首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent earthquake events evidenced that damage of structural components in a lifeline network may cause prolonged disruption of lifeline services, which eventually results in significant socio‐economic losses in the affected area. Despite recent advances in network reliability analysis, the complexity of the problem and various uncertainties still make it a challenging task to evaluate the post‐hazard performance and connectivity of lifeline networks efficiently and accurately. In order to overcome such challenges and take advantage of merits of multi‐scale analysis, this paper develops a multi‐scale system reliability analysis method by integrating a network decomposition approach with the matrix‐based system reliability (MSR) method. In addition to facilitating system reliability analysis of large‐size networks, the multi‐scale approach enables optimizing the level of computational effort on subsystems; identifying the relative importance of components and subsystems at multiple scales; and providing a collaborative risk management framework. The MSR method is uniformly applied for system reliability analyses at both the lower‐scale (for link failure) and the higher‐scale (for system connectivity) to obtain the probability of general system events, various conditional probabilities, component importance measures, statistical correlation between subsystem failures and parameter sensitivities. The proposed multi‐scale analysis method is demonstrated by its application to a gas distribution network in Shelby County of Tennessee. A parametric study is performed to determine the number of segments during the lower‐scale MSR analysis of each pipeline based on the strength of the spatial correlation of seismic intensity. It is shown that the spatial correlation should be considered at both scales for accurate reliability evaluation. The proposed multi‐scale analysis approach provides an effective framework of risk assessment and decision support for lifeline networks under earthquake hazards. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
For effective hazard mitigation planning and prompt-but-prudent post-disaster responses, it is essential to evaluate the reliability of infrastructure networks accurately and efficiently. A nonsimulation-based algorithm, termed as a recursive decomposition algorithm (RDA), was recently proposed to identify disjoint cut sets and link sets and to compute the network reliability. This paper introduces a ‘selective’ RDA, which preferentially identifies critical disjoint cut sets and link sets to calculate the probabilities of network disconnection events with a significantly reduced number of identified sets. To this end, the original RDA is improved by replacing the shortest path algorithm with an algorithm that identifies the most reliable path, and by using a graph decomposition scheme based on the probabilities associated with the subgraphs. The critical sets identified by the algorithm are also used to compute conditional probability-based importance measures that quantify the relative importance of network components by their contributions to network disconnection events. This paper also introduces a risk assessment framework for lifeline networks based on the use of the selective RDA, which can consider both interevent and intraevent uncertainties of spatially correlated ground motions. The risk assessment framework and the selective RDA are demonstrated by a hypothetical network example, and the gas and water transmission networks of Shelby County in Tennessee, USA. The examples show that the proposed framework and the selective RDA greatly improve efficiency of risk assessment of complex lifeline networks, which are characterized by a large number of components, complex network topology, and statistical dependence between component failures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A new probabilistic analytical approach to evaluate seismic system reliability of large lifeline systems is presented in this paper. The algorithm takes the shortest path from the source to the terminal of a node weight or edge weight network as decomposition policy, using the Boolean laws of set operation and probabilistic operation principal, a recursive decomposition process then could be constructed. For a general weight network, the modified Torrieri method (NTR/T method) is introduced to combine with the suggested algorithm. Therefore, the recursive decomposition algorithm may be applied to evaluate the seismic reliability of general lifeline systems. A series of case studies, including a practical district electric power network system and a large urban water supply system, show that the suggested algorithm supplies a useful probabilistic analysis means for the seismic reliability evaluation of large lifeline systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
生命线网络的脆弱性不单单只表示地震发生后对网络作用而产生的后果,还应该包括网络的连通情况。本文在重新确定生命线网络脆弱性定义的基础上,运用风险评估理论中的风险矩阵方法综合考虑生命线网络的连通性能和失效后果两个方面来评价生命线网络的脆弱性,并以一个供气管网为例说明改进的风险矩阵法评价生命线网络脆弱性的有效性和合理性,找出供气管网中脆弱性等级最高的节点,分析其脆弱性等级最高的原因,以便于重点保护,并降低网络的脆弱性。  相似文献   

5.
An urban water supply network(WSN)is a crucial lifeline system that helps to maintain the normal functioning of modern society.However,the hydraulic analysis of a significantly damaged WSN that suffers from pipe breaks or leaks remains challenging.In this paper,a probability-based framework is proposed to assess the functionality of WSNs in the aftermath of powerful earthquakes.The serviceability of the WSN is quantified by using a comprehensive index that considers nodal water flow and nodal pressure.This index includes a coefficient that reflects the relative importance of these two parameters.The demand reduction(DR)method,which reduces the water flow of nodes while preventing the negative pressure of nodes,is proposed.The difference between the negative pressure elimination(NPE)method and the DR method is discussed by using the example of a WSN in a medium-sized city in China.The functionality values of the WSN are 0.76 and 0.99 when nodal pressure and nodal demands are used respectively as the index of system serviceability at an intensity level that would pertain to an earthquake considered to occur at a maximum level.When the intensity of ground motion is as high as 0.4 g,the DR method requires fewer samples than the NPE method to obtain accurate results.The NPE method eliminates most of the pipes,which may be unrealistic.  相似文献   

6.
Lifeline systems, such as water distribution and gas supply networks, usually cover large areas. For these systems, seismic design is always a difficult problem because of the complexity of large‐scale networks. In this paper, a topology optimization technology for lifeline networks is established. Firstly, in order to speed up the convergence of optimization process, an element investment importance analysis is carried out to evaluate the importance of components to the lifeline network. Then a topology optimization model is established. The aim of the model is to find the least‐cost network topology while the seismic reliability between the sources and each terminal satisfies prescribed reliability constraints. For this optimization problem, a genetic algorithm, which takes network topologies as the individuals of its population, is used to search for the optimal solutions by suitable operators, including selection, crossover and mutation operators. The capacity of the proposed algorithm is illustrated by its applications to a simple example network consisting of 10 nodes and an actual network with 391 nodes located in a large city of China. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
供水管网的抗震功能是指供水管网在地震作用下能够满足震后城市特定用水需要(需水量和水压)的能力。地震发生后,供水管网一般处于低压供水状态,使得管网中部分用户的水压和水量不能得到全部满足,导致管网部分节点的实际配水量小于需水量。为此,在传统的管网水力分析基础上考虑节点流量随节点水压的动态变化,通过求解非线性水力方程组,得到管网节点实际流量和水压;同时,借鉴结构可靠度分析方法,引入供水管网系统随机水力模型,给出了震后供水管网功能可靠度分析的一次二阶矩方法。以一实际管网为例,演示了震后低压供水时管网功能可靠度分析的应用方法。  相似文献   

8.
The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied.In this paper,on the basis of an original recursive decomposition algorithm,an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented.The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy.Using the Boolean laws of set operation and the probabilistic operation principal,a recursive deco...  相似文献   

9.
Seismic reliability assessment of lifeline networks gives rise to various technical challenges, which are mostly caused by a large number of network components, complex network topology, and statistical dependence between component failures. For effective risk assessment and probabilistic inference based on post‐hazard observations, various non‐simulation‐based algorithms have been developed, including the selective recursive decomposition algorithm (S‐RDA). To facilitate the application of such an algorithm to large networks, a new multi‐scale approach is developed in this paper. Using spectral clustering algorithms, a network is first divided into an adequate number of clusters such that the number of inter‐cluster links is minimized while the number of the nodes in each cluster remains reasonably large. The connectivity around the identified clusters is represented by super‐links. The reduced size of the simplified network enables the S‐RDA algorithm to perform the network risk assessment efficiently. When the simplified network is still large even after a clustering, additional levels of clustering can be introduced to have a hierarchical modeling structure. The efficiency and effectiveness of the proposed multi‐scale approach are demonstrated successfully by numerical examples of a hypothetical network, a gas transmission pipeline network, and a water transmission network. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
研究了生命线工程系统中供电网络系统的可靠性分析方法。在元件可靠性分析的基础上,进行供电网络系统工程地震可靠性分析,提出了供电网络系统功能失效分级及失效等级的判定方法,并建立了功能失效系数的概念,给出了供电网络系统功能失效系数的计算方法,从而实现了供电网络系统功能失效分析的定量化。  相似文献   

11.
In this paper,an improved cut-based recursive decomposition algorithm is proposed for lifeline networks.First,a complementary structural function is established and three theorems are presented as a pr...  相似文献   

12.
对于生命线工程网络系统而言,合理分析和评估其带有网络特征的节点可靠度,比只研究单体可靠度更具实际意义。基于数据包络分析法(Data Envelopment Analysis,DEA)有效性分析的思想,提出了生命线网络节点抗灾相对可靠度的概念。从生命线工程在灾害环境下着重体现出的系统性和网络性出发,考察网络中的节点所能实现的资源供给功能与其所在网络中的空间结构重要性是否匹配,即功能性相对于结构性的可靠度。选择节点资源实际需求量和管内水压作为DEA有效性分析的输入参数,结构重要性作为输出参数,并用网络中介中心性评价结构重要性,获得相应参数。通过实例分析,得出实例工程网络中各节点相应的DEA有效性分析结果,即相对可靠度,并通过对参数的权系数调整,得到了使非有效单元变为有效单元的调整值。该调整值可供优化及改进工程网络的技术性调整方案参考,相对可靠度也可作为评价工程网络系统性能的有益补充。  相似文献   

13.
基于带加强层高层建筑结构的特点,根据论文(Ⅰ)所提出直接基于位移的抗震设计方法,对一幢带有2个加强层的超高层建筑结构进行了基于位移的抗震设计.设定结构的目标性能水准为中震作用下结构“使用良好”以及大震作用下“保证人身安全”.中震作用下结构“使用良好”,结构处在弹性阶段,结构分析及参数计算采用弹性方法.大震作用下结构“保...  相似文献   

14.
现代城市的迅速发展对生命线工程系统依赖性逐渐增强。地震后生命线工程系统的性能直接决定了灾后生活和生产的恢复以及抢险工作的进行,因此对生命线工程系统进行地震作用下的可靠性分析具有十分重要的意义。本文中主要介绍2种求解大型网络抗震可靠度算法———最小路递推分解算法和最小割递推分解算法。在此基础上,利用这2种算法对沈阳市供气系统进行了分析。研究结果表明,合理选择使用这2种算法可以有效的进行不同地震烈度条件下的大型生命线工程系统的可靠性分析。  相似文献   

15.
对珠江三角洲地区生命线网络工程,在遭受本课题给定的4个震源地震袭击时所受到的震害进行了系统分析,预测其直接经济损失,并对网络工程的可靠性作了评估,此项成果可为制定防震对策提供基础依据。  相似文献   

16.
网络可靠度分析的最小路算法和最小割算法研究   总被引:2,自引:0,他引:2  
网络可靠度分析是评价城市生命线工程系统整体抗震性能的主要手段。本文分别从最小路和最小割的角度介绍了网络可靠度分析算法,包括:经典不交最小路(割)算法、最小路(割)递推分解算法和改进最小路(割)递推分解算法。在此基础上,通过实例分析,着重进行了改进最小路递推分解算法和改进最小割递推分解算法的对比分析,分析结果表明两种算法在网络单元不同可靠度水平下具有不同的计算效率,并对引起以上区别的三个主要原因进行了分析。  相似文献   

17.
Seismic fragility curves provide a powerful tool to assess the reliability of structures. However, conventional fragility analysis of structures comprising a large number of components requires enormous computational efforts. In this paper, the application of probabilistic support vector machines (PSVM) for the system fragility analysis of existing structures is proposed. It is demonstrated that support vector machine based fragility curves provide accurate predictions compared to rigorous methodologies such as component based fragilities developed by Monte Carlo simulations. The proposed method is applied to an existing bridge structure in order to develop fragility curves for serviceability and collapse limit states. In addition, the efficiency of using the PSVM method in the application of vector-valued ground motion intensity measures (IM) as well as traditional single-valued IM are investigated. The results obtained from an incremental dynamic analysis of the structure are used to train PSVMs. The application of PSVM in binary and multi-class classifications is used for the fragility analysis and reliability assessment of the bridge structure.  相似文献   

18.
This paper presents a procedure to identify an optimal retrofitting strategy for electric power networks (EPN) subjected to seismic events. The optimization consists of the minimization, under economic constraints, of the probability of power cut‐off at the nodes where electric energy is most needed in the post‐earthquake situation; these nodes are referred to as critical nodes. The EPN model used herein has been presented earlier and is briefly reviewed in the text. The method to individuate the critical nodes, based upon the value of an index proposed in this study, is presented first; then the optimization procedure to select which elements of the EPN to upgrade is examined based upon a standard reliability study. Its effectiveness is tested against routinely used upgrading schemes for an existing EPN (the one of Sicily in Italy). It is shown that the optimization procedure is effective and leads to a significant saving of economic resources. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
本文研究了生命线工程系统中运行设施的元件破坏状态和可靠性分析方法,给出元件的破坏状态分级标准、判断准则和元件可靠度的计算方法,这对建立一个实用的生命线工程抗震能力分析的专家系统是十分有意义的。  相似文献   

20.
Power systems play a key role in emergency rescue after an earthquake. Substations are among the most important components of a power system, so it is necessary to study their seismic reliability after an earthquake. Most studies, however, have focused on the seismic behavior of major electrical equipment or the reliability of the substation under ordinary operational conditions. The seismic reliability of substations as a system has not been thoroughly studied. This study proposes a new probability-based method to evaluate the seismic reliability of complex engineering systems such as substations. The proposed method developed the state tree to construct a greatly simplified system model that enables the failure probability to be calculated for the whole system, with explicit consideration of correlations among various components. A typical 220/110/10-kV substation was studied with this method, and the most critical components were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号