首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient flowmeter test (TFMT) provides more information about the well–aquifer system than the traditional quasi-steady-state flowmeter test (QFMT). The TFMT duration may be much shorter than that of a QFMT, which is desirable at highly contaminated sites where the extracted water has to be treated as hazardous waste. Here we present the TFMT model that accounts for inter-layer crossflow, a thick skin surrounding the well, and wellbore storage. The model is derived under the simplifying assumptions of the pseudo-steady-state inter-layer crossflow and the uniform wellface flux within each layer. The semi-analytic solution is inverted numerically from the Laplace domain to the time domain. Layer and skin parameters are estimated from the TFMT data via the modified Levenberg–Marquardt algorithm. The estimation is robust when the initial parameter guesses are close to their true values. Otherwise, a computationally expensive search among the local minima of the objective function is necessary to find the parameter estimates. The modeling errors and the associated parameter estimation errors are evaluated in a number of synthetic TFMTs and compared to the corresponding results obtained with a general numerical model that relaxes the two simplifying assumptions. The TFMT provides reasonably accurate estimates of hydraulic conductivities for the aquifer layers and the damaged skins and order-of-magnitude estimates of layer specific storativities and hydraulic conductivities for the normal skin. The skin specific storativities should not be estimated from a TFMT. Multi-rate TFMTs with a step-variable pumping rate yield significantly more accurate parameters than constant-pumping-rate TFMTs. The calculated modeling errors may be useful in estimating the magnitude of parameter estimation errors from the TFMT. Our field tests in a coastal aquifer at the Lizzie Site in North Carolina (USA) demonstrate the feasibility of a TFMT for aquifer characterization. The downhole hydraulic conductivity profiles from our field and synthetic TFMTs are consistent with the corresponding profiles from QFMTs.  相似文献   

2.
Reactive contaminant transport models are used by hydrologists to simulate and study the migration and fate of industrial waste in subsurface aquifers. Accurate transport modeling of such waste requires clear understanding of the system’s parameters, such as sorption and biodegradation. In this study, we present an efficient sequential data assimilation scheme that computes accurate estimates of aquifer contamination and spatially variable sorption coefficients. This assimilation scheme is based on a hybrid formulation of the ensemble Kalman filter (EnKF) and optimal interpolation (OI) in which solute concentration measurements are assimilated via a recursive dual estimation of sorption coefficients and contaminant state variables. This hybrid EnKF-OI scheme is used to mitigate background covariance limitations due to ensemble under-sampling and neglected model errors. Numerical experiments are conducted with a two-dimensional synthetic aquifer in which cobalt-60, a radioactive contaminant, is leached in a saturated heterogeneous clayey sandstone zone. Assimilation experiments are investigated under different settings and sources of model and observational errors. Simulation results demonstrate that the proposed hybrid EnKF-OI scheme successfully recovers both the contaminant and the sorption rate and reduces their uncertainties. Sensitivity analyses also suggest that the adaptive hybrid scheme remains effective with small ensembles, allowing to reduce the ensemble size by up to 80% with respect to the standard EnKF scheme.  相似文献   

3.
The value of subsidence data in ground water model calibration   总被引:2,自引:0,他引:2  
Yan T  Burbey TJ 《Ground water》2008,46(4):538-550
The accurate estimation of aquifer parameters such as transmissivity and specific storage is often an important objective during a ground water modeling investigation or aquifer resource evaluation. Parameter estimation is often accomplished with changes in hydraulic head data as the key and most abundant type of observation. The availability and accessibility of global positioning system and interferometric synthetic aperture radar data in heavily pumped alluvial basins can provide important subsidence observations that can greatly aid parameter estimation. The aim of this investigation is to evaluate the value of spatial and temporal subsidence data for automatically estimating parameters with and without observation error using UCODE-2005 and MODFLOW-2000. A synthetic conceptual model (24 separate cases) containing seven transmissivity zones and three zones each for elastic and inelastic skeletal specific storage was used to simulate subsidence and drawdown in an aquifer with variably thick interbeds with delayed drainage. Five pumping wells of variable rates were used to stress the system for up to 15 years. Calibration results indicate that (1) the inverse of the square of the observation values is a reasonable way to weight the observations, (2) spatially abundant subsidence data typically produce superior parameter estimates under constant pumping even with observation error, (3) only a small number of subsidence observations are required to achieve accurate parameter estimates, and (4) for seasonal pumping, accurate parameter estimates for elastic skeletal specific storage values are largely dependent on the quantity of temporal observational data and less on the quantity of available spatial data.  相似文献   

4.
Two models which attempt to correlate the tritium concentration of water taken from aquifers to aquifer parameters are discussed. The first takes into account flow along individual streamlines and relates aquifer parameters to the observed tritium concentration at outflow. For the Gambier Plain unconfined aquifer in southern Australia, the calculated tritium concentration at outflow derived from known aquifer parameters and an environmental tritium input function for the area, is 0.7 T.U. The mean tritium concentration of several springs at outflow is also 0.7 T.U.Using the complete mixing model and the approximation that samples withdrawn from an aquifer on Eyre Peninsula, South Australia, are fully mixed, mean annual recharge for the area is estimated at 3 cm/year.  相似文献   

5.
Random errors in estimates of flow and storage parameters of a two-layer stratum, derived from multi-well pumping test data are examined. It was found that the relative random error with a confidence probability of 0.954 is appreciably less than 100% only for the estimates of aquifer transmissivity, while the estimates of the hydraulic conductivity and the specific yield of the overlying deposits show relative random errors with the same confidence probability in excess of 100%. Therefore, the random errors of parameters are to be given as multiples of the established values.  相似文献   

6.
The hydrological contribution to polar motion is a major challenge in explaining the observed geodetic residual of non-atmospheric and non-oceanic excitations since hydrological models have limited input of comprehensive global direct observations. Although global terrestrial water storage (TWS) estimated from the Gravity Recovery and Climate Experiment (GRACE) provides a new opportunity to study the hydrological excitation of polar motion, the GRACE gridded data are subject to the post-processing de-striping algorithm, spatial gridded mapping and filter smoothing effects as well as aliasing errors. In this paper, the hydrological contributions to polar motion are investigated and evaluated at seasonal and intra-seasonal time scales using the recovered degree-2 harmonic coefficients from all GRACE spherical harmonic coefficients and hydrological models data with the same filter smoothing and recovering methods, including the Global Land Data Assimilation Systems (GLDAS) model, Climate Prediction Center (CPC) model, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis products and European Center for Medium-Range Weather Forecasts (ECMWF) operational model (opECMWF). It is shown that GRACE is better in explaining the geodetic residual of non-atmospheric and non-oceanic polar motion excitations at the annual period, while the models give worse estimates with a larger phase shift or amplitude bias. At the semi-annual period, the GRACE estimates are also generally closer to the geodetic residual, but with some biases in phase or amplitude due mainly to some aliasing errors at near semi-annual period from geophysical models. For periods less than 1-year, the hydrological models and GRACE are generally worse in explaining the intraseasonal polar motion excitations.  相似文献   

7.
Modern ground water characterization and remediation projects routinely require calibration and inverse analysis of large three-dimensional numerical models of complex hydrogeological systems. Hydrogeologic complexity can be prompted by various aquifer characteristics including complicated spatial hydrostratigraphy and aquifer recharge from infiltration through an unsaturated zone. To keep the numerical models computationally efficient, compromises are frequently made in the model development, particularly, about resolution of the computational grid and numerical representation of the governing flow equation. The compromise is required so that the model can be used in calibration, parameter estimation, performance assessment, and analysis of sensitivity and uncertainty in model predictions. However, grid properties and resolution as well as applied computational schemes can have large effects on forward-model predictions and on inverse parameter estimates. We investigate these effects for a series of one- and two-dimensional synthetic cases representing saturated and variably saturated flow problems. We show that "conformable" grids, despite neglecting terms in the numerical formulation, can lead to accurate solutions of problems with complex hydrostratigraphy. Our analysis also demonstrates that, despite slower computer run times and higher memory requirements for a given problem size, the control volume finite-element method showed an advantage over finite-difference techniques in accuracy of parameter estimation for a given grid resolution for most of the test problems.  相似文献   

8.
We present a novel method to estimate the hydraulic and storage properties of a heterogeneous aquifer system using pilot-point-based hydraulic tomography (HT) inversion in conjunction with a geophysical a priori model. The a priori model involved a soil stratification obtained by combining electrical resistivity tomography inversion and field data from hydrogeological experiments. Pilot-point densities were assigned according to the stratification, which also constrained aquifer parameters during HT inversion. The forward groundwater flow model, HydroGeoSphere, was supplied to the parameter-estimation tool, PEST, to perform HT inversion. The performance of our method was evaluated on a hypothetical, two-dimensional, multi-layered, granitic aquifer system representative of those commonly occurring in the Kandi region in Telangana. Inversion results were compared using two commonly adopted methods of modeling parameter-heterogeneity: (1) using piece-wise zones of property values obtained from geostatistical interpolation of local-scale estimates; and (2) HT inversion starting from a homogeneous parameter field with a uniform distribution of pilot-points. Performances of the inverted models were evaluated by conducting independent pumping tests and statistical analyses (using a Taylor diagram) of the model-to-measurement discrepancies in drawdowns. Our results showed that using the aforementioned geophysical a priori model could improve the parameter-estimation process.  相似文献   

9.
Analytical solutions of drawdown in unconfined aquifers are widely applied for determining the specific yield, Sy, and the horizontal and the vertical hydraulic conductivity Kr and Kz, respectively. In many previous studies, estimates of Sy and Kz were observed to be highly variable and physically unrealistic. This has been attributed to the conceptualization of flow above the declining water table and aquifer heterogeneity in the applied models. We present the analysis of time-drawdown data from a pumping test instrumented with depth-differentiated observation piezometers arranged in clusters. Applying homogeneous anisotropic aquifer models in combination with nonlinear least squares parameter identification techniques, the data were analyzed in different groups: analysis of data from individual piezometer clusters and simultaneous analysis of the entire data set from all piezometer clusters (global analysis). From the cluster analyses, estimates of Sy and Kz exhibit large variances and depart from a priori estimates inferred from the hydrostratigraphy. Parameter estimates from the global analysis do not fall within the parameter bounds (minimum and maximum values) defined by the cluster analyses. While heterogeneity appears to be the important reason for large parameter variances, we discuss the influence of rarely considered aquifer return flow on drawdown and the inconsistent results from the cluster and global analyses. We corroborate our findings with data on hydraulic gradients, slug test data, and results from the application of a more realistic numerical flow model.  相似文献   

10.
Importance of the vadose zone in analyses of unconfined aquifer tests   总被引:5,自引:0,他引:5  
Moench AF 《Ground water》2004,42(2):223-233
Analytical models commonly used to interpret unconfined aquifer tests have been based on upper-boundary (water table) conditions that do not adequately address effects of time-varying drainage from the vadose zone. As a result, measured and simulated drawdown data may not agree and hydraulic parameters may be inaccurately estimated. A 72-hour aquifer test conducted in Cape Cod, Massachusetts, in a slightly heterogeneous, coarse-grained, glacial outwash deposit was found to be a good candidate for testing models with different upper-boundary conditions. In general, under the commonly invoked assumption of instantaneous drainage, measured and simulated drawdowns were found to agree with one another only at late time and early time. In the intermediate-time range, because of delayed drainage, measured drawdowns always exceeded simulated values, most noticeably in piezometers located near the water table. To reduce these discrepancies, an analytical model was developed that can fully account for time-varying drainage given that the aquifer is not strongly heterogeneous. The approach is flexible as the model, which makes use of empirical relations, does not constrain drainage to follow any particular functional relation. By this approach, measured and simulated drawdowns agree over the complete time range, and the estimated parameters are consistent with prior studies and with what is known about the aquifer geometry, stratigraphy, and composition. By properly accounting for vadose zone drainage, it was found that realistic estimates of all hydraulic parameters, including specific yield, could be obtained with or without the use of late-time data.  相似文献   

11.
Abstract

Unconfined aquifer parameters, viz. transmissivity, storage coefficient, specific yield and delay index from a pumping test are estimated using the genetic algorithm optimization (GA) technique. The parameter estimation problem is formulated as a least-squares optimization, in which the parameters are optimized by minimizing the deviations between the field-observed and the model-predicted time–drawdown data. Boulton's convolution integral for the determination of drawdown is coupled with the GA optimization technique. The bias induced by three different objective functions: (a) the sum of squares of absolute deviations between the observed and computed drawdown; (b) the sum of squares of normalized deviations with respect to the observed drawdown; and (c) the sum of squares of normalized deviations with respect to the computed drawdown, is statistically analysed. It is observed that, when the time–drawdown data contain no errors, the objective functions do not induce any bias in the parameter estimates and the true parameters are uniquely identified. However, in the presence of noise, these objective functions induce bias in the parameter estimates. For the case considered, defining the objective function as the sum of the squares of absolute deviations between the observed and simulated drawdowns resulted in the best possible estimates. A comparison of the GA technique with the curve-matching procedure and a conventional optimization technique, such as the sequential unconstrained minimization technique (SUMT), is made in estimating the aquifer parameters from a reported field pumping test in an unconfined aquifer. For the case considered, the GA technique performed better than the other two techniques in parameter estimation, with the sum-of-squares errors obtained from the GA about one fourth of those obtained by the curve matching procedure, and about half of those obtained by SUMT.

Citation Rajesh, M., Kashyap, D. & Hari Prasad, K. S. (2010) Estimation of unconfined aquifer parameters by genetic algorithms. Hydrol. Sci. J. 55(3), 403–413.  相似文献   

12.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   

13.
The Nguyen and Pinder method is one of four techniques commonly used for analysis of response data from slug tests. Limited field research has raised questions about the reliability of the parameter estimates obtained with this method. A theoretical evaluation of this technique reveals that errors were made in the derivation of the analytical solution upon which the technique is based. Simulation and field examples show that the errors result in parameter estimates that can differ from actual values by orders of magnitude. These findings indicate that the Nguyen and Pinder method should no longer be a tool in the repertoire of the field hydrogeologist. If data from a slug test performed in a partially penetrating well in a confined aquifer need to be analyzed, recent work has shown that the Hvorslev method is the best alternative among the commonly used techniques.  相似文献   

14.
The projected impact of climate change on groundwater recharge is a challenge in hydrogeological research because substantial doubts still remain, particularly in arid and semi‐arid zones. We present a methodology to generate future groundwater recharge scenarios using available information about regional climate change projections developed in European Projects. It involves an analysis of regional climate model (RCM) simulations and a proposal for ensemble models to assess the impacts of climate change. Future rainfall and temperature series are generated by modifying the mean and standard deviation of the historical series in accordance with estimates of their change provoked by climate change. Future recharge series will be obtained by simulating these new series within a continuous balance model of the aquifer. The proposed method is applied to the Serral‐Salinas aquifer, located in a semi‐arid zone of south‐east Spain. The results show important differences depending on the RCM used. Differences are also observed between the series generated by imposing only the changes in means or also in standard deviations. An increase in rainfall variability, as expected under future scenarios, could increase recharge rates for a given mean rainfall because the number of extreme events increases. For some RCMs, the simulations predict total recharge increases over the historical values, even though climate change would produce a reduction in the mean rainfall and an increased mean temperature. A method based on a multi‐objective analysis is proposed to provide ensemble predictions that give more value to the information obtained from the best calibrated models. The ensemble of predictions estimates a reduction in mean annual recharge of 14% for scenario A2 and 58% for scenario A1B. Lower values of future recharge are obtained if only the change in the mean is imposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

This work makes explicit an algebraic expression giving the matrix of transient influence coefficients associated with a one-dimensional semi-confined aquifer model. The domain studied is divided into a series of connected and completely mixed compartments over which the governing equation is discretized. The discrete equations obtained are solved for the compartmental hydraulic head and used to derive the algebraic expression in question. The basic properties of the so-called algebraic influence coefficients are investigated. In particular, their consistency with the exact Green function is highlighted. Finally, the newly derived influence coefficients are applied to a simplified aquifer system in order to formulate and solve the problem of identifying illegal groundwater pumping.  相似文献   

16.
Close M  Bright J  Wang F  Pang L  Manning M 《Ground water》2008,46(6):814-828
Two large-scale (9.5 m long, 4.7 m wide, 2.6 m deep), three-dimensional artificial aquifers were constructed to investigate the influence of spatial variations in aquifer properties on contaminant transport. One aquifer was uniformly filled with coarse sand media (0.6 to 2.0 mm) and the other was constructed as a heterogeneous aquifer using blocks of fine, medium, and coarse sands. The key features of these artificial aquifers are described. An innovative deaeration tower was constructed to overcome a problem of the aquifers becoming blocked with excess air from the ground water source. A series of tracer injection experiments were conducted to test the homogeneity of the first aquifer that was purposely built as a homogeneous aquifer and to calculate values of aquifer parameters. Experimental data show that the aquifer is slightly heterogeneous, and hydraulic conductivity values are significantly higher down one side of the aquifer compared to the mean value. There was very good agreement in estimated dispersivity values between the plume area ratio methods and the curve fitting of tracer breakthrough curves. Dispersivity estimates from a full areal source injection (12.2 m2) experiment using a 1D analytical model were higher than estimates from a limited source injection (0.2 m2) experiment using a 3D model, possibly because the 1D model does not take account of the heterogeneity of hydraulic conductivity in the aquifer, thus overestimating dispersivity. Transverse and vertical dispersivity values were about five times less than the longitudinal dispersivity. There was slight sorption of Rhodamine WT onto the aquifer media.  相似文献   

17.
The results of numerical models or of new observational programs are checked by comparing them with past observations. Also, it is desirable that the eddy diffusion coefficients used in two-dimensional models be derived from the same data set as the circulation statistics which the model outputs are checked against, so that all results refer to the same atmospheric conditions. For the first time, the three components of the eddy diffusion matrix, from 30–60 km, 80°N–10°S are computed, together with the means, variances and covariances of the wind and temperature through the same region using the same data set for 1960–76 and the same handling and analysis methods for all variables. Horizontal diffusivities,K yy , are obtained from the variance and integral time scale of the meridional wind speed. The present values are generally smaller than past estimates, presumably because temporal variations longer than a month have been removed in this work. Estimates ofK yz are based on the tentative assumption that the diffusivity is proportional to the slope of isentropic surfaces, and estimates ofK zz are based on the assumption that small-scale gravity waves are primarily responsible for vertical mixing.  相似文献   

18.
The Ischia geothermal system is hosted by silicic rocks of the Quaternary Potassic Roman Province, in southern Italy. Exploration drilling down to 1156 m depth in the mid-1950s provided information on boiling profiles (up to 250°C) and on the depth and permeability of the potential reservoirs. Discharge fluid samples were collected and analyzed to define the inflow of surrounding seawater (C1 ranges from 2.5 to 20 g/kg) into the system.Analyses of samples from surface manifestations and shallow wells collected during 1983 and 1988 point to the existence of three distinct mixing regimes, involving three water components. A dishomogeneous body of diluted water (Cl less than 2.5 g/kg), that occurs at depths > 700 m and reequilibrates at 240°C at least, is overlain by an aquifer of groundwater variably mixed with variably seawater (Cl from 4 to 10 g/kg), which tends to reequilibrate at 160°C. Steam-heated waters locally develop and act as dilutants of the rising geothermal fluids.Dilution, mixing, and evaporation of the ascending chloride fluids are supported by oxygen and hydrogen isotopic data the thermal waters being enriched in 18O and D with respect to local meteoric water by up to 7 and 30‰, respectively. The relative composition of the major cations in thermal solutions was used to discriminate the two main groups of thermal waters, the reservoir temperatures of which are estimated from the Na/K-gethermometer. K-Mg geothermometer indicates reequilibration in near-surface conditions.The isotopic composition of the fumarolic steam varies from −7 to −12‰ in ∂8O and from − 35 to − 70‰ in ∂D, in agreement with a deep mixed fluid that boils adiabatically from 240 to 80°C. The deuterium content of the H2O-H2 pair gives enrichment factor of about 830‰, corresponding to equilibrium temperature conditions slightly higher than the surface boiling temperatures. The ∂13C of CO2is almost constant at −4.5‰ (1δ=0.4), suggesting an important magmatic contribution, and the ∂18O values of CO2appears to in equilibrium with accompanying steam at the measured temperatures.The CO2/Ar and H2/Ar chemical ratios have been used to derive aquifer temperatures, the values obtained being consistent with those of solute geothermometers.  相似文献   

19.
F. Ashkar 《水文科学杂志》2013,58(6):1092-1106
Abstract

The potential is investigated of the generalized regression neural networks (GRNN) technique in modelling of reference evapotranspiration (ET0) obtained using the FAO Penman-Monteith (PM) equation. Various combinations of daily climatic data, namely solar radiation, air temperature, relative humidity and wind speed, are used as inputs to the ANN so as to evaluate the degree of effect of each of these variables on ET0. In the first part of the study, a comparison is made between the estimates provided by the GRNN and those obtained by the Penman, Hargreaves and Ritchie methods as implemented by the California Irrigation Management System (CIMIS). The empirical models were calibrated using the standard FAO PM ET0 values. The GRNN estimates are also compared with those of the calibrated models. Mean square error, mean absolute error and determination coefficient statistics are used as comparison criteria for the evaluation of the model performances. The GRNN technique (GRNN 1) whose inputs are solar radiation, air temperature, relative humidity and wind speed, gave mean square errors of 0.058 and 0.032 mm2 day?2, mean absolute errors of 0.184 and 0.127 mm day?1, and determination coefficients of 0.985 and 0.986 for the Pomona and Santa Monica stations (Los Angeles, USA), respectively. Based on the comparisons, it was found that the GRNN 1 model could be employed successfully in modelling the ET0 process. The second part of the study investigates the potential of the GRNN and the empirical methods in ET0 estimation using the nearby station data. Among the models, the calibrated Hargreaves was found to perform better than the others.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号