首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous observations of beach groundwater salinity over a 35‐d period from a monitoring well established in the intertidal zone of a coastal harbor provided intriguing data on the interaction in the intertidal zone between the salt and fresh groundwater. During the monitoring period of the study, both semidiurnal variations and longer temporal trends in groundwater salinity were observed. The semidiurnal salinity variations were observed to occur nearly synchronously, but inconsistently with the tides. However, the salinity relationship with the tides was more complex, switching back and forth from being in‐sync (higher salinities at high tide) to out‐of‐sync (higher salinities at low tide) a total of four times during the 35‐d test period. The longer temporal trends showed chloride concentration (representing salinity) varying from as low as 50 mg/L to as high as 3600 mg/L over a period of between 9 to 12 d. The observations from the monitoring well reveal a complex pattern likely resulting from a combination of tidal pumping, density‐induced convection, and changes in the terrestrial hydraulic gradient. However, these observations are based upon data from only one monitoring well, and are speculative at this point. A more thorough study of the complex fresh water‐saline water relationship in the intertidal zone seems to have merit.  相似文献   

2.
Transverse micro‐erosion meter (TMEM) stations were installed in rock slabs from shore platforms in eastern Canada. The slabs were put into artificial sea water for 1, 6 or 11 hours, representing high, mid‐ and low tidal areas, respectively. The TMEMs were used to record changes in surface elevation as the rocks dried during the remainder of the 12 h of a semi‐diurnal tidal cycle. A similar technique was used on the same rock types at intertidal TMEM stations in the field, as the rocks dried during low tide. Argillite and basalt surface contraction was from 0 to 0·04 mm: there was little surface expansion. Sandstones contracted by up to 0·03 mm in the field, but there was almost no contraction in the laboratory. Argillite and basalt contraction tended to be greatest in the upper intertidal zone, and to increase with rates of longer‐term surface downwearing, but there was little relationship with rock hardness or air temperature and humidity. Changes in elevation at the same points at TMEM stations in the laboratory and field were quite consistent from one tidal cycle to the next, but there were considerable variations within single tidal cycles between different points within each station. The data suggest that contraction within the elevational zone that is normally submerged twice a day by the tides is by alternate wetting and drying. Short‐term changes in elevation are generally low compared with annual rates of downwearing owing to erosion, but they may generate stresses that contribute to rock breakdown. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Cyanobacterial mats are found at various locations along the coast of the Eastern Province of Saudi Arabia. Those mats were affected by severe oil pollution following 1991 oil spill. In this study, samples from Abu Ali Island were collected at three selected sampling sites across the intertidal zone (Lower, Middle, and Upper) in order to understand the effect of extreme environmental conditions of high salinity, temperature and desiccation on distribution of cyanobacteria along the oil polluted intertidal zone. Our investigation of composition of cyanobacteria and diatoms was carried out using light microscopy, and Denaturant Gradient Gel Electrophoresis (DGGE) technique. Light microscopy identification revealed dominant cyanobacteria to be affiliated with genera Phormidium, Microcoleus, and Schizothrix, and to a lesser extent with Oscillatoria, Halothece, and various diatom species. The analysis of DGGE of PCR-amplified 16S rRNA fragments showed that the diversity of cyanobacteria decreases as we proceed from the lower to the upper intertidal zone. Accordingly, the tidal regime, salinity, elevated ambient air temperature, and desiccation periods have a great influence on the distribution of cyanobacterial community in the oil polluted intertidal zone of Abu Ali Island.  相似文献   

4.
Fluxes of submarine groundwater discharge (SGD) were investigated into two tidal rivers on the north and south shore of Long Island, NY, during July 2015. Ground‐based handheld thermal infrared (TIR) imagery, combined with direct push‐point piezometer sampling, documented spatially heterogeneous small‐scale intertidal seepage zones. Pore waters were relatively fresh and enriched in nitrogen (N) within these small‐scale seeps. Pore waters sampled just 20 cm away, outside the boundary of the ground‐based TIR‐located seepage zone, were more saline and lower in N. These ground‐based TIR‐identified seeps geochemically represented the terrestrial fresh groundwater endmember, whereas N in pore waters sampled outside of the TIR‐identified seeps was derived from the remineralization of organic matter introduced into the sediment by tidal seawater infiltration. A 222Rn (radon‐222) time‐series was used to quantify fresh SGD‐associated N fluxes using the N endmembers sampled from the ground‐based TIR pore water profiles. N fluxes were up‐scaled to groundwater seepage zones identified from high‐resolution airborne TIR imagery using the two‐dimensional size of the airborne TIR surface water anomalies, relative to the N flux from the time‐series sampling location. Results suggest that the N load from the north‐shore tidal river to Long Island Sound is underrepresented by at least 1.6–3.6%, whereas the N load from SGD to a south‐shore tidal river may be up to 9% higher than previous estimates. These results demonstrate the importance of SGD in supplying nutrients to the lower reaches of tidal rivers and suggest that N loads in other tidal river environments may be underestimated if SGD is not accounted for.  相似文献   

5.
Digital elevation models and topographic pro?les of a beach with intertidal bar and trough (ridge‐and‐runnel) morphology in Merlimont, northern France, were analysed in order to assess patterns of cross‐shore and longshore intertidal bar mobility. The beach exhibited a pronounced dual bar–trough system that showed cross‐shore stationarity. The bars and troughs were, however, characterized by signi?cant longshore advection of sand under the in?uence of suspension by waves and transport by strong tide‐ and wind‐driven longshore currents. Pro?le changes were due in part to the longshore migration of medium‐sized bedforms. The potential for cross‐shore bar migration appears to be mitigated by the large size of the two bars relative to incident wave energy, which is modulated by high vertical tidal excursion rates on this beach due to the large tidal range (mean spring tidal range = 8·3 m). Cross‐shore bar migration is also probably hindered by the well‐entrenched troughs which are maintained by channelled high‐energy intertidal ?ows generated by swash bores and by tidal discharge and drainage. The longshore migration of intertidal bars affecting Merlimont beach is embedded in a regional coastal sand transport pathway involving tidal and wind‐forced northward residual ?ows affecting the rectilinear northern French coast in the eastern English Channel. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we analyzed the high/low water levels of eight stations along the Pearl River estuary and the high/low tidal levels of Sanzao station, and streamflow series of Sanshui and Makou stations using wavelet transform technique and correlation analysis method. The behaviors of high/low water levels of the Pearl River estuary, possible impacts of hydrological processes of the upper Pearl River Delta and astronomical tidal fluctuations were investigated. The results indicate that: (1) the streamflow variability of Sanshui and Makou stations is characterized by 1-year period; 1-, 0.5- and 0.25-year periods can be detected in the high tidal level series of Sanzao station, which reflect the fluctuations of astronomical tidal levels. The low tidal level series of Sanzao station has two periodicity elements, i.e. 0.5- and 0.25-year periods; (2) different periodicity properties have been revealed: the periods of high water levels of the Pearl River estuary are characterized by 1-, 0.5- and 0.25-year periods; and 1-year period is the major period in the low water levels of the Pearl River estuary; (3) periodicity properties indicate that behaviors of low water levels are mainly influenced by hydrological processes of the upper Pearl River Delta. High water levels of the Pearl River estuary seem to be affected by both hydrological processes and fluctuations of astronomical tidal levels represented by tidal level changes of Sanzao station. Correlation analysis results further corroborate this conclusion; (4) slight differences can be observed in wavelet transform patterns and properties of relationships between high/low water levels and streamflow changes. This can be formulated by altered hydrodynamic and morphodynamic processes due to intensifying human activities such as construction of engineering infrastructures and land reclamation.  相似文献   

7.
Interactions between fresh groundwater and seawater affect significantly the nearshore pore water flow, which in turn influences the fate of nutrients and contaminants in coastal aquifers prior to discharge to the marine environment. Field investigations and numerical simulations were carried out to examine the groundwater dynamics in the intertidal zone of a carbonate sandy aquifer on the tropical island of Rarotonga, Cook Islands. The study site was featured by distinct cross‐shore slope breaks on the beach surface. Measured pore water salinities revealed different distributions under the influences of different beach profiles, inland heads, and tidal oscillations. Fresh groundwater was found to discharge around a beach slope break located in the middle area of the intertidal zone. The results indicate a strong interplay between the slope break beach morphology and tidal force in controlling the nearshore groundwater flow and solute transport. The fresh groundwater discharge location was largely determined by the beach morphology in combination with the tidal force. The nearshore groundwater flow can be very sensitive to beach slope breaks, which induce local circulation and flow instabilities. As slope breaks are a common feature of beaches around the world, these results have important, general implications for future studies of nutrients transport and transformations in nearshore aquifers and associated fluxes via submarine groundwater discharge.  相似文献   

8.
The collection of 152 samples from the upper sublittoral zone along the rocky coasts of Catalonia (Northwestern Mediterranean) was carried out in 1999 in order to test the suitability of littoral communities to be used as indicators of water quality in the frame of the European Water Framework Directive. Detrended correspondence analysis were performed to distinguish between different communities and to relate communities composition to water quality. Samples collected in reference sites were included in the analysis. Mediterranean rocky shore communities situated in the upper sublittoral zone can be used as indicators of the water quality: there is a gradient from high to bad status that comprises from dense Cystoseira mediterranea forests to green algae dominated communities. The geographical patterns in the distribution of these communities show that the best areas are situated in the Northern coast, where tourism is the main economic resource of the area, and the worst area is situated close to the metropolitan zone of Barcelona with high population and industrial development. Thus, Mediterranean sublittoral rocky shore communities are useful indicators of water quality and multivariate analysis are a suitable statistical tool for the assessment of the ecological status.  相似文献   

9.
Downwearing rates were measured on shore platforms at about 200 transverse micro‐erosion meter (TMEM) stations, over periods ranging from 2 to 6 years. There were seven study areas in eastern Canada. The platforms were surveyed and a Schmidt Rock Test Hammer was used to measure rock hardness. More than 1200 rock samples from three of the study areas were also subjected each day, over a 3 year period, to two tidal cycles of immersion and exposure, which simulated the central intertidal zone. A further 840 samples were subjected to longer periods of exposure and immersion, over a 1 year period, which represented different elevations within the upper and lower intertidal zone, respectively. These experiments suggested that tidally generated weathering and debris removal is an effective erosional mechanism, particularly at the elevation of the lowest high tides. In the field, mean rates of downwearing for each study area ranged from 0·24 mm yr?1 to more than 1·5 mm yr?1. Rates tended to increase with elevation in the field, with maxima in the upper intertidal zone. This trend in the field cannot be attributed entirely to the tidally induced weathering processes that were simulated in the laboratory, and must reflect, in part, the effect of waves, frost, ice, and other mechanisms. It is concluded that there are no strong spatial downwearing patterns on shore platforms, and that downwearing rates in the intertidal zone are the result of a number of erosional mechanisms with different elevation‐efficacy characteristics. Furthermore, even if only one or two mechanisms were dominant in an area, any resulting relationship between downwearing rates and elevation would be obscured or eliminated by the effect of variations in the chemical and physical characteristics of the rocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time-lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6-km long longitudinal ER surveys during summer and winter. The time-lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel-scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.  相似文献   

11.
Sediment quality of the lower St. Johns River (LSJR) estuary, Florida was evaluated using synoptic data on benthic community structure, levels of potential stressors (chemical contaminants, ammonia and sulfide), and other basic habitat characteristics (depth, dissolved oxygen, salinity, temperature) collected at seven stations, three times a year from July 2000-July 2002. Un-ionized ammonia and hydrogen sulfide were detected at toxic levels on at least one sampling occasion at four stations. Chemical contamination of sediment at probable bioeffect levels also was observed at four stations. Concentrations of pesticides or other chemical substances typically associated with human activities (e.g., PCBs) were detectable at all stations, though not always present at concentrations likely of causing significant bioeffects. A total of 251 taxa and 9783 individuals were identified and enumerated from the benthic infaunal samples. Polychaete worms and molluscs dominated the benthic fauna at all seven stations. The opportunistic and pollution-tolerant polychaete Streblospio benedicti was the most abundant species overall (from all samples combined), appearing as a dominant at five of the seven stations. Overall, the sites sampled as part of this study indicate a highly stressed benthos resulting from multiple anthropogenic impacts.  相似文献   

12.
A three‐dimensional, time‐dependent hydrodynamic and salinity model was applied to the Danshuei River estuarine system and adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundary and freshwater flows from the main stem and tributaries in the Danshuei River system. The bottom roughness height was calibrated and verified with model simulation of barotropic flow, and the turbulent diffusivities were calibrated through comparison of time‐series of salinity distributions. The overall model verification was achieved with comparisons of residual current and salinity distribution. The model simulation results are in qualitative agreement with the available field data. The model was then used to investigate the tidal current, residual current, and salinity patterns under the low freshwater flow condition in the modelling domain. The results reveal that the extensive intrusion of saline water imposes a significant baroclinic forcing and induces a strong residual circulation in the estuary. The downriver net velocity in the upper layer increases seaward despite the enlargement of the river cross‐section in that direction. Strong residual circulation can be found near the Kuan‐Du station. This may be the result of the deep bathymetric features there. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
While recent studies have revealed that tidal fluctuations in an estuary significantly affect groundwater flows and salt transport in the riparian zone, only seawater salinity in the estuary has been considered. A numerical study is conducted to investigate the influence of estuarine salinity variations on the groundwater flow and salt dynamics in the adjacent aquifer to extend our understanding of these complex and dynamic systems. Tidal salinity fluctuations (synchronous with estuary stage) were found to alter the magnitude and distribution of groundwater discharge to the estuary, which subsequently impacted on groundwater salinity patterns and residence times, especially in the riparian zone. The effects of salinity fluctuations were not fully captured by adopting a constant, time-averaged estuarine salinity. The modelling analysis also included an assessment of the impact of a seasonal freshwater flush in the estuary, similar to that expected in tropical climates (e.g. mean estuary level during flood significantly greater than average), on adjacent groundwater flow and salinity conditions. The three-month freshwater flushing event temporarily disrupted the salt distribution and re-circulation patterns predicted to occur under conditions of constant salinity and tidal water level fluctuations in the estuary. The results indicate that the salinity variations in tidal estuaries impact significantly on estuary–aquifer interaction and need to be accounted for to properly assess salinity and flow dynamics and groundwater residence times of riparian zones.  相似文献   

14.
This study employed a coupled water-air two-phase flow and salt water transport model to analyze the behaviors of generated airflow in unsaturated zones and the fluctuations of salinity at the salt–fresh water interface in a two-layered unconfined aquifer with a sloping beach surface subjected to tidal oscillations. The simulation results show that as the new dynamic steady state including effects of tidal fluctuations is reached through multiple tidal cycles, the dispersion zone in the lower salt water wedge is broadened because fresh water/salt water therein flows continuously landward or seaward during tidal cycles. The upper salt–fresh water interface exhibits more vulnerable to the tidal fluctuations, and the variation of salinity therein is periodic, which is irrelevant to the hydraulic head but is influenced by the direction and velocity of surrounding water-flow. With the tidal level fluctuating, airflow is mainly concentrated in the lower permeable layer due to the restraint of the upper semi-permeable layer, and the time-lag between the pore-air pressure and the tidal level increases with distance from the coastline. The effect of airflow in unsaturated zones can be transmitted downward, causing both the magnitude of salinity and its amplitude in the upper salt–fresh water interface to be smaller for the case with airflow than without airflow due to the resistance of airflow to water-flow. Sensitivity analysis reveal that distributions of airflow in unsaturated zones are affected by the permeability of the upper/lower layer and the van Genuchten parameter of the lower layer, not by the van Genuchten parameter of the upper layer, whereas the salinity fluctuations in the salt–fresh water interface are affected only by soil parameters of the lower layer.  相似文献   

15.
Mollusc death assemblages were recovered in 98 subtidal sampling stations on the seafloor of the shallow Pertuis Charentais Sea (Atlantic coast of France). Taxonomic composition and spatial distribution of death assemblages were investigated, as well as their response to sediment grain size (field data), bottom shear stress (coupled tide and wave hydrodynamic modelling), and sediment budget (bathymetric difference map). Results showed that molluscs are likely to be reliable paleoenvironmental indicators since death assemblages were able to acquire ecological changes within years (decadal-scale taphonomic inertia), and live–dead agreement inferred from existing data on living benthic communities was high, except close to river mouths and intertidal mudflats that provide terrestrial and intertidal species to subtidal death assemblages, respectively. Taxonomic composition of these within-habitat death assemblages strongly depended on sediment grain size and bottom shear stress, similarly to living subtidal communities. Post-mortem dispersal of shells, owing to relatively low bottom shear stress in the area, was only of a few 10s to 100s of meters, which shows that death assemblages preserved environmental gradients even at a fine spatial scale. Sediment budget had also a significant influence on death assemblages. Thick-shelled epifaunal species were correlated with erosion areas on one side, and thin-shelled infaunal species with deposition on the other, showing that mollusc fossil assemblages could be used as indicators of paleo-sedimentation rate. This new proxy was successfully tested on a previously published Holocene mollusc fossil record from the same area. It was possible to refine the paleoenvironmental interpretation already proposed, in accordance with existing stratigraphic and sedimentological data.  相似文献   

16.
Salinity and periodic inundation are both known to have a major role in shaping the ecohydrology of mangroves through their controls on water uptake, photosynthesis, stomatal conductance, gas exchanges, and nutrient availability. Salinity, in particular, can be considered one of the main abiotic regulating factors for halophytes and salt‐tolerant species, due to its influence on water use patterns and growth rate. Ecohydrological literature has rarely focused on the effects of salinity on plant transpiration, based on the fact that the terrestrial plants mostly thrive in low‐saline, unsaturated soils where the role of osmotic potential can be considered negligible. However, the effect of salinity cannot be neglected in the case of tidal species like mangroves, which have to cope with hyperosmotic conditions and waterlogging. We introduce here a first‐order ecohydrological model of the soil/plant‐atmosphere continuum of Avicennia marina—also known as gray mangrove—a highly salt‐tolerant pioneer species able to adapt to hyperarid intertidal zones and characterized by unique morphological and ecophysiological traits. The A. marina's soil‐plant‐atmosphere continuum takes explicitly into account the role of water head, osmotic water potential, and water salinity in governing plant water fluxes. A. marina's transpiration is thus modeled as a function of salinity based on a simple parameterization of salt exclusion mechanisms at the root level and a modified Jarvis' expression accounting for the effects of salinity on stomatal conductance. Consistently with previous studies investigating the physiology of mangroves in response to different environmental drivers, our results highlight the major influence of salinity on mangrove transpiration when contrasted with other potential stressors such as waterlogging and water stress.  相似文献   

17.
Measurements were made of the water content in coastal rocks, by simulating tidal oscillations in the laboratory, and by field measurement in eastern Canada. If rapid freezing takes place upon exposure to the air, saturation levels may be high enough to permit frost weathering in fine grained rocks in the lower portions of the intertidal zone. Near the high tidal level, however, it may be dependent upon a supply of water from the ice foot and from melting snow. If freezing is slow, frost action may be inhibited by desorption of the rocks while they are exposed by the ebb tide. There was no evidence of a level of permanent sea water saturation within the intertidal zone. Ambient temperature and humidity may affect the rate of rock desorption.  相似文献   

18.
19.
In this paper, we analyse the behaviour of fine sediments in the hyper-turbid Lower Ems River, with focus on the river’s upper reaches, a stretch of about 25 km up-estuary of Terborg. Our analysis is based on long records of suspended particulate matter (SPM) from optical backscatter (OBS) measurements close to the bed at seven stations along the river, records of salinity and water level measurements at these stations, acoustic measurements on the vertical mud structure just up-estuary of Terborg and oxygen profiles in the lower 3 m of the water column close to Leerort and Terborg. Further, we use cross-sectionally averaged velocities computed with a calibrated numerical model. Distinction is made between four timescales, i.e. the semi-diurnal tidal timescale, the spring–neap tidal timescale, a timescale around an isolated peak in river flow (i.e. about 3 weeks) and a seasonal timescale. The data suggest that a pool of fluid/soft mud is present in these upper reaches, from up-estuary of Papenburg to a bit down-estuary of Terborg. Between Terborg and Gandersum, SPM values drop rapidly but remain high at a few gram per litre. The pool of fluid/soft mud is entrained/mobilized at the onset of flood, yielding SPM values of many tens gram per litre. This suspension is transported up-estuary with the flood. Around high water slack, part of the suspension settles, being remixed during ebb, while migrating down-estuary, but likely not much further than Terborg. Around low water slack, a large fraction of the sediment settles, reforming the pool of fluid mud. The rapid entrainment from the fluid mud layer after low water slack is only possible when the peak flood velocity exceeds a critical value of around 1 m/s, i.e. when the stratified water column seems to become internally supercritical. If the peak flood velocity does not reach this critical value, f.i. during neap tide, fluid mud is not entrained up to the OBS sensors. Thus, it is not classical tidal asymmetry, but the peak flood velocity itself which governs the hyper-turbid state in the Lower Ems River. The crucial role of river flow and river floods is in reducing these peak flood velocities. During elongated periods of high river flow, in e.g. wintertime, SPM concentrations reduce, and the soft mud deposits consolidate and possibly become locally armoured as well by sand washed in from the river. We have no observations that sediments are washed out of the hyper-turbid zone. Down-estuary of Terborg, where SPM values do not reach hyper-turbid conditions, the SPM dynamics are governed by classical tidal asymmetry and estuarine circulation. Hence, nowhere in the river, sediments are flushed from the upper reaches of the river into the Ems-Dollard estuary during high river flow events. However, exchange of sediment between river and estuary should occur because of tide-induced dispersion.  相似文献   

20.
A recent comprehensive survey covering 125 sites in Hong Kong waters recorded 29 soft coral species in 14 genera, 38 species of gorgonians in 19 genera and six species of black corals in two genera. Environmental variabilities based on water quality data collected by Hong Kong Environmental Protection Department were analyzed using multivariate statistics to find variables that are significantly correlated with coral distribution patterns. Eleven water quality zones with similar environmental variabilities were recognized, which could further be classified into five groups, namely Inner Bay, Outer Bay, Eastern, Western and Southern waters. LINKTREE analysis provided an overall trend indicating the importance of salinity, sediment and nutrient loadings in affecting octocoral and black coral distribution from west to east of Hong Kong waters, and from inner to outer bays. Furthermore, water turbidity and wave exposure could also affect the coral distribution patterns from north, northeast to southern waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号