首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— Dar al Gani 476, the 13th martian meteorite, was recovered from the Sahara in 1998. It is a basaltic shergottitic rock composed of olivine megacrysts reaching 5 mm (24 vol%) set in a finegrained groundmass of pyroxene (59 vol%) and maskelynitized plagioclase (12 vol%) with minor amounts of accessory phases (spinel, merrillite, ilmenite). Dar al Gani 476 is similar to lithology A of Elephant Moraine A79001 (EETA79001) in petrography and mineralogy, but is distinct in several aspects. Low‐Ca pyroxenes in the Dar al Gani 476 groundmass are more magnesian (En76Fs21 Wo3~En58Fs30Wo12) than those in lithology A of EETA79001 (En73Fs22Wo5~En45Fs43Wo12), rather similar to pyroxenes in lherzolitic martian meteorites (En76Fs21 Wo3~En63Fs22Wo15). Dar al Gani 476 olivine is less magnesian and shows a narrower compositional range (Fo76‐58) than EETA79001 olivine (Fo81‐53), and is also similar to olivines in lherzolitic martian meteorites (Fo74‐65). The orthopyroxene‐olivine‐chromite xenolith typical in the lithology A of EETA79001 is absent in Dar al Gani 476. It seems that Dar al Gani 476 crystallized from a slightly more primitive mafic magma than lithology A of EETA79001 and several phases (olivine, pyroxene, chromite, and ilmenite) in Dar al Gani 476 may have petrogenetic similarities to those of lherzolitic martian meteorites. Olivine megacrysts in Dar al Gani 476 are in disequilibrium with the bulk composition. The presence of fractured olivine grains in which the most Mg‐rich parts are in contact with the groundmass suggests that little diffusive modification of original olivine compositions occurred during cooling. This observation enabled us to estimate the cooling rates of Dar al Gani 476 and EETA79001 olivines, giving similar cooling rates of 0.03‐3 °C/h for Dar al Gani 476 and 0.05‐5 °C/h for EETA79001. This suggests that they were cooled near the surface (burial depth shallower than about 3 m at most), probably in lava flows during crystallization of groundmass. As is proposed for lithology A of EETA79001, it may be possible to consider that Dar al Gani 476 has an impact melt origin, a mixture of martian lherzolite and other martian rock (Queen Alexandra Range 94201, nakhlites?).  相似文献   

2.
Northwest Africa (NWA) 1950 is a new member of the lherzolitic shergottite clan of the Martian meteorites recently found in the Atlas Mountains. The petrological, mineralogical, and geochemical data are very close to those of the other known lherzolitic shergottites. The meteorite has a cumulate gabbroic texture and its mineralogy consists of olivine (Fo66 to Fo75), low and high‐Ca pyroxenes (En78Fs19Wo2‐En60Fs26W14; En53Fs16Wo31‐En45Fs14Wo41), and plagioclase (An57Ab41Or1 to An40Ab57Or3; entirely converted into maskelynite during intense shock metamorphism). Accessory minerals include phosphates (merrillite), chromite and spinels, sulfides, and a glass rich in potassium. The oxygen isotopic values lie on the fractional line defined by the other SNC meteorites (Δ17O = 0.312 %o). The composition of NWA 1950 is very similar to the other lherzolitic shergottites and suggests an origin from the same magmatic system, or at least crystallization from a close parental melt. Cosmogenic ages indicate an ejection age similar to those of the other lherzolitic shergottites. The intensity of the shock is similar to that observed in other shergottites, as shown by the occurrence of small melt pockets containing glass interwoven with stishovite.  相似文献   

3.
Abstract By mineral and bulk compositions, the Lewis Cliff (LEW) 88516 meteorite is quite similar to the ALHA77005 martian meteorite. These two meteorites are not paired because their mineral compositions are distinct, they were found 500 km apart in ice fields with different sources for meteorites, and their terrestrial residence ages are different. Minerals in LEW88516 include: olivine, pyroxenes (low- and high-Ca), and maskelynite (after plagioclase); and the minor minerals chromite, whitlockite, ilmenite, and pyrrhotite. Mineral grains in LEW88516 range up to a few mm. Texturally, the meteorite is complex, with regions of olivine and chromite poikilitically enclosed in pyroxene, regions of interstitial basaltic texture, and glass-rich (shock) veinlets. Olivine compositions range from Fo64 to Fo70, (avg. Fo67), more ferroan and with more variation than in ALHA77005 (Fo69 to Fo73). Pyroxene compositions fall between En77Wo4 and En65Wo15 and in clusters near En63Wo9 and En53Wo33, on average more magnesian and with more variation than in ALHA77005. Shock features in LEW88516 range from weak deformation through complete melting. Bulk chemical analyses by modal recombination of electron microprobe analyses, instrumental neutron activation, and radiochemical neutron activation confirm that LEW88516 is more closely related to ALHA77005 than to other known martian meteorites. Key element abundance ratios are typical of martian meteorites, as is its non-chondritic rare earth pattern. Differences between the chemical compositions of LEW88516 and ALHA77005 are consistent with slight differences in the proportions of their constituent minerals and not from fundamental petrogenetic differences. Noble gas abundances in LEW88516, like those in ALHA77005, show modest excesses of 40Ar and 129Xe from trapped (shock-implanted) gas. As with other ALHA77005 and the shergottite martian meteorites (except EETA79001), noble gas isotope abundances in LEW88516 are consistent with exposure to cosmic rays for 2.5–3 Ma. The absence of substantial effects of shielding from cosmic rays suggest LEW88516 spent this time as an object no larger than a few cm in diameter.  相似文献   

4.
Abstract— Sayhal Uhaymir (SaU) 094 is a 223.3 g, partially crusted, strongly to very strongly shocked melanocratic olivine-porphyric rock of the shergottite group showing a microgabbroic texture. The rock consists of pyroxene (52.0–58.2 vol%)—dominantly prismatic pigeonite (En60–68Fs20–27Wo7–9) associated with minor augite (En46–49Fs15–16Wo28–31)—brown (shock-oxidized) olivine (Fo65–69; 22.1–31%), completely isotropic interstitial plagioclase glass (maskelynite; An50–64Or0.3-0.9; 8.6–13.0%), chromite and titanian magnesian chromite (0.9-1.0%), traces of ilmenite (Ilm80–86), pyrrhotite (Fe92–100; 0.1-0.2%), merrillite (<<0.1%), and pockets (4.8-6.7%) consisting of green basaltic to basaltic andesitic shock glass that is partially devitrified into a brown to black product along boundaries with the primary minerals. The average maximum dimensions of minerals are: olivine (1.5 mm), pyroxene (0.3 mm) and maskelynite (0.3 mm). Primary melt inclusions in olivine and chromite are common and account for 0.1-0.6% of the rock. X-ray tomography revealed that the specimen contains ˜0.4 vol% of shock-melt associated vesicles, up to 3 mm in size, which show a preferred orientation. Fluidization of the maskelynite, melting and recrystallization of pyroxene, olivine and pyrrhotite indicate shock stage S6. Minor terrestrial weathering resulted in calcite-veining and minor oxidation of sulfides. The meteorite is interpreted as paired with SaU 005/008/051. The modal composition is similar to Dar al Gani 476/489/670/735/876, with the exception that neither mesostasis nor titanomagnetite nor apatite are present and that all phases show little zonation. The restricted mineral composition, predominance of chromite among the oxides, and abundance of olivine indicate affinities to the lherzolitic shergottites.  相似文献   

5.
Abstract— The Loxton meteorite is a single stone of 22 g found in South Australia in 1968. It has been classified as an L5 chondrite, shock facies ‘a,’ and contains olivine (Fa24), orthopyroxene (Fs21–22), clinopyroxene (Wo44.7En45.9Fs9.4), nickel-iron, troilite, chromite and chlorapatite.  相似文献   

6.
Abstract— The objective of this study was to identify and map possible source regions for all 5 known martian meteorite lithologies (basalt, lherzolite, clinopyroxenite, orthopyroxenite, and dunite) using data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). We deconvolved the TES data set using laboratory spectra of 6 martian meteorites (Los Angeles, Zagami, ALH A77005, Nakhla, ALH 84001, and Chassigny) as end members, along with atmospheric and surface spectra previously derived from TES data. Global maps (16 pixels/degree) of the distribution of each meteorite end member show that meteorite‐like compositions are not present at or above TES detectability limits over most of the planet's dust‐free regions. However, we have confidently identified local‐scale (100s‐1000s km2) concentrations of olivine‐ and orthopyroxene‐bearing materials similar to ALH A77005, Chassigny, and ALH 84001 in Nili Fossae, in and near Ganges Chasma, in the Argyre and Hellas basin rims, and in Eos Chasma. Nakhla‐like materials are identified near the detection limit throughout the eastern Valles Marineris region and portions of Syrtis Major. Basaltic shergottites were not detected in any spatially coherent areas at the scale of this study. Martian meteorite‐like lithologies represent only a minor portion of the dust‐free surface and, thus, are not representative of the bulk composition of the ancient crust. Meteorite‐like spectral signatures identified above TES detectability limits in more spatially restricted areas (<tens of km) are targets of ongoing analysis.  相似文献   

7.
Abstract— Rare earth element (REE) and other selected trace and minor element concentrations were measured in individual grains of orthopyroxene, feldspathic glass (of plagioclase composition) and merrillite of the ALH 84001 Martian meteorite. Unlike in other Martian meteorites, phosphate is not the main REE carrier in ALH 84001. The REE pattern of ALH 84001 bulk rock is dependent on the modal abundances of three REE-bearing phases, namely, orthopyroxene, which contains most of the heavy rare earth elements (HREEs); feldspathic glass, which dominates the Eu abundances; and merrillite, which contains the majority of the light rare earth elements (LREEs). Variations in the REE abundances previously observed in different splits of ALH 84001 can easily be explained in terms of small variations in the modal abundances of these three minerals without the need to invoke extensive redistribution of LREEs. At least some orthopyroxenes (i.e., those away from contacts with feldspathic glass) in ALH 84001 appear to have preserved their original REE zonation from igneous fractionation. An estimate of the ALH 84001 parent magma composition from that of the unaltered orthopyroxene “core” (i.e., zoned orthopyroxene with the lowest REE abundances) indicates that it is LREE depleted. This implies that the Martian mantle was already partly depleted within ~100 Ma of solar system formation, which is consistent with rapid accretion and differentiation of Mars. Although equilibration and exchange of REEs between phases (in particular, transport of LREEs into the interstitial phases, feldspathic glass and merrillite) cannot be ruled out, our data suggest that the LREE enrichment in melts “in equilibrium” with these interstitial phases is most likely the result of late-stage infiltration of the cumulate pile by a LREE-enriched melt.  相似文献   

8.
Abstract— Based on optical microscopy and electron microprobe analysis, Linum is classified as an L6b chondrite that contains olivine (Fa24), orthopyroxene (Fs20), clinopyroxene (Wo45En47Fs8), plagioclase (An10Ab84Or6), nickel-iron, troilite, chromite and accessory amounts of chlorapatite and whitlockite.  相似文献   

9.
Abstract— We report on the discovery of a new shergottite from South Morocco. This single stone weighing 320 g is referenced as Northwest Africa (NWA) 856 with Djel Ibone as a synonymous name. It is a fresh, fine‐grained basaltic rock consisting mainly of two pyroxenes (total ?68 vol%: 45% pigeonite, En61‐16Wo9–22Fs26–68; 23% augite, En46‐26Wo34‐29Fs21–43) and plagioclase converted to maskelynite (?23 vol%, Ab43–57Or1–5An54‐36). Accessory minerals include merrillite, Cl‐apatite, pyrrhotite, ilmenite, ulvöspinel, silica (stishovite and glass), amorphous K‐feldspar and baddeleyite. Amorphous mixtures of maskelynite and silica occur most commonly as median layers inside maskelynite laths. In addition, melt pockets (?2 vol%) were recognized with relics of maskelynite, pyroxene and both dense silica glass and stishovite occurring as both grains and submicrometer needles. The compositions of the melt pockets are consistent with mixtures of maskelynite and pyroxenes with an average of ?50 vol% maskelynite. The meteorite is highly fractured at all scales. The bulk composition of NWA 856 has been measured for 44 elements. It is an Al‐poor ferroan basaltic rock which strongly resembles Shergotty and Zagami in its major and trace element composition. The nearly flat rare earth element (REE) pattern (La/Lu)n = 0.9, is similar to that of Shergotty or Zagami and differs significantly from NWA 480, another Moroccan shergottite recently described. According to the U, Ba and Sr abundances, NWA 856 is not significantly weathered. The oxygen isotopes (δ18O = +5.03%, δ17O = +3.09%, and Δ17O = +0.47%) are in agreement with the martian origin of this meteorite. On the basis of grain size, pyroxene zoning and composition, abundance of silica inclusions associated with maskelynite, trace element abundances, REE pattern and oxygen isotopes, pairing with NWA 480 is excluded. The similarity with Shergotty and Zagami is striking. The only significant differences are a larger grain size, a greater abundance of silica and melt pockets, a slightly more restricted range of pyroxene compositions and the absence of significant mesostasis.  相似文献   

10.
Abstract— Hydrogen‐isotopic compositions of carbonate and maskelynite in Allan Hills (ALH) 84001 were measured by secondary ion mass spectrometry (SIMS). the δd values of both minerals show considerable deviation. The deviation seems to be caused by addition of varying amounts of terrestrial water in the case of carbonate. In the case of maskelynite, H is heterogeneously distributed and the deviation in δD values seems to be due to mixing of this indigenous heavy H with isotopically normal H present in the SIMS chamber. The indigenous δD value in ALH 84001 seems to be ~2000%‰. Carbonate rather than maskelynite seems to be the main carrier of H in ALH 84001. Because ALH 84001 is ~4 Ga old, the H‐isotopic composition suggests that a large fraction of the initial martian atmosphere had already escaped by 4 Ga.  相似文献   

11.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

12.
Abstract— Dar al Gani 489 (DaG 489) is a meteorite fragment of 2146 g found in the Libyan Sahara by a meteorite finder during one of his search campaigns in 1997–98. It is a porphyritic rock with millimetersized olivine crystals (Fo79–59) set in a fine‐grained groundmass (average grain size 0.1 mm) consisting of pigeonite (En75–57 Wo5–15) crystals and interstitial feldspathic glass (An67–56 Or0–1). Minor phases include enstatite (En82–71 Wo2–4), augite (En48–52 Wo29–32), chromite, Ti‐chromite, ilmenite, pyrrhotite, merrillite, and secondary calcite and iron oxides. On the basis of mineralogical, petrographic, bulk chemical, O‐isotopic, and noble gas data, DaG 489 can be classified as a highly shocked martian meteorite (e.g., Fe/Mn(bulk) = 42.1, Ni/Mg(bulk) = 0.002; δ17O = 2.89, δ18O = 4.98, and Δ17O = 0.305), belonging to the basaltic shergottite subgroup. The texture and modal composition of DaG 489 are indeed those of basalts; nonetheless, the bulk chemistry, the abundance of large olivine and chromite crystals, and enstatitic pyroxene suggest some relationship with lherzolitic shergottites. As such, DaG 489 is similar to the hybrid shergottite Elephant Moraine (EET) A79001 lithology A; however, there are some relevant differences including a higher olivine content (20 vol%), the lack of orthopyroxene megacrysts, a higher molar Mg/(Mg + Fe)(molar) = 0.68, and a lower rare earth element content in the bulk sample. Therefore, DaG 489 has the potential of providing us with a further petrogenetic link between the basaltic and lherzolitic shergottites. Noble gases data show that DaG 489 has an ejection age of ~1.3 Ma. This young age lends support to the requirement of several ejection events to produce the current population of shergottites, nakhlites, and chassignites (SNC) meteorites. In terms of texture, mineral and bulk compositions, shock level, and weathering features, DaG 489 is essentially identical to DaG 476, another basaltic shergottite independently found ~25 km due northnortheast of DaG 489. Because DaG 489 also has the same exposure history as DaG 476, it is very likely that both meteorites are fragments of the same fall. In addition to the existing hypotheses on the petrogenesis of the similar EETA79001 lithology A and the identical DaG 476, we propose that DaG 489 could have formed through high‐degree partial melting of a lherzolite‐like material.  相似文献   

13.
Northwest Africa (NWA) 10414 is an unusual shergottite with a cumulate texture. It contains 73% coarse prismatic pigeonite, plus 18% interstitial maskelynite, 2% Si‐rich mesostasis, 2% merrillite, and minor chromite‐ulvöspinel. It contains no olivine, and only ~3% augite. Phase compositions are pigeonite (En68‐43Fs27‐48Wo5‐15) and maskelynite An~54‐36, more sodic than most maskelynite in shergottites. Chromite‐ulvöspinel composition plots between the earliest and most fractionated spinel‐group minerals in olivine‐phyric shergottites. NWA 10414 mineralogically resembles the contact facies between Elephant Moraine 79001 lithologic units A and B, with abundant pigeonite phenocrysts, though it is coarser grained. Its most Mg‐rich pigeonite also has a similar composition to the earliest crystallized pyroxenes in several other shergottites, including Shergotty. The Shergotty intercumulus liquid composition crystallizes pigeonite with a similar composition range to NWA 10414 pigeonite, using PETROLOG. Olivine‐phyric shergottite NWA 6234, with a pure magma composition, produces an even better match to this pigeonite composition range, after olivine crystallization. These observations suggest that after the accumulation of olivine from an olivine‐phyric shergottite magma, the daughter liquid could precipitate pigeonite locally to form this pigeonite cumulate, before the crystallization of overlying liquid as a normal basaltic shergottite.  相似文献   

14.
What we have learned about Mars from SNC meteorites   总被引:1,自引:0,他引:1  
Abstract— The SNC meteorites are thought to be igneous martian rocks, based on their young crystallization ages and a close match between the composition of gases implanted in them during shock and the atmosphere of Mars. A related meteorite, ALH84001, may be older and thus may represent ancient martian crust. These petrologically diverse basalts and ultramafic rocks are mostly cumulates, but their parent magmas share geochemical and radiogenic isotopic characteristics that suggest they may have formed by remelting the same mantle source region at different times. Information and inferences about martian geology drawn from these samples include the following: Planetary differentiation occurred early at ~4.5 Ga, probably concurrently with accretion. The martian mantle contains different abundances of moderately volatile and siderophile elements and is more Fe-rich than that of the Earth, which has implications for its mineralogy, density, and origin. The estimated core composition has a S abundance near the threshold value for inner core solidification. The former presence of a core dynamo may be suggested by remanent magnetization in SNC meteorites, although these rocks may have been magnetized during shock. The mineralogy of martian surface units, inferred from reflectance spectra, matches that of basaltic shergottites, but SNC lithologies thought to have crystallized in the subsurface are not presently recognized. The rheological properties of martian magmas are more accurately derived from these meteorites than from observations of martian flow morphology, although the sampled range of magma compositions is limited. Estimates of planetary water abundance and the amount of outgassed water based on these meteorites are contradictory but overlap estimates based on geological observations and atmospheric measurements. Stable isotope measurements indicate that the martian hydrosphere experienced only limited exchange with the lithosphere, but it is in isotopic equilibrium with the atmosphere and has been since 1.3 Ga. The isotopically heavy atmosphere/hydrosphere composition deduced from these rocks reflects a loss process more severe than current atmospheric evolution models, and the occurrence of carbonates in SNC meteorites suggests that they, rather than scapolite or hydrous carbonates, are the major crustal sink for CO2. Weathering products in SNC meteorites support the idea of limited alteration of the lithosphere by small volumes of saline, CO2-bearing water. Atmospheric composition and evolution are further constrained by noble gases in these meteorites, although Xe and Kr isotopes suggest different origins for the atmosphere. Planetary ejection of these rocks has promoted an advance in the understanding of impact physics, which has been accomplished by a model involving spallation during large cratering events. Ejection of all the SNC meteorites (except ALH84001) in one or two events may provide a plausible solution to most constraints imposed by chronology, geochemistry, and cosmic ray exposure, although problems remain with this scenario; ALH84001 may represent older martian crust sampled during a separate impact.  相似文献   

15.
Abstract— Spherical carbonate globules of similar composition, size, and radial Ca‐, Mg‐, and Fe‐zonation to those in martian meteorite Allan Hills (ALH) 84001 were precipitated from Mg‐rich, supersaturated solutions of Ca‐Mg‐Fe‐CO2‐H2O at 150 °C. The supersaturated solutions (pH ? 6–7) were prepared at room temperature and contained in TeflonTM‐lined stainless steel vessels, which were sealed and heated to 150 °C for 24 h. Experiments were also conducted at 25 °C and no globules comparable to those of ALH 84001 were precipitated. Instead, amorphous Fe‐rich carbonates were formed after 24 h and Mg‐Fe calcites formed after 96 h. These experiments suggest a possible low‐temperature inorganic origin for the carbonates in martian meteorite ALH 84001.  相似文献   

16.
Abstract— Antarctic meteorite QUE 94201 is a new basaltic shergottite that is mainly composed of subequal amounts of maskelynite and pyroxenes (pigeonite and augite) plus abundant merrillite and accessory phases. It also contains impact melt. Complex zoning patterns in QUE 94201 pyroxenes revealed by elemental map analyses using an electron microprobe suggest a crystallization sequence from Mg-rich pigeonite (En62Fss30Wog) to extremely Fe-rich pigeonite (En5Fs81Wo14) via {110} Mg-rich augite bands (En44Fs20Wo36) in a single crystal. These textures, along with the abundant plagioclase (maskelynite), indicates single-stage rapid cooling (>5 °C/year) of this rock from a supercooled magma. Transition from Mg-rich augite to Fe-rich pigeonite reflects the onset of plagioclase crystallization. Enrichment of late-stage phases in QUE 94201 implies crystallization from an evolved magma and suggests a different parent magma composition from the other basaltic shergottites. Lithology B of EETA79001 basaltic shergottite contains pyroxenes that show complex zoning with augite bands similar to those in QUE 94201 pyroxene, which suggests similar one-stage rapid cooling. Lithology B of EETA79001 also resembles QUE 94201 in its coarse-grained texture of silicates and its high abundance of maskelynite, although QUE 94201 probably crystallized from a more fractionated magma. We also note that some Apollo lunar mare basalts (e.g., 12020 and 12021) have similar mineralogy and petrology to QUE 94201, especially in pyroxene zoning. All these basaltic rocks with complex pyroxene zoning suggest rapid metastable crystallization from supercooled magmas.  相似文献   

17.
Launch of martian meteorites in oblique impacts   总被引:1,自引:0,他引:1  
A high-velocity oblique impact into the martian surface accelerates solid target material to escape velocity. A fraction of that material eventually falls as meteorites on Earth. For a long time they were called the SNC meteorites (Shergotty, Nakhla, and Chassigny). We study production of potential martian meteorites numerically within the frame of 3D hydrodynamic modeling. The ratio of the volume of escaping solid ejecta to projectile volume depends on the impact angle, impact velocity and the volatile content in the projectile and in the target. The size distribution of ejected fragments appears to be of crucial importance for the atmosphere-ejecta interaction in the case of a relatively small impact (with final crater size <3 km): 10-cm-sized particles are decelerated efficiently, while 30-50% of larger fragments could escape Mars. The results of numerical modeling are compared with shock metamorphic features in martian meteorites, their burial depth, and preatmospheric mass. Although it is impossible to accelerate ejected fragments to escape velocity without substantial compression (above 10 GPa), the maximum temperature increase in dunite (Chassigny) or ortopyroxenite (ALH84001) may be lower than 200 degree. This result is consistent with the observed chaotic magnetization of ALH84001. The probability of microbes' survival may be rather high even for the extreme conditions during the ejection process.  相似文献   

18.
Abstract— ALH84001 is an igneous meteorite, an orthopyroxenite of martian origin. It contains petrographic evidence of two shock metamorphic events, separated by thermal and chemical events. The evidence for two shock events suggests that ALH84001 is ancient and perhaps a sample of the martian highlands. From petrography and mineral chemistry, the history of ALH84001 must include: crystallization from magma, a first shock (impact) metamorphism, thermal metamorphism, low-temperature chemical alteration, and a second shock (impact) metamorphism. Originally, ALH84001 was igneous, an orthopyroxene-chromite cumulate. In the first shock event, the igneous rock was cut by melt-breccia or cataclastic veinlets, now bands of equigranular fine-grained pyroxene and other minerals (crush zones). Intact fragments of the cumulate were fractured and strained (now converted to polygonized zones). The subsequent thermal metamorphism (possibly related to the first shock) annealed the melt-breccia or cataclastic veinlets to their present granoblastic texture and permitted chemical homogenization of all mineral species present. The temperature of metamorphism was at least 875 °C, based on mineral thermometers. Next, Mg-Fe-Ca carbonates and pyrite replaced plagioclase in both clasts and granular bands, producing ellipsoidal carbonate globules with sub-micron scale compositional stratigraphy, repeated identically in all globules. The second shock event produced microfault offsets of carbonate stratigraphy and other mineral contacts, radial fractures around chromite and maskelynite, and strain birefringence in pyroxene. Maskelynite could not have been preserved from the first shock event, because it would have crystallized back to plagioclase. The martian source area for ALH84001 must permit this complex, multiple impact history. Very few craters on young igneous surfaces are on or near earlier impact features. It is more likely that ALH84001 was ejected from an old igneous unit (Hesperian or Noachian age), pocked by numerous impact craters over its long exposure at the martian surface.  相似文献   

19.
Abstract— This study provides a complete data set of all five noble gases for bulk samples and mineral separates from three Martian shergottites: Shergotty (bulk, pyroxene, maskelynite), Zagami (bulk, pyroxene, maskelynite), and Elephant Moraine (EET) A79001, lithology A (bulk, pyroxene). We also give a compilation of all noble gas and nitrogen studies performed on these meteorites. Our mean values for cosmic‐ray exposure ages from 3He, 21Ne, and 38Ar are 2.48 Myr for Shergotty, 2.73 Myr for Zagami, and 0.65 Myr for EETA79001 lith. A. Serious loss of radiogenic 4He due to shock is observed. Cosmogenic neon results for bulk samples from 13 Martian meteorites (new data and literature data) are used in addition to the mineral separates of this study in a new approach to explore evidence of solar cosmic‐ray effects. While a contribution of this low‐energy irradiation is strongly indicated for all of the shergottites, spallation Ne in Chassigny, Allan Hills (ALH) 84001, and the nakhlites is fully explained by galactic cosmic‐ray spallation. Implanted Martian atmospheric gases are present in all mineral separates and the thermal release indicates a near‐surface siting. We derive an estimate for the 40Ar/36Ar ratio of the Martian interior component by subtracting from measured Ar in the (K‐poor) pyroxenes the (small) radiogenic component as well as the implanted atmospheric component as indicated from 129Xe, * excesses. Unless compromised by the presence of additional components, a high ratio of ~2000 is indicated for Martian interior argon, similar to that in the Martian atmosphere. Since much lower ratios have been inferred for Chassigny and ALH 84001, the result may indicate spatial and/or temporal variations of 40Ar/36Ar in the Martian mantle.  相似文献   

20.
Nepheline and sodalite have been found in association with glass in a barred olivine chondrule from the Allende C3V meteorite. The major minerals of the chondrule are olivine (Fo80–88), bronzite (En85Fs12Wo3), and chromite. Olivine bars are separated by glass of nearly pure plagioclase composition (An81–99). Olivine composition is more Fe-rich than predicted by olivine-liquid equilibria (Fo96). Conditions of non-equilibrium are implied from this and the presence of plagioclase glass and small amounts of subcalcic diopside (En75Fs12Wo13) in the chondrule. The properties of this chondrule are consistent with liquid condensation, but melting of an amoeboid olivine aggregate or similar object could also have generated the chondrule-forming liquid. Nepheline and sodalite appear to have crystallized from this liquid under non-equilibrium conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号