首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
西南三江地区洋板块地层特征及构造演化   总被引:3,自引:3,他引:0  
以大地构造研究为主导,初步梳理了三江地区洋板块地层系统的分布及其构造演化规律。本文阐述了三江地区经历原-古特提斯大洋连续演化、分阶段拼贴增生至最终俯冲消亡的地质演化历程。甘孜-理塘弧后洋盆于早石炭世打开,二叠纪—中三叠世进入顶峰扩张期,晚三叠世洋盆萎缩引起向西俯冲,最终在晚三叠世末局部地区保留残留海。哀牢山弧后洋盆不晚于早石炭世形成,早石炭世—早二叠世整体扩张发育,早二叠世末或晚二叠世初开始向西俯冲,晚三叠世最终完全关闭。金沙江洋盆早石炭世时已扩张成洋,到早二叠世晚期开始俯冲,石炭纪—早二叠世早期是金沙江洋盆扩张的主体时期,早二叠世晚期至早、中三叠世俯冲消亡。澜沧江弧后洋盆中晚泥盆世开始扩张,在石炭纪—早二叠世发育为成熟洋盆,早二叠世晚期洋内俯冲形成洋内弧,晚二叠世—早、中三叠世双向俯冲消亡。昌宁-孟连洋为特提斯洋主带,具有原-古特提斯洋连续演化的地质记录,晚奥陶世开始向东俯冲消减,二叠纪末、早三叠世发生弧-陆碰撞作用,昌宁-孟连洋盆闭合。  相似文献   

2.
三江昌宁-孟连带原-古特提斯构造演化   总被引:4,自引:0,他引:4       下载免费PDF全文
昌宁-孟连特提斯洋的构造演化及其原特提斯与古特提斯的转换方式一直是青藏高原及邻区基础地质研究中最热门的科学问题之一.根据新的地质调查资料、研究成果并结合分析数据,系统总结了三江造山系不同构造单元地质特征,讨论了昌宁-孟连特提斯洋早古生代-晚古生代的构造演化历史.通过对不同构造单元时空结构的剖析和对相关岩浆、沉积及变质作用记录的分析,认为昌宁-孟连结合带内共存原特提斯与古特提斯洋壳残余,临沧-勐海一带发育一条早古生代岩浆弧带,前人所划基底岩系"澜沧岩群"应为昌宁-孟连特提斯洋东向俯冲消减形成的早古生代构造增生杂岩,滇西地区榴辉岩带很可能代表了俯冲增生杂岩带发生了深俯冲,由于弧-陆碰撞而迅速折返就位,这一系列新资料及新认识表明昌宁-孟连结合带所代表的特提斯洋在早古生代至晚古生代很可能是一个连续演化的大洋.在此基础上,结合区域地质资料,构建了三江造山系特提斯洋演化的时空格架及演化历史,认为其经历了早古生代原特提斯大洋扩张、早古生代中晚期-晚古生代特提斯俯冲消减与岛弧带形成、晚二叠世末-早三叠世主碰撞汇聚、晚三叠世晚碰撞造山与盆山转换等阶段.   相似文献   

3.
滇西古特提斯俯冲-碰撞过程的岩浆作用记录   总被引:22,自引:3,他引:19       下载免费PDF全文
三叠纪岩浆作用广泛发育于澜沧江南带,锆石U-Pb年代学结果及岩石组合特征显示:(1)该区残留有少量的早三叠世火山岩(约248Ma),主要为一套薄层的以安山岩为主的火山岩;(2)中三叠世以大规模的酸性岩浆作用为主,部分地段的中部夹有少量的玄武岩,其中晚期的流纹岩与该区出露巨大的临沧花岗岩基主体具有一致的形成时代(约230Ma);(3)晚三叠世则以基性火山岩为主,夹少量流纹岩为特征的"双峰式"火山岩组合。元素地球化学特征表明,早三叠世火山岩具有典型的岛弧火山岩的特征,暗示其很可能形成于俯冲的构造环境;中三叠世晚期的流纹岩与临沧花岗岩基主体具有非常相似的地球化学特征,结合其流纹岩具有A型花岗岩属性,表明该区中三叠世火成岩形成于碰撞后的构造背景;而晚三叠世基性火山岩虽然在地球化学特征上显示出与岛弧火山岩相似的高铝和Nb-Ta的亏损,但其中部分火山岩具有高镁和板内玄武岩的微量元素比值特征,说明这些火山岩可能形成于碰撞后裂谷(post-collisional rifting)环境。结合区域上前人的研究资料,我们认为西南三江地区古特提斯主洋盆的俯冲闭合可能直到早三叠世晚期才完成,其后的陆-陆/弧碰撞作用可能发生在中三叠世早期,中三叠世中晚期该区进入碰撞后演化阶段,晚三叠世开始处于碰撞后的裂谷阶段,古特提斯在该区的演化最终结束于三叠纪末。  相似文献   

4.
滇西昌宁-孟连蛇绿混杂岩带保存了晚古生代古特提斯洋演化的记录,近年来在该带内还识别了一套早古生代的SSZ型蛇绿岩以及早古生代洋岛型高压变质岩原岩,证实了带内具有与青藏高原内部龙木措-双湖蛇绿混杂岩带相对应的原特提斯演化的记录.通过对昌宁-孟连蛇绿混杂岩带东南部布朗山地区澜沧岩群中变火山岩和变辉长岩岩石学、岩石地球化学、锆石U-Pb年代学及锆石原位Hf同位素研究,年代学结果显示,变辉长岩年龄为480.2±1.8 Ma,变火山岩年龄分别为465.5±1.2 Ma和472.5±2.9 Ma,代表了变辉长岩和变火山岩原岩形成时代.地球化学特征显示,变辉长岩具有典型的E-MORB微量、稀土元素特征,亏损锆石Hf同位素组成(εHf(t)=12.8~13.6),为洋中脊玄武岩(N-MORB)和洋岛玄武岩(OIB)混合的产物,代表了早古生代原特提斯洋演化的洋壳残片;变火山岩由高镁安山岩和高镁玄武岩组成,具有典型的岛弧岩浆岩亏损高场强元素(Nb、Ta和Ti)的特征,指示它们来源于俯冲交代富集的岩石圈地幔部分熔融,代表的是早古代原特提斯洋俯冲消减过程的产物.因此,昌宁-孟连原特提斯洋在早古生代早期就具有现今太平洋多岛洋的格局,这一研究为深入理解昌宁-孟连蛇绿混杂岩带原-古特提斯发展和演化提供了新的、重要的信息.  相似文献   

5.
西南三江地区地处冈瓦纳大陆与欧亚大陆结合带,是古特提斯构造域的东延部分。伴随古特提斯洋的闭合,区域内自西向东形成了澜沧江缝合带、昌宁-孟连缝合带、金沙江缝合带及甘孜-理塘缝合带,其中昌宁-孟连缝合带被认为是古特提斯洋主洋盆闭合后的残余。作为古特提斯洋的重要分支,金沙江洋的形成与演化长期受  相似文献   

6.
金沙江(-哀牢山)弧盆系是西南三江多岛弧盆系的重要组成部分,恢复其时空格架及其形成演化过程对理解古特提斯多岛弧盆系的时空格局具有重要意义。根据新的地质调查资料、研究成果并结合分析数据,系统总结了金沙江弧盆系不同构造单元的物质组成及其构造属性,讨论了其构造演化过程及其对VMS型矿床的控制作用。金沙江洋壳发育时限主要为晚志留世—二叠纪,古洋壳地幔受到了早期俯冲带物质富集组分的影响,主体形成于弧后盆地的构造环境。江达-德钦-维西岩浆弧为一复杂的陆缘弧,经历了俯冲消减(300~260 Ma)、早碰撞聚合(255~250 Ma)、同碰撞伸展(249~237 Ma)和晚碰撞造山(236~212 Ma)等构造事件叠加改造,形成了不同类型、不同环境的岩浆活动及其盆地。金沙江带新发现的贡觉榴辉岩、维西退变榴辉岩等高压变质带,为恢复金沙江古特提斯洋的俯冲-碰撞造山的复杂演化过程提供了重要证据。在此基础上,结合区域地质资料,构建了金沙江弧盆系的演化历史,认为经历了晚志留世—早二叠世金沙江(-哀牢山)弧后洋盆扩张、早二叠世晚期—晚二叠世洋壳俯冲消减、早三叠世—晚三叠世弧-陆碰撞造山与盆-山转换、晚三叠世末期后碰撞陆内造山至陆内汇聚-走滑转换等阶段的演化过程,每个阶段控制着不同类型的VMS型矿床。  相似文献   

7.
本文研究揭示,巴颜喀拉-松潘甘孜地体(简称松潘-甘孜地体)中部三叠系复理杂岩中的安山岩块是增生弧岩浆活动的产物,具有高度不均一均匀的岩石组构、地球化学与同位素组成。特别是这些安山岩显示了与松潘-甘孜三叠系海相浊积岩具有高度的Sr-Nd同位素亲缘性,沿亏损地幔和三叠系海相浊积岩混熔曲线分布,且主要分布于三叠系海相浊积岩端元区。这表明该增生弧安山质岩浆主要由增生楔中的海相浊积岩基质部分熔融形成,并受到了增生楔中大洋岩石圈残片等超镁铁/铁镁质组分的不同程度混染。安山岩时代(226.8±1.9Ma~213.7±0.9Ma)以及同时期广泛的S型花岗岩侵入活动(228±2Ma~204±7Ma)揭示增生弧形成于晚三叠世Norian期。前人工作表明,位于松潘-甘孜地体东北隅的诺尔盖-松潘盆地是一个周缘前陆盆地。因此,松潘-甘孜地体并非单一构造成因的地质体,至少由二叠纪-三叠纪演化的古特提斯大洋和中三叠世拉丁期-晚三叠世诺列期周缘前陆盆地两部分构成。前者是松潘-甘孜地体的主体部分,由松潘-甘孜古特提斯洋在三叠纪时期快速收缩形成的增生楔杂岩组成,其上发育增生弧,局部残存古特提斯大洋盆地及被构造移置的洋壳残片;后者为西秦岭弧(248~234Ma)与扬子地块碰撞的产物。  相似文献   

8.
滇西南昌宁-孟连缝合带东侧出露的澜沧岩群是重建原特提斯构造演化的关键,但其物质组成、时代和属性长期存在争议。近期地质调查表明,惠民地区的澜沧岩群惠民岩组主要由玄武岩、玄武安山岩、凝灰岩、砂岩、泥岩及灰岩组成,普遍经历了强烈构造变形和绿片岩相变质作用。岩石地球化学特征显示,玄武安山岩属于钙碱性系列,富集轻稀土元素和大离子亲石元素,具Nb、Ta和Ti的负异常,具有与俯冲相关火山弧的地球化学属性。其玄武安山岩锆石LA-ICP-MS^(206)Pb/^(238)U加权平均年龄为461.8±5.5Ma(MSWD=1.19,n=25);3件变质碎屑岩夹层的最年轻碎屑锆石U-Pb年龄峰值分别为469Ma、470Ma和475Ma,且同时期火山岩锆石占主导,指示其形成于汇聚板块边缘环境。结合本区东侧兰坪-思茅盆地西缘发育的同时期裂谷型双峰式火山岩分析,澜沧岩群惠民岩组变质火山-沉积岩组合可能是原特提斯洋沿扬子地块西缘向东俯冲过程(现今地理方位)形成的产物。研究表明古特提斯与原特提斯构造演化是连续的。  相似文献   

9.
吴喆  王保弟  王冬兵  刘函  周放 《地球科学》2020,45(8):3003-3013
前人在昌宁-孟连缝合带获得了大量的晚古生代岩浆活动与沉积地层的记录,但是早古生代的相关记录十分稀少,大大限制了对昌宁-孟连缝合带早古生代演化过程的理解.对南汀河地区早古生代英云闪长岩的锆石U-Pb年龄、全岩地球化学特征开展研究,并探讨其岩石成因,揭示早古生代(原)特提斯演化过程.通过LA-ICPMS锆石U-Pb定年,获得英云闪长岩206Pb/238U加权平均年龄为454.1±2.7 Ma、443.2±2.4 Ma,代表岩浆结晶时代.地球化学分析显示,南汀河英云闪长岩SiO2含量为63.41%~68.57%,K2O含量为1.31%~2.17%,同时具有富Na(Na2O=4.11%~5.07%)贫Mg(MgO=0.98%~1.39%)的特点.REE配分曲线呈现出轻稀土富集、重稀土亏损的特征,大离子亲石元素Sr、Ba等富集,高场强元素Nb、Ta、Ti亏损,与岛弧岩浆的特征相吻合;指示岩浆来源于俯冲板片的部分熔融,在岩浆上升过程中受到了俯冲沉积物的混染,形成于与原特提斯洋俯冲有关的弧火山岩环境,进一步指示早古生代原特提斯洋在454~443 Ma就已经发生了俯冲消减作用.南汀河蛇绿岩与羌塘地区龙木错-双湖缝合带桃形湖等蛇绿岩形成时代一致、地球化学性质相似,由此认为昌宁-孟连缝合带与龙木错-双湖缝合带一起代表了一个统一的古特提斯洋壳的残余.   相似文献   

10.
云南德钦鲁春-红坡牛场上叠裂谷盆地是金沙江构造带内中生代的重要赋矿盆地,位于金沙江结合带与昌都稳定陆块之间的活动边缘火山岩带中。由于该区火山岩的形成时代一直没有确切的年龄值,从而造 成对火山岩的性质和构造背景认识上的差异。笔者采用Rb-Sr同位素年代学方法对云南德钦鲁春-红坡牛场上叠裂谷盆地中玄武岩和流岩的年龄进行了测定,获得了“双峰式”火山岩的平均年龄值为224Ma,其形成于晚三叠世早期。玄武岩的^87Sr/^86Sr初始值为0.7065-0.7194,流纹岩的^87Sr/^86Sr初始值为0.7074-0.7199,二者十分相似,表明盆地中的玄武岩与流纹岩为同一岩浆源,从早期的基性岩浆演化为晚期的酸性岩浆。玄武岩和流纹岩组合的“双峰式”火山岩形成于金沙江弧- 陆碰撞后的地壳伸展构造环境。  相似文献   

11.
Khromykh  S. V.  Semenova  D. V.  Kotler  P. D.  Gurova  A. V.  Mikheev  E. I.  Perfilova  A. A. 《Geotectonics》2020,54(4):510-528

Studies of volcanic rocks in orogenic troughs of Eastern Kazakhstan were carried out. The troughs were formed at late-orogenic stages of evolution of Hercynian Altai collision system. Volcanic rocks are represented by basalts, andesites, dacites and rhyolites. Based on geochemical and isotopic data, the basalts and andesites derived from mafic magmas that formed as a result of partial melting of garnet peridotites in the upper mantle under the orogen. U–Pb zircon data prove two volcanic stages: more-scaled Middle Carboniferous (~311 Ma) and less-scaled Early Permian (297–290 Ma). Basalts and andesites in lower parts of the orogenic troughs and independent dacite-rhyolite structures were formed at the Middle Carboniferous stage. Parental mafic magmas were formed as a result of partial melting of mantle substrates in local transtensional zones along large shear faults. The formation of dacites and rhyolites could have been caused by partial melting of crustal substrates under effect of mafic magmas. Transtensional movements in the lithosphere of orogenic belts may indicate the beginning of collapse of orogens. A smaller volume of basalts and andesites formed at the Early Permian stage. Geochemical data prove the independent episode of partial melting in upper mantle. Synchronous basalts and andesites also appeared at wide territory in Tian Shan, Central Kazakhstan, and Central and Southern Mongolia. Early Permian volcanism indicates general extension of the lithosphere at the postorogenic stages. Large-scaled Early Permian mafic and granitoid magmatism in Central Asia has been interpreted in recent years as the Tarim Large Igneous Province caused by Tarim mantle plume activity. Thus, the extension of the lithosphere and associated volcanism in the Early Permian can be an indicator of the onset of the plume–lithosphere interaction process.

  相似文献   

12.
In this paper we present new data for the Tianquan (TQ) and Dabure (DB) ocean islands in the western segment of the Longmuco–Shuanghu–Lancangjiang suture zone, northern Tibet, including the results of major and trace element analyses, zircon U–Pb dating, and Hf isotope analyses. Our aim was to assess the genesis of these ocean islands and to consider the implications for the tectonic evolution of the region as a whole. Both TQ and DB retain an ocean-island-type double-layered structure comprising a volcanic basement (basalt and andesite) and an oceanic sedimentary cover sequence (conglomerate, limestone, and chert). The basalts and andesites in the TQ and DB are enriched in light rare earth elements and high field strength elements (Nb, Ta, Zr, Hf, and Ti), yielding chondrite-normalized REE patterns and primitive-mantle-normalized trace element patterns that are similar to those of ocean island basalts. Given the small and generally positive εHf(t) values of the TQ andesites (+ 4.25 to + 6.22) and DB andesites (− 0.59 to + 1.97, mostly > 0), we conclude that the basalts were derived from the partial melting of garnet peridotite in the mantle and that the andesites were formed by fractional crystallization of the mafic parent magma derived from the garnet peridotite mantle. The ascending magmas underwent varying degrees of fractional crystallization but were not contaminated by crustal material. These features indicate that both TQ and DB are typical ocean islands that formed in an ocean basin. Geochemical analyses of cherts from TQ and DB show that they contain terrigenous material, indicating the proximity of a continental margin. The andesites of TQ contain zircons that yield two U–Pb ages of 251 Ma. Given that ages of 246, 247, and 254 Ma had been reported previously, we conclude that TQ formed during the late Permian–Early Triassic. The andesites of DB contain zircons that yield U–Pb ages of 242 and 246 Ma. Taking into account the youngest age of 244 Ma from the DB basalt, we conclude that DB formed during the Middle Triassic. These data, combined with the geological history of the region, indicate that the development of the Longmuco–Shuanghu–Lancangjiang Paleo-Tethys Ocean continued after the early Permian and that the closure of this ocean was diachronous from east to west. The eastern segment of the ocean closed during the Early Triassic; however, the western segment remained at least partially open until the Middle Triassic, although the ocean was relatively small at this time. The ocean finally closed in the Late Triassic.  相似文献   

13.
胡军  王核  黄朝阳 《岩石学报》2016,32(6):1699-1714
甜水海地块西段的种羊场地区发育一套互层状产出的玄武岩-玄武安山岩-流纹岩,本文对其进行了岩石学、同位素年代学和地球化学研究。结果表明,流纹岩LA-ICP-MS锆石U-Pb定年获得三组年龄:343.5±4.1Ma表明火山岩的形成时代为早石炭纪,2439±26Ma和1988±36Ma说明甜水海地块存在前寒武纪结晶基底。其中玄武质岩石岩性从拉斑系列、钙碱性系列向碱性系列过渡,呈现出E-MORB(OIB)、大陆板内拉张和岛弧的混合特征,与典型弧后盆地Okinawa玄武岩有一定的差异,表明其可能是异常陆缘弧后盆地拉张裂解的产物。玄武质岩石和流纹岩的主量元素、稀土元素和微量元素比值对的差异表明它们不是同源岩浆演化的产物,玄武质岩石的源区为类似E-MORB(OIB)的岩石圈地幔,且发生了部分熔融,原始岩浆上升过程中经历了矿物分离结晶和地壳混染作用。流纹岩属于高硅高碱的钙碱性火山岩,是上地壳部分熔融的产物。种羊场早石炭纪火山岩可能代表了古特提洋西端早期扩张的记录,为西昆仑-喀喇昆仑地区晚古生代多岛洋格局提供了新的证据。  相似文献   

14.
滇西北金沙江蛇绿岩带是古特提斯最重要的缝合带记录之一,本文对该带内的东竹林层状辉长岩进行了年代学、岩石地球化学及锆石Hf同位素研究。LA-ICP-MS锆石U-Pb测年结果显示东竹林层状辉长岩形成于354±3Ma,表明金沙江古特提斯洋在早石炭世已扩张形成洋壳,暗示其裂解时期应为更早的泥盆纪。单颗粒锆石原位Hf同位素分析得到东竹林层状辉长岩锆石εHf(t)=10.3~12.6,平均值为11.5,明显低于结晶时亏损地幔值;单阶段亏损地幔Hf模式年龄tDM1为478~576Ma,平均值为523Ma,明显大于成岩年龄354Ma。锆石Hf同位素结果显示金沙江古特提斯洋地幔受到了富集组分的影响。岩石微量元素特征显示富集组分可能来自特提斯连续演化过程中早期的俯冲作用带入的壳源物质。结合区域演化特征,认为金沙江古特提斯洋是在弧后盆地基础上发展起来的洋盆,它不能构成古特提斯的主大洋,而是古特提斯洋的一个重要分支,分隔着中咱-中甸地块与昌都-思茅地块。  相似文献   

15.
Several Paleozoic sutures in Southwestern China provide a record of the history of the Paleo-Tethys Ocean, whose birth and final closure are associated with the breakup and assembly of Gondwanaland. Recent studies indicate that there are widespread OIB-type mafic volcanic rocks within these suture zones and intervening terranes. This paper examines the geology and geochemistry of volcanic rocks in the Xiaruo-Tuoding area, a remnant passive margin succession of the Jinshajiang Paleo-Tethyan Ocean. The sedimentary and volcanic stratigraphy of this area is interpreted as a seaward dipping margin with a few continentward dipping normal faults. The available geochemistry of these volcanic rocks suggest that they are OIB-like basalts, characterised by SiO2 = 42.78–50.46 wt.%, high TiO2 contents (TiO2 = 2.2–3.55 wt.%), moderate MgO = 4.15–6.49 wt.%, Mg# = 0.37–0.50, high Ti/Y ratios (mostly > 450), large ion lithosphere elements enrichment, high strength field elements and rare earth elements, with La/Nb = 1.04–1.39, Ce/Yb = 18.38–30, Sm/Yb = 2.16–3.52, (87Sr/86Sr)i = 0.705350–0.707867, and Nd(t) = − 1.43–1.90. These geochemical and isotopic signatures are generally similar to those of the Emeishan flood basalts, which together with stratigraphic constraints, demonstrate that these volcanics were formed in a volcanic rifted margin, probably associated with a mantle plume. A new model is proposed to interpret the evolution of the Jinshajiang Paleo-Tethyan Ocean and its possible relationship to the Emeishan mantle plume. In this model, we argue that the opening of the Jinshajiang Paleo-Tethyan Ocean in the Carboniferous was caused by a mantle plume. The mantle plume was active to the east along the western margin of the Yangtze Craton between 300 and 260 Ma, from which the voluminous Emeishan flood basalts were erupted at 260 Ma. The closure of the Jinshajiang Ocean occurred since the Middle Permian. Continuous westward subduction generated the Jiangda-Weixi magmatic arc to the west of the Jinshajiang suture. This subduction also partly destroyed and/or tectonically sliced the volcanic rifted margin. Some seaward dipping volcanic-sedimentary sequences on the east flank of the Jinshajiang Ocean were preserved, but are strongly deformed.  相似文献   

16.
The North Qiangtang continental block in central Tibet is a critical piece of the Pangea puzzle. This paper uses integrated geochronological and geochemical data for selected mafic dykes and dioritic enclaves in this block to evaluate its tectonic evolution in the Triassic. Zircons from two mafic dykes and the dioritic enclaves of a large arc granodiorite pluton in eastern North Qiangtang yield indistinguishable U-Pb ages from 248 ± 2 to 251 ± 3 Ma, contemporaneous with widespread arc basaltic andesites and crust-derived rhyolites in the region. The mafic dykes and coeval arc basaltic andesites have almost identical Sr-Nd isotopes (initial 87Sr/86Sr = 0.707 to 0.708, εNd = −4.4 to −3.6), and are all characterized by light REE enrichments and pronounced negative Nb-Ta anomalies. The dioritic enclaves and the hosts have indistinguishable zircon U-Pb ages, almost identical Sr-Nd isotopes (initial 87Sr/86Sr = 0.709 to 0.711, εNd = −7.4 to −5.9), and similar zircon εHf (−13.7 to −5.7), but contrasting chondrite-normalized REE patterns due to hornblende fractionation. The Sr-Nd isotope data indicate that the dioritic enclaves formed from the hybrid melts produced by mixing at depth between the arc basaltic andesites and the crust-derived rhyolites. We propose that the Early Triassic arc igneous suites are related to the northward subduction of the southern Paleo-Tethys beneath the North Qiangtang block from Early to Middle Triassic. The occurrence of several Late Triassic porphyry Cu deposits plus a VMS Ag-Pb-Zn deposit in the Yidun arc, which is the product of the southward subduction of the northern Paleo-Tethys beneath the North Qiangtang block in the Late Triassic, indicates that the arc magmas generated during the subduction of the Paleo-Tethys are fertile in ore metals. Therefore, exploration for Early–Middle Triassic porphyry Cu and VMS deposits in the southern part of the North Qiangtang block is warranted.  相似文献   

17.
New whole-rock major and trace elements data, zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb ages, and zircon Hf isotope compositions were analysed for Early Cretaceous volcanic rocks, also called Meiriqieco Formation (MF) in the Duobuzha area of the Southern Qiangtang–Baoshan Block (SQBB), northern Tibet. Our aim is to clarify their petrogenesis and tectonic setting, and constrain the evolution process on the northern margin of Bangong–Nujiang suture zone (BNSZ) during Early Cretaceous time. The MF volcanic rocks are mainly composed of andesites with subordinate basalts and rhyolites with high-K calc-alkaline affinity. Zircon LA-ICP-MS U–Pb dating for two andesite and one rhyolite samples give uniform ages within error of ca.113, 114, and 118 Ma, respectively, indicating they were erupted on the Early Cretaceous. The MF andesites have variable zircon εHf(t) values (+0.5 to +10.5), which is different from those of MF rhyolites (+7.9 to +10.7). All the MF rocks are enriched in large ion lithophile elements, and depleted in high field strength elements, yielding the affinity of arc rocks. The MF basalts were most likely derived from the mantle wedge that was metasomatized by fluids released from subducting slab with the involvement of subducted sediments. The MF rhyolites were generated by partial melting of the juvenile mafic lower crust. The MF andesites are interpreted to have formed by mixing of the magmas that parental of the MF basalts and the MF rhyolites. In addition, a couple of distinctly magmatic sources are identified in the SQBB, and this may be related to mantle components injected into the continental crust. Combined with published geological data in the BNSZ and SQBB, we consider that the MF volcanic rocks are formed in a continental arc setting, suggesting that BNO were subducting during the Early Cretaceous time in the Duobuzha area.  相似文献   

18.
郭荣荣  刘树文  白翔  张立飞  王伟  胡方泱  阎明 《岩石学报》2014,30(10):2885-2904
冀东双山子群是一套出露于青龙县东部变质程度较低的火山沉积地层,其中火山岩地层主要由变质玄武岩、安山岩和英安岩-流纹岩组成。全岩地球化学分析表明变玄武岩呈现拉斑玄武岩的地球化学特征,起源于尖晶石二辉橄榄岩12%~25%的部分熔融,变质安山岩与变质英安岩-流纹岩形成于弧下地幔部分熔融,该熔体受到地壳物质混染。LA-ICPMS锆石U-Pb定年表明本群变质安山岩形成于2514±16Ma,而变质流纹岩形成于2522±8Ma,二者均受到~2450和~2300Ma的后期热事件扰动。结合本群变质火山岩的岩石组合、地球化学特征和岩石成因,该套岩石可能形成于活动大陆边缘弧相关构造背景。  相似文献   

19.
The Miocene Kitami rhyolite, consisting of orthopyroxene and plagioclase-phyric lavas and dikes, occurs on the back-arc side of the Kuril arc with coeval basalts and Fe-rich andesites. Temperatures estimated from orthopyroxene–ilmenite pairs exceed 900°C. Although the whole rock compositions of the Kitami rhyolite correspond to S-type granites (i.e., high K, Al, large ion lithophile elements, and low Ca and Sr), Sr–Nd isotope compositions are remarkably primitive, and similar to those of the coeval basalts and andesites. They are distinct from those of lower crustal metamorphic rocks exposed in the area. Comparison of chondrite-normalized rare earth element (REE) patterns between the rhyolite and the basalts and andesites show that the rhyolite is more light REE enriched, but has similar heavy REE contents than the basalts. All rhyolites show negative Eu anomalies. The geochemical data suggest that did not formed by simple dehydration melting of basaltic rocks or fractional crystallization of basaltic magmas. The features of slab-derived fluids expected from recent high pressure experimental studies indicates that mantle wedge is partly metasomatized with “rhyolitic” materials from subducted slabs; it is more likely that very low degree partial melting of the metasomatized mantle wedge formed the rhyolite magma.  相似文献   

20.
The Jinshajiang Suture Zone is important for enhancing our understanding of the evolution of the Paleo-Tethys and its age, tectonic setting and relationship to the Ailaoshan Suture Zone have long been controversial. Based on integrated tectonic, biostratigraphic, chemostratigraphic and isotope geochronological studies, four tectono-stratigraphic units can be recognized in the Jinshajiang Suture Zone: the Eaqing Complex, the Jinshajiang Ophiolitic Melange, the Gajinxueshan “Group” and the Zhongxinrong “Group”. Isotope geochronology indicates that the redefined Eaqing Complex, composed of high-grade-metamorphic rocks, might represent the metamorphic basement of the Jinshajiang area or a remnant micro-continental fragment. Eaqing Complex protolith rocks are pre-Devonian and probably of Early–Middle Proterozoic age and are correlated with those of the Ailaoshan Complex. Two zircon U–Pb ages of 340±3 and 294±3 Ma, separately dated from the Shusong and Xuitui plagiogranites within the ophiolitic assemblage, indicate that the Jinshajiang oceanic lithosphere formed in latest Devonian to earliest Carboniferous times. The oceanic lithosphere was formed in association with the opening and spreading of the Jinshajiang oceanic basin, and was contiguous and equivalent to the Ailaoshan oceanic lithosphere preserved in the Shuanggou Ophiolitic Melange in the Ailaoshan Suture Zone; the latter yielded a U–Pb age of 362±41 Ma from plagiogranite. The re-defined Gajinxueshan and Zhongxinrong “groups” are dated as Carboniferous to Permian, and latest Permian to Middle Triassic respectively, on the basis of fossils and U–Pb dating of basic volcanic interbeds. The Gajinxueshan “Group” formed in bathyal slope to neritic shelf environments, and the Zhongxinrong “Group” as bathyal to abyssal turbidites in the Jinshajiang–Ailaoshan back-arc basin. Latest Permian–earliest Middle Triassic synorogenic granitoids, with ages of 238±18 and 227±5–255±8 Ma, respectively, and an Upper Triassic overlap molasse sequence, indicate a Middle Triassic age for the Jinshajiang–Ailaoshan Suture, formed by collision of the Changdu-Simao Block with South China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号