are rainfall erosivitiy (R) from the precipitation database, soil erodibility (K) from the soil database, slope length and steepness (LS) from the topographic database, and crop and management (C) and conservation supporting practices (P) from the land use database. Land use was classified from Landsat Thematic Mapper satellite images. The soil erosion map verified use of the landslide location data. Landslide locations were identified in the Boun area from interpretation of aerial photographs and field surveys.  相似文献   

2.
闻国静  王妍  刘云根  侯磊 《中国岩溶》2022,41(2):249-258
岩溶湖泊湿地流域作为景观格局变化的热点研究区域,探讨景观格局动态变化及预测趋势,为岩溶流域生态安全研究提供科学依据。应用遥感与地理信息系统技术,结合普者黑岩溶湖泊湿地流域实际情况,分别对该地区1990、1995、2000、2005、2010、2015 年6 期遥感影像进行分类、解译,系统地获取地区景观格局状况,分析动态变化特征,并运用CA-Markov 模型对未来湿地景观格局进行模拟预测。结果表明:1990?2015年普者黑岩溶湿地流域景观格局随时间变化显著,景观破碎化程度总体呈现增加趋势,斑块数(NP)从861增加到889,景观类型的优势斑块面积在逐渐增加,而多样性指数从1.064下降到0.966;2020?2030年普者黑岩溶湿地流域建筑用地、农地和湿地景观类型面积在增加,农地和林地在减少,其中,较为突出的是建筑用地占有率由2.79%上升到2.97%,农地占有率60.12%增加到60.74%,湿地占有率6.67%上升7.02%,而林地占有率由26.70%下降到26.40%。景观格局进行预测可以发现湿地面积、建筑用地面积和农地变化幅度最大,本文相关研究和预测结果可为普者黑流域生态保护提供一定的建议和参考。   相似文献   

3.
1985-2014年漓江流域景观格局动态变化研究   总被引:2,自引:0,他引:2  
林增学 《中国岩溶》2019,38(3):466-471
文章以漓江流域为研究对象,应用1985年、2000年和2014年3期遥感影像,提取土地利用数据,采用土地利用动态度、土地利用转移矩阵等方法,分析1985-2014年漓江流域土地利用的演变趋势;结合Fragstats4.2景观分析工具,识别了该流域景观格局的动态变化。结果表明:1985-2014年,漓江流域土地利用整体变化幅度不大,主要表现为林地、耕地和草地面积减小,湿地、居民及城乡建设用地和未利用土地面积增加,且变化集中发生在2000-2014年。同时景观水平上破碎化和复杂化程度加剧,聚集程度和斑块连续程度有待提高;类型水平上林地景观破碎化层度增加,耕地和草地斑块面积增加,湿地和居民及城乡建设用地的聚集度较高,分布集中。  相似文献   

4.
The Yangtze River is the China’s longest river and the third-longest river in the world. The river’s source region in the Qinghai-Tibet Plateau is especially sensitive to global environmental change because of its high elevation and cold environment. Under the influence of global warming, aeolian desertified land has expanded rapidly in this area. To assess the trends in aeolian desertification from 1975 to 2005, remote-sensing and GIS technology were used to monitor the extent of aeolian desertification in 1975, 1990, 2000, and 2005. The data sources included Landsat multi-spectral scanner images acquired in 1975, Enhanced Thematic Mapper (ETM+) images acquired in 2000, and Thematic Mapper (TM) images acquired in 1990 and 2005. Images recorded between June and October were selected, when vegetation grew well, because aeolian desertified land was more easily recognized during this period. Thematic maps, including land use and geomorphologic maps, were used as supplementary data. Aeolian desertification maps (1:100000) were produced for each year from the Landsat images through visual interpretation. The area of aeolian desertified land increased by 2,678.43 km2 from 1975 to 2005, accounting for 8.8% of the total area of aeolian desertified land in 1975, an increase of 89.28 km2 a−1. Increasing mean annual temperature and the combination of a dry, cold, and windy climate in winter and spring were mainly responsible for the expansion of desertified land.  相似文献   

5.
遥感技术已被广泛应用于生态环境调查与研究。为获取西昌市近30 a生态环境演化趋势,利用1989年、2000年、2010年的专题绘图仪(Thematic Mapper,TM)遥感影像和2018年的陆地成像仪(Operational Land Imager,OLI)遥感影像,通过图像处理、目视解译和野外验证等方法,获得了西昌市1989—2018年的土地利用/覆盖数据,并对林地、草地和湿地的动态变化特征进行了研究。结果表明: 1989—2018年,西昌市林地、湿地和草地面积持续增加,生态环境持续向好; 林地主要分布于安宁河谷和邛海盆地四周山地,在牦牛山、螺髻山一带形成主要林区; 草地主要呈星岛状分布于牦牛山、螺髻山一带林地之间; 湿地以河流湿地与湖泊湿地为主,主要沿安宁河及邛海分布。但仍存在一些问题: 森林存在针叶化现象较普遍、树种单一等问题,需要重点加强林区火灾防范; 草地多数呈零星片状分布,不具有完整的系统结构和良好的功能,多数草地承载力和生产力较低,不宜大规模开发利用,应通过封山育林促使其向森林转化; 湿地分布也比较局限,需要着力予以保护。研究成果可为西昌市生态保护修复措施的制定及经济社会可持续发展提供科学依据。  相似文献   

6.
Ajman is a rapidly urbanizing emirate with land development succeeding at a fast pace. This study aims to monitor land use/land cover changes and assesses the impact of these changes on groundwater quality and quantity of the shallow aquifer using multitemporal remote sensing data and geographic information system (GIS). To monitor the land use/land cover changes, the Spectral Angle Mapper (SAM) and the Normalized Difference Vegetation Index (NDVI) algorithms were utilized. The obtained maps were correlated against a set of total dissolved solid (TDS); Mg, Cl, and NO3 groundwater quality index; and depth to the groundwater table maps constructed from groundwater data. The spatial analysis revealed a sharp depletion in groundwater quality and quantity related to the increase in the land use/land cover classes. The mean total TDS is from 21,971 to 26,450 mg/L and depth to groundwater level from ?12.33 to ?17.2 m over a period of 15 years. Maps of normalized difference and groundwater quality sustainability showed that the eastern side of the study area has a high value of groundwater quality sustainability and normalized difference, while the western side of the study area has a minimal value of groundwater quality sustainability and normalized difference. This study is of great assistance for decision makers and land developers to relate to municipal land allotment in rapidly developing regions such as Ajman.  相似文献   

7.
利用大布苏地区1996年和2001年两个时相的TM遥感图像,获取不同时期的土地利用信息,分析了大布苏地区土地利用时空变化,借助FRAGSTATS软件进行了景观格局变化研究。研究结果表明,土地利用变化的总趋势是水域、荒草地减少,居民用地、耕地增加,土地利用综合程度指数降低;从景观尺度上看,斑块密度、多样性指数、优势度和均匀度指数减小,最大斑块指数、景观形状指数增加。  相似文献   

8.
Hyderabad is one of the fastest growing mega cities in India and it is facing many economic, social and environmental problems due to rapid urban growth. For the better planning of resources and to provide basic amenities to its residents, it is necessary to have sufficient knowledge about its urban growth activities. Also, it is necessary to monitor the changes in land use over time and to detect growth activities in different parts of the city. To accomplish these tasks with greater accuracy and easiest way, remote sensing and geographic information system (GIS) tools proved to be very advantageous. This study makes an attempt towards the mapping of land use classes for different time periods and analysis of apparent changes in land use using the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) data for the urban agglomeration of Hyderabad, India. In this study, three different time periods viz. 1989–2000, 2000–2005 and 2005–2011 are chosen for the analysis. The results have shown that high-density urban area had grown during 1989–2011 by encroaching into other land use classes. The urban growth has also affected water resources both, qualitatively and quantitatively in the region. The transformation of other land use types into urban area dynamically continued in the North-East and Southern parts of the city. In the North-East direction, the urban growth was mostly due to growth in industrial and residential area and in Southern part, mostly due to residential growth.  相似文献   

9.
Rapid land use change has taken place in many arid and semi-arid regions of China including the Loess Plateau. In this study, changes in land use and landscape fragmentation in the small Shanghuang watershed on the Loess Plateau were investigated by the combined use of remote sensing, GIS and landscape metrics. Land use classes were mapped and analyzed from a time series of maps and remotely sensed images that were ground truthed in 2008. Analyses of the data showed that land use had undergone substantial changes in this small watershed from 1982 to 2008, and these changes could be divided into three phases according to the change in the landscape matrix whereby the dominant land use was grassland (1982–1990), cropland (1990–2002) and forestland (2002–2008). During each phase, conversions between different land use types took place frequently, especially among cropland, orchards, grassland and forestland. Landscape fragmentation increased from 1982 to 1990 and then decreased from 1990 to 2008 as indicated by four landscape metrics. These changes in land use and landscape fragmentation in this small watershed were mainly controlled by human factors (land management, construction, population pressure, and government policy) rather than natural factors.  相似文献   

10.
The integration of remote sensing, geographic information system, landscape ecology and statistical analysis methods was applied to study the urban thermal environment in Guangzhou. Normalized Difference Vegetation Index (NDVI), Normalized Difference Build-up Index (NDBI), Normalized Difference Barren Index (NDBaI) and Modified Normalized Difference Water Index (MNDWI) were used to analyze the relationships between land surface temperature (LST) and land use/land cover (LULC) qualitatively. The result revealed that, most urban built-up lands were located in the middle part, and high LST areas mostly and were in the middle and southern parts. Therefore, the urbanization and thermal environment in the middle and southern parts need to be determined. Land surface temperature increased with the density of urban built-up and barren land, but decreased with vegetation cover. The relationship between MNDWI and LST was found to be negative, which implied that pure water would decrease the surface temperature and the polluted water would increase the surface temperature. A multiple regression between LST and each indices as well as the elevation was created to elevate the urban thermal environment, which showed that NDVI, NDBI, NDBaI, MNDWI were effective indicators for quantifying LULC impacts on LST.  相似文献   

11.
Land use and land cover changes are local and place specific, occurring incrementally in ways that often escape our attention. This study sought to detect changes in land cover in the Tema Metropolis of Ghana from 1990 to 2010. Multispectral Landsat Thematic Mapper data sets of 1990, 2000 and 2007 were acquired, pre-processed and enhanced. Unsupervised classification of the images was performed and six land cover classes (water, wetlands, closed vegetation, open vegetation, cropped lands, and built-up) were derived. The post-classification change detection technique was performed to derive the changes in land cover and their corresponding change matrices. Between 1990 and 2010, built-up areas expanded steadily to become the most prevalent land cover type in the metropolis, reducing vegetation cover dramatically. High population growth with its attendant rise in the demand for housing, and increasing commercial activities, were found to have influenced land cover changes over the period.  相似文献   

12.
The study area comprises the southeastern part of the Western Desert of Egypt. The aims of the present study are to delineate the major surface and subsurface structures and to evaluate tectonic framework of the study area. Surface studies of the present work are based mainly on data from two different types of remote sensing systems: 15 cloud-free Landsat Enhanced Thematic Mapper Plus (ETM+) images and Shuttle Radar Topography Mission (SRTM) DEM data. The remote sensing data were used to recognize and extract geological lineaments by calculating and interpreting DEM derivatives, including shaded relief maps, slope maps, and traverse profiles. A Bouguer anomaly map (scale 1:500,000) was used to delineate a detailed picture of the subsurface structure in the study area. The analysis of surface data, including SRTM DEM and ETM+, was combined with subsurface data, including Bouguer anomaly map, and gave new insight into the tectonic and structure patterns of the study area.  相似文献   

13.
14.
Mikaili  Omidreza  Rahimzadegan  Majid 《Natural Hazards》2022,111(3):2511-2529

As drought occurs in different climates, assessment of drought impacts on parameters such as vegetation cover is of utmost importance. Satellite remote sensing images with various spectral and spatial resolutions represent information about different land covers such as vegetation cover. Hence, the purpose of this study was to investigate the performance of satellite vegetation indices to monitor the agricultural drought on a local scale. In this regard, satellite images including Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) data were used to evaluate vegetation cover and their gradual changes effects on agricultural drought. Fars province in Iran with relatively low precipitation values was selected as the study area. Modified Perpendicular Drought Index (MPDI), MPDI1, Vegetation Condition Index (VCI), Normalized Difference Vegetation Index Anomalies (NDVIA), and Standardized Vegetation Index (SVI), were evaluated to select the remote sensing based index with the best performance in drought monitoring. The performance of such indices were investigated during 13 years (2000–2013) for MODIS and 29 years (1985–2013) for AVHRR. To assess the efficiency of the satellite indices in drought investigation, Standardized Precipitation Index (SPI) data of five selected stations were used for 3, 6, and 9 month periods on August. The results showed that NDVI-based vegetation indices had the highest correlation with SPI in cold climate and long-term timescale (6 and 9 month). The highest correlation values between remote sensing based indices and SPI were acquired, respectively, in 9-month and 6-month time-scales, with the values of 43.5% and 40%. Moreover, VCI showed the highest capability for agricultural drought investigating in different climate regions of the study area. Overall, the results proved that NDVI-based indices can be used for drought monitoring and assessment in a long-term timescale on a local time-scale.

  相似文献   

15.
Although rapid land-use change has taken place in many arid and semi-arid regions of northwestern China, relatively less attention has been paid to studying the characteristics of land use change, as well as the ecological responses of land use change in these regions, especially in fragile agro-pastoral regions. This paper analyzes the land use change and its ecological responses during 1985–2005 based on the landscape metrics change and transition matrix of land use types by the combined use of satellite remote sensing and geographical information systems in Shandan County, a typical agro-pastoral region in the middle and upper reaches of Heihe River, northwest China. The results indicate significant changes in land use have occurred and the landscape has become more continuous, clumped and more homogeneous within the examined area. Land use change was mainly characterized by remarkable expansion of barred land and water area, slight increase of cropland and urbanized land, and evident shrinkage of grassland and woodland. The study also demonstrates that the land cover suffered severe degeneration and the ecological environment tended to deteriorate over the study period, mainly as follows: grassland degradation, land desertification and ecosystem services decline.  相似文献   

16.
Landscape patterns and ecological processes have been in long-term research focus in the field of landscape ecology, but how to measure their quantitative relations is still open. This work chooses the Hulunbeier grassland as the study area where ecosystem shows high vulnerability, frequent evolvement of landscape patterns and ecological processes. With remote sensing technology, the relationships between landscape patterns and ecological processes were analyzed quantitatively from multi-scale, multi-temporal and time series perspective. Firstly, the information about the current situation and change of landscape patterns and ecological processes are obtained from HJ-1 (Environmental and Disaster Small Satellite) and LANDSAT TM (Thermal Mapper) data. Secondly, SPOT NDVI (Normalized Difference Vegetation Index) data during 2000–2008 are used to analyze the dynamic changes of ecological processes, and to simulate its inter-annual variety at pixel scale. Finally, the dynamic change trends of ecological processes of grassland vegetation are described. The results indicate that the unchanged ecosystem types account for most of the study area, unused land in the central part expands continuously which results in the increase of desertification, and most ecosystem types in the eastern part are changed to grassland and woodland. Furthermore, the vegetation vulnerability is the highest in the grassland-dominated region, the second in grassland–farmland–woodland transition, and the smallest in the woodland-dominated region, where the stability is enhanced in turn. Due to the dynamic change of vegetation, it can be concluded that the study area underwent ecological processes of vegetation cover with a negative trend and a changed phenology.  相似文献   

17.
基于遥感影像的决策树分类,结合土地利用图,将北京市农业地表覆盖划分为春玉米、冬小麦、果园、林木苗圃、牧草地、设施农业和畜禽饲养地。考虑海拔、坡度和土壤质地三个因子将北京市分成10个景观区,在景观分区和不同农业用地基础上划分出39类农业景观单元。利用基于遥感影像计算的归一化差异植被指数,结合实地调查验证,分类出北京市冬春季裸露农田。结合景观分类,分析了不同景观单元冬春季地表裸露情况。结果表明:2007—2008年冬春季裸露农田共8.05×104 hm2,主要分布在延庆盆地、密云水库北岸和城区边缘的近郊农业区;海拔和土地利用方式对裸露情况影响较大,其中山区春玉米和平原果园裸露情况绝对面积较大,分别占到总裸露农田面积的40%和17%,牧草地、林木苗圃与设施农业地裸露程度较高。基于不同景观单元裸露程度,结合绿肥种植、保护性耕作、生草覆盖等裸露农田治理方法,探讨了北京市农业产业和景观一体化建设策略。  相似文献   

18.
Land use change quantified for the last 50 years within and near a fast growing agricultural land in Neka River Basin, using geographic information systems. Land cover and land use change was projected for the next decade using topography, geology, land use maps and remote sensing data of the study area. The study explored the relationships between agricultural land growth and landscape changes. The land use changes assessed among the different land cover classes. It is important to mention that conducting of the present study a very severe land cover changes taken place as the result of agricultural land development. These changes in land cover led to the forest degradation of the study area. Relationship between land-use changes and agricultural growth offered a more robust prediction of soil erosion in Neka watershed. This study aims to find the relationships between land use pattern, erosion and the sediment yield in the study area. The land use coefficient has applied in the model of erosion potential method to forecast the effect of the land type to reduce the erosion. The results of this study indicated that the total sediment yield of the study area has notably decreased to 89.24 % after an appropriate land use/cover alteration. The estimated special erosion for the southern Neka Basin is about 144465.1 m3/km2 where after management policy is predicted 15542.9 m3/km2/y. Therefore, the total difference for the study area has estimated about 128922.2 m3/km2/y.  相似文献   

19.
利用遥感、DEM、基础地理信息、土地利用变更调查、社会经济统计等各类数据和专题图件,以平江县为例,构建湖南典型贫困区土地生态状况综合评估体系,对平江县土地生态状况进行综合评估,并计算各个元指标障碍度。结果表明,平江土地生态质量总体较好,大部分地区表现为优良状态,土地生态质量空间差异性较大,在空间上呈现北低南高、西低东高的趋势。影响平江县和各个乡镇土地生态状况的主要障碍因子为湿地比例、林地年退化率、土地利用类型多样性指数、耕地比例、植被覆盖度,个别乡镇的主要障碍因子还包括水面比例和人口密度。通过对平江县土地生态状况进行综合评估与分析,寻找影响其土地生态健康发展的主要障碍因子,提出相关建议,以实现土地可持续利用,为湖南典型贫困区土地生态状况评估提供科学研究方法。  相似文献   

20.
Land degradation has been a major political issue in Java for decades. Its causes have generally been framed by narratives focussing on farmers’ unsustainable cultivation practices. This paper causally links land degradation with struggles over natural resources in Central Java. It presents a case study that was part of a research project combining remote sensing and political ecology to explore land use/cover change and its drivers in the catchment of the Segara Anakan lagoon. Historically rooted land conflicts have turned the land into a political battlefield, with soil erosion being the direct outcome of the political struggles. Starting from an analysis of environmental changes using satellite images and historical maps, the research explored a history of violent displacements in the frame of a series of brutal insurgencies and counterinsurgencies in the 1950/60s. In these struggles over national political power, entire villages were erased, and peasants’ land was appropriated by the state. This political history is ‘inscribed’ in today’s landscape. The contested land comprises some of the most erosion-prone sites in the entire catchment of the lagoon. The landscape of erosion is a landscape of conflict and a symbol of historical violence and injustice. In line with our research in other parts of the catchment, the case study presented here challenges dominant political discourses about the nature of upland degradation in Java. It provides insight into still unresolved and underexplored chapters of Indonesian history and presents a strong plea for combining land use change science and (historical) political ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号