首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
东南极拉斯曼丘陵地区麻粒岩相岩石中出露一套罕见的含硅硼镁铝矿-柱晶石-电气石矿物组合的富硼岩系.由于高级变质作用已使原岩的性质难以确定,变质原岩及其形成环境的恢复变得十分困难,而硼同位素组成则可以作为判定硼来源的有效示踪剂和指相标志.报道了东南极拉斯曼丘陵硅硼镁铝矿-柱晶石-电气石富硼岩系的硼同位素组成资料,其δ11B值变化范围为-12.0‰~-34.6‰,硼同位素的低比值和其他地质证据表明,其原岩为非海相蒸发硼酸盐岩.  相似文献   

2.
南极中山站区电气石及其与变质作用的关系   总被引:1,自引:0,他引:1  
南极中山站区的巨晶“电气石”实际上是柱晶石。电气石的确存在,但颗粒细小,含量较低。根据其颜色、成分和产出特征,至少可分为三种类型,不同的电气石与变质作用发展的不同阶段有关。电气石在麻粒岩相变质作用条件下能够稳定存在,与其它硼硅酸盐矿物(即硅硼镁铝矿和柱晶石)的缓冲作用有关。  相似文献   

3.
东南极拉斯曼丘陵高级变质长英质岩石中铁钛氧化物的局部聚集与高级变质作用过程中的深熔作用有关,并非原岩富集这些组分。深熔作用造成惰性组分如铁钛氧化物滞留原地或略有聚集及活动性组分的迁移,而流体挥发组分优先聚集于熔体之中。当体系中水含量较低、处于不饱和状态时,深熔作用过程中形成局部"熔体",其结晶所成的浅色体不具低共结组分,没有熔体结晶结构,不是真正的熔体,可能是(准)熔体。较粗粒的浅色体或伟晶岩也是与深熔作用有关的产物,其形成早于花岗岩脉或岩体,而与花岗质岩浆分异无关。伴随(准)熔体的出现,体系中组分的萃取、分异效果较为明显,即可造成组分分异,形成截然不同的异地、二相分异结构,分别形成固相残留物(组成可以不固定)和(准)熔体相。固相残留体中富铝、铁组分,形成矽线石和铁钛氧化物团块,其中少或无挥发分;与此对应,短距离迁移浅色体中往往贫铁钛组分,可见石榴子石、偶见铁钛氧化物矿物。这种挥发分不饱和状态下的深熔作用基本属于封闭体系,整体失水不显著,高级变质岩中的一些特征矿物如矽线石、石榴子石、堇青石、尖晶石的形成也与这种分异作用有关,但组分迁移范围有限,并可保存组分分异各阶段的产物。拉斯曼丘陵长英质岩系中大量铁钛氧化物和矽线石类矿物组合的形成,反映了临界状态下的局部或差异抬升,变形作用的非均匀性及相伴随的组分分异作用,很可能相当于早期格林维尔期构造的泛非期再活动。   相似文献   

4.
硅硼镁铝矿在我国的首次发现   总被引:2,自引:0,他引:2  
硅硼镁铝矿(Grandidierite)为一罕见矿物.国外由M.A.Lacroix于1902年在马达加斯加花岗岩中首次发现,1918年在匈牙利又有发现,此后国内外一直未见报道.1985年笔者在对黑龙江鸡西三道沟矽线石矿床研究中,发现了硅硼镁铝矿.它产于麻山群斜长片麻岩内,与培长石、柱晶石、矽线石、电气石、石墨等共生,含量占7-8%.硅硼镁铝矿呈蓝绿色、长柱状,粒度0.1×0.2×0.8~0.5 ×1.0 × 4.omm.相对密度为3.016g/cm~3,摩氏硬度7.5.矿物难溶于盐酸、硫酸及氢氟酸.  相似文献   

5.
辽东地区沉积变质硼矿床及硼同位素研究   总被引:2,自引:2,他引:2  
辽东地区元古界硼矿床属于沉积变质硼矿。根据现代盐湖沉积 ,认为硼矿物沉积通常为硼砂 ,然后在区域变质作用过程中 ,硼砂矿物转变为硼镁矿物或硼铁矿等硼酸盐矿物 ,但辽东硼矿床中不同硼矿物的硼同位素有一定差别。电气石富10 B ,δ11B值较低或呈负值 ;而硼镁石与硼镁铁矿类矿物明显富集11B ,δ11B值较高 ,为 +2 3‰~ +17 4‰。根据水岩作用过程中硼同位素分馏特征的研究 ,11B与10 B比较有下列 4个特征 :( 1) 11B属于极不相容元素 ,优先进入水相 ,因此在变质残余矿物相中形成低的δ11B值 ;( 2 )在蚀变和交代变质反应中硅优先替代11B进入矿物晶格 ,因此在硅化交代中可以降低δ11B值 ,而脱硅反应中可以提高δ11B值 ;水化作用中 ,OH-带入11B ,使富水矿物具有较高的δ11B值 ;( 3)热水沉积及热液交代成因电气石均具有较低的δ11B值或者为负值 ;( 4)通过最近的研究表明 ,在热蒸馏过程中 ,硼同位素会发生明显的分馏 ,11B倾向于进入蒸汽相 ,而使残余相或后蒸馏相亏损11B ,形成较低的δ11B值。因此可以认为辽东地区元古界硼矿床属于热水沉积电气石岩在后期区域变质或热变质过程中分解出硼酸气水溶液交代镁碳酸盐形成硼镁石或硼镁铁矿矿物 ,而非蒸发沉积变质矿床。  相似文献   

6.
本文通过对南极拉斯曼丘陵长英质片麻岩变质过程中堇青石与其它矿物之间结构关系的研究 ,识别出明显不同的两种组合Pl Kfs Qtz(Grt)和Crd Opq Spl±Qtz,认为区内高级变质作用向深熔作用转化过程中发生了长英质组分和镁铁质组分的分凝。分凝出的长英质熔体与堇青石的形成没有直接关系 ;镁铁质组分较富Mg、Fe ,贫Si、Ca ,当镁铁质组分达到一定的富集程度时即形成堇青石。时间上 ,堇青石形成于降压过程中发生的深熔作用的晚期  相似文献   

7.
姜善春  陈友明  潘均 《地质科学》1964,5(4):341-352
我們在前一篇文章里曾討論了Ca2+-HPO42--F1--H2O体系中氟对磷酸盐矿物形成影响的若干方面。为了使該項模拟試驗工作更符合于表生作用条件,我們在叶連俊教授的指导下,在上述实驗体系中增加了一个組分--HCO31-,进行了Ca2+-HPO42--HCO31-F1--H2O体系的試驗研究。其目的为进一步探索在合有HCO31-組分的体系中氟对磷酸盐矿物形成的影响,以及CO32-能否进入磷灰石晶格和磷酸盐矿物与碳酸盐矿物的沉积分异順序等問題。  相似文献   

8.
为了对西藏错那洞电气石花岗岩源区进一步约束,利用显微镜、电子探针和激光剥蚀多接收等离子质谱仪,对错那洞电气石花岗岩中电气石的形态、成分及硼同位素组成进行了研究.结果表明,错那洞电气石花岗岩中的电气石为碱族黑/铁电气石,直接结晶自富硼熔体,与熔体之间未发生明显的硼同位素分馏.电气石δ11B值主要在-6.91‰^-9.17‰之间,与大陆地壳平均δ11B值(-10‰±3‰)相近,表明错那洞电气石花岗岩主要源自变质沉积岩的部分熔融.然而,与起源于变质沉积岩的花岗岩相比,样品的δ11B值明显偏高,而与前人报道的雅拉香波淡色花岗岩(源自石榴石角闪岩部分熔融)的δ11B值相似.因此,错那洞电气石花岗岩源区中,除了变质沉积岩外,可能还混入了少量石榴石角闪岩.  相似文献   

9.
大陆碰撞过程中会发生广泛的部分熔融现象,形成深熔熔体。深入认识深熔熔体的组成和演化是大陆俯冲带化学地球动力学的主要研究内容。在熔融过程中产生的熔体会被超高压岩石中的转熔矿物所捕获,最终以多相晶体包裹体(multiphase crystal inclusion,简称MCI)的形式保存下来。多相晶体包裹体通常具有典型的负晶形和爆裂纹,主要以硅酸盐和碳酸盐矿物为主含有少量的硫酸盐矿物。矿物学、岩石学和地球化学原位微区分析的研究结果表明,多相晶体包裹体是由岩石部分熔融产生的初始硅酸盐或/和碳酸盐初始熔体熔体结晶而成。在降压折返过程中,高压岩石中的含水矿物,如多硅白云母、钠云母和帘石等脱水引发部分熔融产生硅酸盐熔体,而碳酸盐熔体则由碳酸盐矿物部分熔融产生。富Na矿物如钠云母脱水熔融产生的包裹体具有相对较高的Na含量,而部分富K的包裹体主要由富K矿物如多硅白云母脱水熔融所产生。近年来随着微区原位技术的飞速发展,从矿物的形态结构到矿物地球化学组成的测定技术有了飞速发展,通过对超高压岩石中包裹的多相晶体的详细研究,可限定大陆碰撞造山过程中部分熔融的组成、时限和形成机制,对大陆深俯冲的构造热演化和折返机制有重要制约。  相似文献   

10.
长英质片麻岩中堇青石的一种可能 的形成机制   总被引:6,自引:0,他引:6  
本文通过对南极拉斯曼丘陵长英质片麻岩变质过程中堇青石与其它矿物之间结构关系的研究,识别出明显不同的两种组合Pl+Kfs+Qtz(Grt)和Crd+Opq+Spl±Qtz,认为区内高级变质作用向深熔作用转化过程中发生了长英质组分和镁铁质组分的分凝。分凝出的长英质熔体与堇青石的形成没有直接关系;镁铁质组分较富Mg、Fe,贫Si、Ca,当镁铁质组分达到一定的富集程度时即形成堇青石。时间上,堇青石形成于降压过程中发生的深熔作用的晚期。  相似文献   

11.
南极拉斯曼丘陵高级长英质片麻岩的夕线片麻岩中可有两类结构和变质矿物组合均有所不同的两种域,一种含夕线石部分对应于片理组合,另一种对应无夕线石的非片理化组合.岩石的变形尤其是破裂性裂隙的率先出现对于富夕线石部分的形成是必要的.在非破裂性片麻理岩石域中,中-低压/高温条件下黑云斜长片麻岩进变质发展的结果往往是形成Grt+Qtz±Opx组合.这两种不同的变质域的组合与应变分解造成的强应变带和弱应变域相一致.而且,夕线石的形成不是简单的变质早期矿物固相反应的结果,而是反应链上的一部分.其出现是由开放体系中组分的差异迁移造成的,这种差异迁移实际上是碱土金属迁出(淋滤)的过程,与变形相伴的流体活动使得SiO2发生强烈淋滤,残留组分中SiO2活度大为降低,并使长英质组分和镁铁质组分分凝,主要组分大都可以单独富集(集中)、形成复杂的矿物演化和分布.这种演化还可从MgO等碱(土)金属组分的外迁程度差异来理解.随着碱(土)金属丢失程度的减小,依次出现夕线石、石榴子石、斜方辉石和堇青石,或者说,不同的变质或分异阶段形成不同的矿物(组合):变形-变质起始阶段,碱(土)金属组分迁移初期残留形成夕线石,之后为镁(铁)质组分迁移,初期残留不透明钛铁氧化物,晚期残留组分形成堇青石.石榴子石-长英质组合为体系基本封闭情况下的结晶.此外,夕线石的形成往往标志着深熔作用的开始,一旦深熔作用发展完善,夕线石呈准稳定状态或趋于消失.拉斯曼丘陵与夕线石有关的长英质岩石经历了复杂的变形、变质和流体活动变化.  相似文献   

12.
Grandidierite, kornerupine, and tourmaline occur in high-grade pelitic gneisses from southeastern Ontario, Canada. The kornerupine occurs in quartz-bearing layers associated with biotite, cordierite, garnet, ilmenite, K-feldspar, magnetite, quartz, and, less commonly, sillimanite. Grandidierite is found in quartz-poor, cordierite+sillimanite segregations in contact with biotite, cordierite, ilmenite, K-feldspar, magnetite, sillimanite, and, more rarely, garnet. Tourmaline is sporadically distributed in all compositional layers, but is not in contact with the other borosilicates. There is no textural evidence for a reactive relationship among the three borosilicates. Neither chemical or textural equilibrium has been achieved on the scale of a thin section.It is proposed that the granite, K-feldspar-rich leucosomes, and different borosilicate assemblages in adjacent compositional layers evolved along a path of decreasing pressure and increasing temperature. The P-T path intersected a series of dehydration and melting reactions. This P-T path indicates that uplift had occurred before cooling had started and before the maximum temperature was reached. Corona and symplectite textures developed at various times during uplift both before and after cooling had started.  相似文献   

13.
Variations in the composition and mineral assemblages of boronaluminosilciates (serendibite, grandidierite, kornerupine, and tourmaline) were studied in the abyssal and hypabyssal skarns of New York and California, United States, the Taezhnyi deposit of southern Yakutia, and deposits of the Pamirs, and compared to their occurrences around the world. The genesis of the boronaluminosilicates depends on the facies of the replaced skarns and the calcareous-skarn alteration of the primary composition of the host rocks. The substitution between Mg and Fe, as well as between Al, Si, and B, was studied in complex boronaluminosilciates and associated minerals. It was shown that f of serendibite is determined by that in the replaced skarn minerals (pyroxenes, spinel, sapphirine, and grandidierite) and is inherited in the replacing tourmaline and late silicates. Unlike serendibite, kornerupine is a typomorphic mineral of only bimetasomatic skarns of the abyssal facies. Serendibite, grandidierite, kornerupine, and tourmaline crystallized during the postmagmatic stage of the evolution of boron mineralization at skarn deposits of both the abyssal and the hypabyssal facies, at contact with magnesian carbonate sequences and desilicified aluminosilicate rocks.  相似文献   

14.
Tourmaline-out isograd formed by the breakdown of tourmaline is defined in the upper amphibolite-facies metapelites in the Yanai area, Ryoke metamorphic belt, SW Japan. The rim composition of tourmaline progressively becomes aluminous with ascending metamorphic grade, and the chemical zoning of tourmaline is controlled by X□AlNa–1Mg–1 and MgTiYAl–2 vectors in low- to medium-grade zones where muscovite is stable, whereas it is controlled by Mg(OH)YAl–1O–1, CaMgOX–1 YAl–1(OH)–1 and MgTiYAl–2 vectors in further higher–grade, muscovite-unstable zones. The size of tourmaline increases drastically where breakdown of muscovite+quartz takes place, probably due to the growth of tourmaline during breakdown of muscovite. On the high-temperature side of the tourmaline-out isograd, depletion of whole-rock boron is observed. Escape of boron-bearing melt or the fluid evolved from the melt during its crystallization probably caused this depletion, although locally trapped, boron-bearing melt or fluid formed irregularly shaped tourmaline and dumortierite during retrograde metamorphism.  相似文献   

15.
Experiments at 750 °C, 200 MPa(H2O), a (H2O)=1, and fO2∼Ni-NiO established that the equilibrium among tourmaline, biotite, cordierite, and melt (± spinel, aluminosilicate, or corundum) occurs with ∼2 wt% B2O3 in strongly peraluminous melt with an aluminosity, measured by the parameter ASI, of >1.2. The experiments demonstrate the relationship of tourmaline stability to the activity product of the tourmaline components boron and aluminum, which are inversely related to one another. Tourmaline is unstable in metaluminous to mildly peraluminous melts (ASI <1.2) at 750 °C regardless of their boron content. For a given aluminosity, addition of components such as F requires a greater boron content of melt at this equilibrium. The stability of tourmaline increases with decreasing temperatures below 750 °C. At the inception of melting, tourmaline breaks down incongruently to assemblages containing crystalline AFM silicates (biotite, cordierite, garnet, sillimanite), aluminates (spinel, corundum), and B-enriched but Fe-Mg-poor melt. Granitic melts are likely to be undersaturated in tourmaline from the start of their crystallization, and their initial boron contents will be limited by the abundance of tourmaline in their source rocks. Quartzofeldspathic (gneissic, metapelitic) rocks that reached conditions of the granulite facies and still contain (prograde) tourmaline are rare, and probably have never yielded a partial melt. Most leucogranitic magmas will initially crystallize biotite, cordierite, or garnet, but not tourmaline. With crystallization, the Fe-Mg content of melt decreases, and the B2O3 content increases until the tourmaline-biotite and/or tourmaline-cordierite (or garnet) equilibria are attained. The B2O3 content of melt is buffered as long as these equilibria continue to operate, but low initial Fe-Mg contents of the magmas limit the quantity of boron that can be consumed by these reactions to <1 wt% B2O3. Normally, leucogranitic magmas contain insufficient Fe and Mg to conserve all boron as tourmaline and thus lose a large fraction of magmatic boron to wallrocks. Leucogranites and pegmatites with tourmaline as an early and only AFM silicate mineral probably contained >2 wt% B2O3 in their bulk magmas. Received: 6 August 1996 / Accepted: 21 July 1997  相似文献   

16.
A sharp line delimitating the distribution of tourmaline (termed as a ‘tourmaline‐out isograd’) is defined in the migmatite zone of the Ryoke metamorphic belt, Japan. The trend of the tourmaline‐out isograd closely matches that of the isograds formed through the regional metamorphism, suggesting that it represents the breakdown front of tourmaline during regional metamorphism. This is confirmed by the presence of the reaction textures of tourmaline to sillimanite and cordierite near the tourmaline‐out isograd. The breakdown of tourmaline would release boron into associated melts or fluids and be an important factor in controlling the behaviour of boron in tourmaline‐bearing high‐temperature metamorphic rocks. Near the tourmaline‐out isograd, large tourmaline crystals occur in the centre of interboudin partitions containing leucosome. In the melanosome of the intervening matrix, reaction textures involving tourmaline are locally observed. These observations imply that tourmaline breakdown is related to a melting reaction and that the boron in the leucosome is derived from the breakdown of tourmaline in the melanosome during prograde metamorphism. Boron released by tourmaline breakdown lowers both the solidus temperature of the rock and the viscosity of any associated melt. Considering that the tourmaline‐out isograd lies close to the schist–migmatite boundary, these effects might have enhanced melt generation and segregation in the migmatite zone of the Ryoke belt. The evidence for the breakdown of tourmaline and the almost complete absence of any borosilicates throughout the migmatite zone suggest that boron was effectively removed from this region by the movement of melt and/or fluid. This implies that the tourmaline‐out isograd can reflect a significant amount of mass transfer in the anatectic zones.  相似文献   

17.
Tourmaline is widespread in metapelites and pegmatites from the Neoproterozoic Damara Belt, which form the basement and potential source rocks of the Cretaceous Erongo granite. This study traces the B-isotope variations in tourmalines from the basement, from the Erongo granite and from its hydrothermal stage. Tourmalines from the basement are alkali-deficient schorl-dravites, with B-isotope ratios typical for continental crust (δ11B average −8.4‰ ± 1.4, n = 11; one sample at −13‰, n = 2). Virtually all tourmaline in the Erongo granite occurs in distinctive tourmaline-quartz orbicules. This “main-stage” tourmaline is alkali-deficient schorl (20–30% X-site vacancy, Fe/(Fe + Mg) 0.8–1), with uniform B-isotope compositions (δ11B −8.7‰ ± 1.5, n = 49) that are indistinguishable from the basement average, suggesting that boron was derived from anatexis of the local basement rocks with no significant shift in isotopic composition. Secondary, hydrothermal tourmaline in the granite has a bimodal B-isotope distribution with one peak at about −9‰, like the main-stage tourmaline, and a second at −2‰. We propose that the tourmaline-rich orbicules formed late in the crystallization history from an immiscible Na–B–Fe-rich hydrous melt. The massive precipitation of orbicular tourmaline nearly exhausted the melt in boron and the shift of δ11B to −2‰ in secondary tourmaline can be explained by Rayleigh fractionation after about 90% B-depletion in the residual fluid. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Six tourmaline samples were investigated as potential reference materials (RMs) for boron isotope measurement by secondary ion mass spectrometry (SIMS). The tourmaline samples are chemically homogeneous and cover a compositional range of tourmaline supergroup minerals (primarily Fe, Mg and Li end‐members). Additionally, they have homogeneous boron delta values with intermediate precision values during SIMS analyses of less than 0.6‰ (2s). These samples were compared with four established tourmaline RMs, that is, schorl IAEA‐B‐4 and three Harvard tourmalines (schorl HS#112566, dravite HS#108796 and elbaite HS#98144). They were re‐evaluated for their major element and boron delta values using the same measurement procedure as the new tourmaline samples investigated. A discrepancy of about 1.5‰ in δ11B was found between the previously published reference values for established RMs and the values determined in this study. Significant instrumental mass fractionation (IMF) of up to 8‰ in δ11B was observed for schorl–dravite–elbaite solid solutions during SIMS analysis. Using the new reference values determined in this study, the IMF of the ten tourmaline samples can be modelled by a linear combination of the chemical parameters FeO + MnO, SiO2 and F. The new tourmaline RMs, together with the four established RMs, extend the boron isotope analysis of tourmaline towards the Mg‐ and Al‐rich compositional range. Consequently, the in situ boron isotope ratio of many natural tourmalines can now be determined with an uncertainty of less than 0.8‰ (2s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号