首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
二氧化碳遍及整个地球系统.它不是被动地存在于地球系统中,而是作为海洋、大气和生物圈中碳循环的中介物质.从CO_2的循环特点方面可以看出,海洋和生物圈中的CO_2的交换是基本平衡的,而人类燃烧矿物燃料却使大气中CO_2含量持续增加.根据美国的两个观测记录最长的测站(在夏威夷群岛)资料可见,自1958年以来,CO_2增加了10%以上.据研究指出,在工业革命前,CO_2的含量是270-290ppm,现在达340ppm,估计到二十一世纪中期将上升到600ppm. 按CO_2变化量的估计值推断的全球性增  相似文献   

2.
大气中CO_2的容积含量一般为0.03%,即320PPm。从本世纪以来浓度已有了增加并在继续增加,增加速率还有增长的趋势,大气CO_2含量的增加主要是由于矿物燃料使用量增加(研究表明,大气中CO_2含量的增加大约相当于矿物燃料燃烧时放出的CO_2的50%),人类活动的增加和更多的开发利用也增加了CO_2的释放。  相似文献   

3.
1 引言 人类活动导致大气中CO_2急剧增加。根据1990年的监测,其浓度已达353ppm(parts per million的缩写,意即百万分之几)。比工业革命时期(公元1750~1800年)增加近25%,高于16万年以来的任何一年。目前每年仍增加1.8ppm(相当于0.5%)。 2 气候构想 气候构想是在大气环流模式(GCM)2×CO_2气候模拟结果和使古气候复原的基础上做  相似文献   

4.
1.引论近百年来,在大气中 CO_2的浓度一直在增加[国家研究委员会(NRC),1983]。虽然 CO_2在动物呼吸和光合作用方面的作用自18世纪以来就已为人们所知了,但是直到20世纪,CO_2在其它方面的作用才逐步引起重视。现时的科学分析指出:现在记录  相似文献   

5.
近十年来,气候异常现象引起世界各国政府和有关部门的重视。气候变化问题也成为许多国家和世界气象组织80年代的重点研究课题之一。除了海—气相互作用引起的气候异常之外,许多科学家还注意到一个更危险和潜在的因素,即大气中的二氧化碳(CO_2)和甲烷(CH_4)含量的迅速增长将导致对流层大气的增暖。 CO_2的问题及其对社会的影响的重要性正受到美国等许多国家和国际科学组织的重视。下面介绍领导国际气候研究计划的组织——联合科学委员会成员之一,气象学家P.J.韦伯斯特教授及有关近几年来人们研究CO_2及其对气候的影响(即所谓CO_2——气候问题)的  相似文献   

6.
1979年11月1—7日在美国博尔德召开世界气象组织大气科学委员会的大气CO_2工作小组会议,发表了对大气CO_2一些关键方面的研究成果的评述。以下是有关评述的总结。一、碳循环的大气部分 J.T.彼得森(Peterson)指出最近对碳循环的大气部分的研究,主要是运用夏威夷莫纳洛瓦(Mauna Loa)观测站从1958年开始的资料。这些记录是碳循环大气部分方面最有价值,而且是独一无二的资料(见图1)。直至最近,研究人员所使用的其  相似文献   

7.
大气中CO_2含量升高引起的气候变化是目前人们十分关注的问题,地球变暖是不少科学家的共同看法.本文根据赵宗慈估算的CO_2含量增加1倍时对我国气候的可能影响,分析了这种变化对农业热量资源及农业生产的可能影响.结果表明:积温将增加无霜期延长,种植界线向北推移,对我国粮食产量的影响区域间差异较大,三北地区为增产趋势,华南为减产趋势.  相似文献   

8.
利用Mauna Loa和南极站点月均观测大气CO_2和δ~(13)C资料分析了大气CO_2浓度的年际变化特征,发现大气CO_2浓度年际变化与ENSO呈正相关而与火山喷发指数呈负相关。大规模火山喷发能够降低强ENSO对大气CO_2浓度的年际变化的影响,不仅与喷发强度有关,还与持续作用时间有关。ENSO与火山喷发共同影响大气CO_2浓度年际变化,而分析期间内的El Chichon和Pinatubo喷发后大气CO_2和δ~(13)C年际变化的差异则受ENSO和火山喷发的强度以及两者的相对起始时间的影响。δ~(13)C分析结合Keeling Plot计算表明,ENSO对大气CO_2浓度年际变化的影响主要通过影响陆地生态系统生产量的变化,而火山喷发对其影响则通过因温度降低和海洋施肥效应所引起的海洋吸收增加。  相似文献   

9.
利用景德镇温室气体监测站CO_2观测数据,分析了景德镇地区2017年12月—2018年11月大气CO_2浓度变化特征,同时对其浓度进行了筛分,以剔除污染数据,使其更具区域代表性。研究表明:景德镇地区大气CO_2浓度昼降夜升,早上最高,傍晚最低;春季最高,秋季最低;春、夏季NNE、NE、ENE风向,秋季NE、ENE风向以及冬季W、WSW、SW、SSW、S风向上CO_2浓度较高。同时,春、夏和秋季大气CO_2浓度大致随风速的增加而不断降低,冬季风速对大气CO_2浓度无明显影响。筛分后数据显示景德镇地区年均大气CO_2浓度为422.1×10~(-6),浓度日均值年振幅73.96×10~(-6),夏半年CO_2浓度低于冬半年。  相似文献   

10.
大气CO_2升高的一个重要的直接效应是促进植物生长。为了了解和预报自然物种及生态系统对CO_2增加的响应,需要有新的或修正的模式方法。由于在未来100年内,大气中CO_2将增加1倍,有效的模式将成为预报响应(如生产率的变化,植物群落组成的变化及分离的碳含量的变化)的重要手段。作为研究CO_2对植被直接影响的综合计划的一部分,对模拟植物和生态系统响应的要求进行了讨讨,主要的要求是(a)一种模式的复杂程度要与一般的生态知识相适应,主要是CO_2响应函数的处理;(b)建立预报植物、群落和生态系统对CO_2响应的模式;(c)评价由CO_2决定的模式参数的敏感性和不确定性,次要的要求是建立评价模式所需的资料条件的框架。  相似文献   

11.
孟晓阳  张兴赢  周敏强  白文广  周丽花  余骁  胡玥明 《气象》2018,44(10):1306-1317
本文利用全球地基二氧化碳柱浓度观测站点(Total Carbon Column Observing Network,TCCON)18个站点CO_2地基观测数据对GOSAT(Greenhouse gases Observing Satellite)2009—2017年的大气CO_2遥感反演产品进行验证分析,结果显示卫星CO_2遥感产品与地基遥感观测结果较为一致,在东亚、北美、欧洲和大洋洲四个区域内卫星遥感产品与地基观测的平均偏差分别为2. 23±2. 69、2. 19±2. 19、2. 01±2. 49、1. 59±1. 79 ppm,相关系数不低于0. 75。卫星在30°S~60°N范围内的产品精度较高,而在高纬地区产品精度稍低。本文进一步利用GOSAT L2 XCO_2遥感反演产品对全球大气CO_2的长时间序列变化进行了分析,结果表明2009—2017年全球大气CO_2浓度呈持续上升趋势,全球年平均增长率为2. 22 ppm·a~(-1),增长较快的国家和地区包括中国、美国、印度和非洲,受与厄尔尼诺有关的自然排放影响,2016年相对上一年的增长量最多,年均CO_2绝对增量在3 ppm以上。  相似文献   

12.
大气中CO_2浓度倍增时植被生产力的变化   总被引:2,自引:0,他引:2  
本文探讨了大气中CO_2浓度增加一倍对气候和自然植被生产力的影响。文中得出,大气中CO_2含量增加一倍时,北半球植被的生产力与当今CO_2含量值相比,将相应地变化28%。但是,在各个地带,这些变化值是不一样的。文中给出各纬度植被生产力变化数据。  相似文献   

13.
美国第13届气候诊断会于1988年10月31日到11月4日在坎布里奇大气与环境研究所召开,与会者124人,报告91篇。无论与会人员或报告数量均大大超过了上届会议,可见气候问题之广泛受重视。会议共分12个组: 1.最近气候异常 5篇 2.大尺度诊断 13篇 3.年际变率 11篇 4.气候趋势 4篇  相似文献   

14.
一、引言许多气体对大气形成所谓的温室效应,二氧化碳是其中最重要的一个,其他还有H_2O、CH_4、N_2O、O_2、CO等。CO_2在12—18微米波段吸收很强,拦截了原会直接散失到太空去的地球辐射。这些气体的温室效应的总和使地球地面温度比行星辐射温度高出大约35°K,这对于生物生存是至关紧要的。四十多年前卡伦德(Callendar)提出,大气中CO_2浓度在增大,这可能是当时观测到北半球增温的原因。普拉斯(Plass)1956年计算得到,如果大气中CO_2浓度增加一倍,平均地面温度会增加3.6℃。大气CO_2的测量五十年代末还不充分,从1957年  相似文献   

15.
工业革命以来,大气中温室气体不断增加,驱动了全球变暖。IPCC第五次评估报告(AR5)指出,人类排放的温室气体导致的地球系统能量增加中90%以上都被海洋吸收,使得海洋增暖,海洋热含量增加。IPCC最新发布的《气候变化中的海洋和冰冻圈特别报告》(SROCC)发现:自1970年以来,几乎确定海洋上层2000 m在持续增暖。1993—2017年间的增暖速率至少为1969—1993年的2倍,体现出显著的变暖增强趋势。此外,在20世纪90年代以后,2000 m以下的深海也已观测到了变暖信号,尤其是在南大洋(30°S以南)。在1970—2017年间,南大洋上层2000 m储存了全球海洋约35%~43%的热量,在2005—2017年期间增加到45%~62%。基于耦合气候模型预估,几乎可确定海洋将在21世纪持续增暖,2018—2100年间海洋热含量上升幅度可能是1970—2017年间的5~7倍(RCP8.5情景)或2~4倍(RCP2.6情景)。变暖导致的热膨胀效应贡献了1993年以来全球海平面上升的约43%。  相似文献   

16.
1 引言世界气候变化已经严重地影响到人类生存发展。对于一个地区来说,为使减灾对策正确可行,首先应弄清当地历史灾情以及当地气候对全球气候变化的响应。政府间气候变化专业委员会(IPCC)给第2次世界气候大会的报告指出,近千年来大气中CO_2浓度一直稳定在280±10PPM,17世纪工业化以后才上升,1958年达到315PPM,1990年达到353PPM,超过了近12万年最高值(300PPM)。预计未来几十年还要增加1倍以上。80年代估计,CO_2加倍会使平均气温升高1.5~4.5℃,最新估计要升高3.5~5.2℃。我们面临的是地质时代以来最剧烈的温度变化和气候变化。  相似文献   

17.
本文利用全球三维大气耦合混合层海洋环流模式模拟大气中二氧化碳浓度增加对土壤湿度的影响。敏感试验(2×CO_2)与控制试验(1×CO_2)对照表明,当大气中二氧化碳浓度增加时,全球土壤湿度在各季发生明显变化。其中两半球低纬度地区在冬季土壤温度变温,两半球中纬度地区则在各季土壤湿度变干,北半球高纬度地区土壤湿度在夏季变干,其余各季变温。分析大气中二氧化碳浓度增加造成土壤温度全球变化的可能物理机制表明,地面水循环和热量循环是重要的因素。  相似文献   

18.
大气CO_2浓度增加,大气辐射平衡调整,将影响到大气的辐射加热,对季风环流的产生影响.CMIP6结果显示,大气CO_2浓度增加,可减弱季风区主雨季对流层高,低层的辐射加热,加强对流层中层的辐射加热.各季风区加热响应的峰值层次不同:亚洲季风区平均层次最高(500-775 hPa),北非,南美,澳洲季风区次之 (550-600 hPa),北美(600hPa)和南非季风区(600-775 hPa)较低.各季风区水云的垂直分布及其长波辐射效应的变化是形成峰值层次差异的主因.  相似文献   

19.
<正>自IPCC发布第六次科学评估报告(AR6)[1]以来,除了世界气象组织(WMO)逐年发布的全球气候状况报告[2-4],美国国家大气海洋局(NOAA)和美国航空航天局(NASA)以及中国气象局也分别发布了2022年全球气候报告[5-7]。这些报告结果一致表明,2015—2022年全球明显变暖,是有观测记录以来连续最暖的8年。近8年的全球变暖特征主要表现为:人类排放增加,日最低温度明显变暖,热浪增加,北极超暖,  相似文献   

20.
本文研究了大气中 H_2O、CO_2和 O_3吸收带对因 CO_2增加一倍所引起的辐射收支扰动的重叠影响。这种影响与大气中的各种气体量以及吸收带的强度有关。我们用吸收带的窄谱带表达式研究了与气体含量的变化有关的这种影响。这个谱带表达式能考虑吸收带结构,从而说明吸收气体频谱特征的相关。据发现,H_2O 和 O_3的存在对 CO_2所引起的平流层中太阳辐射和热辐射扰动的影响都是比较小的。然而,在对流层和地面,这种重叠影响似乎是十分重要的,并且改变了 CO_2引起的辐射能量扰动的垂直分布。例如,在红外区,这个影响是减小了 CO_2放射辐射的效率,同时加强由于 CO_2增加所引起的从平流层来的向下热通量在对流层的吸收。各种气体的重叠吸收的净效果是使由于 CO_2增加而引起的对流层的加热变大和使引起的地面加热减小。我们也发现,由于大气中 H_2O的变化,重叠吸收影响有很强的季节和纬度变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号