首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
The study region covers 1,650 km2 of the Mid-Ganga Basin in Bihar, experiencing intensive groundwater draft. The area forms a part of the Gangetic alluvial plain where high incidence of arsenic groundwater contamination (>50 μg/l) has recently been detected. Seventy-seven groundwater samples have been collected and analysed for major ions, iron and arsenic. Arsenic contamination (max 620 μg/l) is confined in hand pump zones (15–35 m) within the newer alluvium deposited during Middle Holocene to Recent age. The older alluvial aquifers are arsenic-safe and recorded maximum concentration as 9 μg/l. Out of 12 hydrochemical facies identified, four have been found arsenic-affected: Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3 and Mg–Ca–HCO3. The geochemical evolution of groundwater, as investigated by graphical interpretation and statistical techniques (correlation, principal component analysis) revealed that dissolution of detrital calcite, dolomite and infiltration of rainwater are the major processes shaping the groundwater chemistry in the newer alluvium. Arsenic and iron showed strong positive correlation. Rainfall infiltration, carrying organic matter from recently accumulated biomass from this flood-prone belt, plays a critical role in releasing arsenic and iron present in the sediments. Geochemical evolution of groundwater in older alluvium follows a different path, where cation-exchange has been identified as a significant process.  相似文献   

2.
A groundwater arsenic (As) survey in Mirzapur, Varanasi, Ghazipur, Ballia, Buxar, Ara, Patna, and Vaishali districts of UP and Bihar shows that people from these districts are drinking As-contaminated groundwater (max. 1,300 μg/l). About 66 % of tubewells from Buxar to Mirzapur areas and 89 % of tubewells from Patna to Ballia areas have As?>?10 μg/l (WHO guideline). Moreover, 36 % of tubewells from Buxar to Mirzapur areas and 50 % of tubewells from Patna to Ballia areas have As above 50 μg/l. Most of the As-affected villages are located close to abandoned or present meander channels of the Ganga River. In contrast, tubewells located in Mirzapur, Chunar, Varanasi, Saidpur, Ghazipur, Muhammadabad, Ballia, Buxar, Ara, Chhapra, Patna, and Hazipur towns are As-safe in groundwater because of their positions on the Pleistocene Older Alluvium upland surfaces. The iron (Fe) content in tubewell water samples varies from 0.1 to 12.93 mg/l. About 77 % As-contaminated tubewells are located within the depth of 21 to 40 m in the Holocene Newer Alluvium aquifers. The potential source of As in sediments carried through the rivers from the Himalayas. Maximum As concentrations in the Older and Newer Alluvium sediments are 13.73 and 30.91 mg/kg, respectively. The Himalayas rivers, i.e. Yamuna, Ganga, Gomati, Ghaghara, Gondak, Buri Gandak, and Kosi rivers carrying suspended sediments have high content of As (max. 10.59 mg/kg).  相似文献   

3.
Evaluation of major ion chemistry and solute acquisition process controlling water chemical composition were studied by collecting a total of fifty-one groundwater samples in shallow (<25 m) and deep aquifer (>25 m) in the Varanasi area. Hydrochemical facies, Mg-HCO3 dominated in the largest part of shallow groundwater followed by Na-HCO3 and Ca-HCO3 whereas Ca-HCO3 is dominated in deep groundwater followed by Mg-HCO3 and Na-HCO3. High As concentration (>50 μg/l) is found in some of the villages situated in northeastern parts (i.e. adjacent to the concave part of the meandering Ganga river) of the Varanasi area. Arsenic contamination is confined mostly in tube wells (hand pump) within the Holocene newer alluvium deposits, whereas older alluvial aquifers are having arsenic free groundwater. Geochemical modeling using WATEQ4F enabled prediction of saturation state of minerals and indicated dissolution and precipitation reactions occurring in groundwater. Majority of shallow and deep groundwater samples of the study area are oversaturated with carbonate bearing minerals and under-saturated with respect to sulfur and amorphous silica bearing minerals. Sluggish hydraulic conductivity in shallow aquifer results in higher mineralization of groundwater than in deep aquifer. But the major processes in deep aquifer are leakage of shallow aquifer followed by dominant ion-exchange and weathering of silicate minerals.  相似文献   

4.
Late Quaternary stratigraphy and sedimentation in the Ganga Alluvial Plain and the Bengal Basin have influenced arsenic contamination of groundwater. Arsenic contaminated aquifers are pervasive within lowland organic rich, clayey deltaic sediments in the Bengal Basin and locally within similar facies in narrow, entrenched river valleys within the Ganga Alluvial Plain. These were mainly deposited during early-mid Holocene sea level rise. Arsenic was transported from disseminated sources as adsorbed on dispersed phases of hydrated-iron-oxide. These were preferentially entrapped as sediment coatings on organic-rich, fine-grained deltaic and floodplain sediments. Arsenic was released later to groundwater mainly by reductive dissolution of hydrated-iron-oxide and corresponding oxidation of sediment organic matter. Strong reducing nature of groundwater in the Bengal Basin and parts of affected middle Ganga floodplains is indicated by high concentration of dissolved iron (maximum 9-35 mg/l). Groundwater being virtually stagnant under these settings, released arsenic accumulates and contaminates groundwater. The upland terraces in the Bengal Basin and in the Central Ganga Alluvial Plain, made up of the Pleistocene sediments are free of arsenic contamination in groundwater. These sediments are weakly oxidised in nature and associated groundwater is mildly reducing in general with low concentration of iron (<1 mg/l), and thus incapable to release arsenic. These sediments are also flushed free of arsenic, released if any, by groundwater flow due to high hydraulic head, because of their initial low-stand setting and later upland terraced position.  相似文献   

5.
Groundwater arsenic survey in Cachar and Karimganj districts of Barak Valley, Assam shows that people in these two districts are drinking arsenic-contaminated (max. 350 μg/l) groundwater. 66% of tubewells in these two districts have arsenic concentration above the WHO guideline value of 10 μg/l and 26% tubewells have arsenic above 50 μg/l, the Indian standards for arsenic in drinking water. 90% of installed tubewells in these two districts are shallow depth (14–40 m). Shallow tubewells were installed in Holocene Newer Alluvium aquifers are characterised by grey to black coloured fine grained organic rich argillaceous sediments and are mostly arsenic contamination in groundwater. Plio-Pleistocene Older Alluvium aquifers composed of shale, ferruginous sandstone, mottle clay, pebble and boulder beds, which at higher location or with thin cover of Newer Alluvium sediments are safe in arsenic contamination in groundwater. 91% of tubewell water samples show significantly higher concentrations of iron beyond its permissible limit of 1 mg/l. The iron content in these two districts varies from 0.5 to as much as 48 mg/l. Most of the arsenic contaminated villages of Cachar and Karimganj districts are located in entrenched channels and flood plains of Newer Alluvium sediments in Barak-Surma-Langai Rivers system. However, deeper tubewells (>60 m) in Plio-Pleistocene Older Alluvium aquifers would be a better option for arsenic-safe groundwater. The arsenic in groundwater is getting released from associated Holocene sediments which were likely deposited from the surrounding Tertiary Barail hill range.  相似文献   

6.
The lower Varuna River basin in Varanasi district situated in the central Ganga plain is a highly productive agricultural area, and is also one of the fast growing urban areas in India. The agricultural and urbanization activities have a lot of impact on the groundwater quality of the study area. The river basin is underlain by Quaternary alluvial sediments consisting of clay, silt, sand and gravel of various grades. The hydrogeochemical study was undertaken by randomly collecting 75 groundwater samples from dug wells and hand pumps covering the entire basin in order to understand the sources of dissolved ions, and to assess the chemical quality of the groundwater through analysis of major ions. Based on the total dissolved solids, two groundwater samples are considered unsuitable for drinking purpose, but all samples are useful for irrigation. Graphical treatment of major ion chemistry by Piper diagram helps in identifying hydro-geochemical facies of groundwaters and the dominant hydrochemical facies is Ca-Mg-HCO3 with appreciable percentage of the water having mixed facies. As per Wilcox’s diagram and US Salinity laboratory classification, most of the groundwater samples are suitable for irrigation except two samples (No’s 30 and 68) which are unsuitable due to the presence of high salinity and medium sodium hazard. Irrigation waters classified based on residual sodium carbonate, have revealed that all groundwaters are in general safe for irrigation except one sample (No. 27), which needs treatment before use. Permeability index indicates that the groundwater samples are suitable for irrigation purpose. Although the general quality of groundwater of the lower Varuna River basin is suitable for irrigation purpose, fifty seven percent of the samples are found having nitrate content more than permissible limit (>45 mg/l) which is not good for human consumption. Application of N-Fertilizers on agricultural land as crop nutrients along the Varuna River course may be responsible for nitrate pollution in the groundwater due to leaching by applied irrigation water. The other potential sources of high nitrate concentration in extreme northern, southern and southwestern parts of study area are poor sewerage and drainage facilities, leakage of human excreta from very old septic tanks, and sanitary landfills. The high fluoride contamination (>1.5 mg/l) in some of the samples may be due to the dissolution of micaceous content in the alluvium. Nitrate and fluoride contamination of groundwater is a serious problem for its domestic use. Hence an immediate protective measure must be put into action in the study area.  相似文献   

7.
High As contents in groundwater were found in Rayen area and chosen for a detailed hydrogeochemical study. A total of 121 groundwater samples were collected from existing tube wells in the study areas in January 2012 and analyzed. Hydrogeochemical data of samples suggested that the groundwater is mostly Na–Cl type; also nearly 25.62 % of samples have arsenic concentrations above WHO permissible value (10 μg/l) for drinking waters with maximum concentration of aqueous arsenic up to 25,000 μg/l. The reducing conditions prevailing in the area and high arsenic concentration correlated with high bicarbonate and pH. Results show that arsenic is released into groundwater by two major phenomena: (1) through reduction of arsenic-bearing iron oxides/oxyhydroxides and Fe may be precipitated as iron sulfide when anoxic conditions prevail in the aquifer sediments and (2) transferring of As into the water system during water–acidic volcanic rock interactions.  相似文献   

8.
Late Quaternary stratigraphy and sedimentation in the Middle Ganga Plain (MGP) (Uttar Pradesh–Bihar) have influenced groundwater arsenic contamination. Arsenic contaminated aquifers are pervasive within narrow entrenched channels and flood plains (T0-Surface) of fine-grained grey to black coloured argillaceous organic rich Holocene sediments (Newer Alluvium). Contaminated aquifers are often located close to distribution of abandoned or existing channels and swamps. The Pleistocene Older Alluvium upland terraces (T2-Surface) made up of oxidized yellowish brown sediments with calcareous and ferruginous concretions and the aquifers within it are free of arsenic contamination. MGP sediments are mainly derived from the Himalaya with minor inputs from the Peninsular India. The potential source of arsenic in MGP is mainly from the Himalaya. The contaminated aquifers in the Terai belt of Nepal are closely comparable in nature and age to those of the MGP. Arsenic was transported from disseminated sources as adsorbed on dispersed phases of hydrated-iron-oxidea and later on released to groundwater mainly by reductive dissolution of hydrated-iron-oxide and corresponding oxidation of organic matter in aquifer. Strong reducing nature of groundwater is indicated by high concentration of dissolved iron (11.06 mg/l). Even within the arsenic-affected areas, dugwells are found to be arsenic safe due to oxyginated nature.  相似文献   

9.
 Arsenic toxicity in groundwater in the Ganges delta and some low-lying areas in the Bengal basin is confined to middle Holocene sediments. Dissected terraces and highlands of Pleistocene and early Holocene deposits are free of such problems. Arsenic-rich pyrite or other arsenic minerals are rare or absent in the affected sediments. Arsenic appears to occur adsorbed on iron hydroxide-coated sand grains and clay minerals and is transported in soluble form and co-precipitated with, or is scavenged by, Fe(III) and Mn(IV) in the sediments. It became preferentially entrapped in fine-grained and organic-rich sediments during mid-Holocene sea-level rises in deltaic and some low-lying areas of the Bengal basin. It was liberated subsequently under reducing conditions and mediated further by microbial action. Intensive extraction of groundwater for irrigation and application of phosphate fertilizer possibly triggered the recent release of arsenic to groundwater. This practice has induced groundwater flow, mobilizing phosphate derived from fertilizer, as well as from decayed organic matter, which has promoted the growth of sediment biota and aided the further release of arsenic. However, the environment is not sufficiently reducing to mobilize iron and arsenic in groundwater in the Ganges floodplains upstream of Rajmahal. Thus, arsenic toxicity in the groundwater of the Bengal basin is caused by its natural setting, but also appears to be triggered by recent anthropogenic activities. Received: 23 August 1999 · Accepted: 16 November 1999  相似文献   

10.
Arsenic contamination in groundwater affecting West Bengal (India) and Bangladesh is a serious environmental problem. Contamination is extensive in the low-lying areas of Bhagirathi–Ganga delta, located mainly to the east of the Bhagirathi River. A few isolated As-contaminated areas occur west of the Bhagirathi River and over the lower parts of the Damodar river fan-delta. The Damodar being a Peninsular Indian river, the arsenic problem is not restricted to Himalayan rivers alone. Arsenic contamination in the Bengal Delta is confined to the Holocene Younger Delta Plain and the alluvium that was deposited around 10,000–7,000 years bp, under combined influence of the Holocene sea-level rise and rapid erosion in the Himalaya. Further, contaminated areas are often located close to distribution of abandoned or existing channels, swamps, which are areas of surface water and biomass accumulation. Extensive extraction of groundwater mainly from shallow aquifers cause recharge from nearby surface water bodies. Infiltration of recharge water enriched in dissolved organic matter derived either from recently accumulated biomass and/or from sediment organic matter enhanced reductive dissolution of hydrated iron oxide that are present mainly as sediment grain coatings in the aquifers enhancing release of sorbed arsenic to groundwater.  相似文献   

11.
李典  邓娅敏  杜尧  颜港归  孙晓梁  范红晨 《地球科学》2021,46(12):4492-4502
近年来陆续有报道发现长江中游河湖平原广泛分布着高砷地下水,鄱阳湖平原与江北平原(古彭蠡泽)作为长江中游南北两岸典型的河湖平原,其地下水资源丰富,但砷的空间分布规律尚不清楚,区域供水安全存在风险.本研究在两个区域系统采集98个浅层地下水(< 40 m)样品和8个地表水样品,通过水化学、氢氧稳定同位素分析,查明地下水中砷的空间分布异质性及其影响因素.研究发现江北平原浅层地下水砷含量为0.65~956.72 μg/L(平均值210.78 μg/L),高砷地下水集中分布于长江古河道;鄱阳湖平原浅层地下水砷含量为0.09~267.45 μg/L(平均值11.85 μg/L),高砷地下水仅分布于赣江三角洲局部地区.江北平原地下水δD与δ18O值相对鄱阳湖平原更偏负,且与地表水的差异更大.地下水化学及主成分分析结果表明物源和含水层结构差异是影响鄱阳湖平原和江北平原砷空间分布异质性的关键因素,来自长江物源的古彭蠡泽区域沉积物为高砷含水层的形成提供了物质来源,湖相含水层中含砷铁氧化物的还原性溶解是地下水砷富集的主要过程.地下水氢氧稳定同位素指示江北平原较鄱阳湖平原地下水赋存环境更封闭,地下水循环交替速度缓慢,有利于砷的富集.   相似文献   

12.
Environmental geochemistry of high arsenic groundwater at Hetao plain was studied on the basis of geochemical survey of the groundwater and a core sediment. Arsenic concentration in groundwater samples varies from 76 to 1093 μg/L. The high arsenic groundwater mostly appears to be weakly alkaline. The concentrations of NO3 and SO42− are relatively low, while the concentrations of DOC, NH4+, dissolved Fe and sulfide are relatively great. Analysis of arsenic speciation in 21 samples shows that arsenic is present in the solution predominantly as As(III), while particulate arsenic constitutes about 10% of the total arsenic. Methane is detected in five samples with the greatest content being 5107 μg/L. The shallow aquifer in Hangjinhouqi of western Hetao plain is of strongly reducing condition. The arsenic content in 23 core sediment samples varies from 7.7 to 34.6 mg/kg, with great value in clay and mild clay layer. The obvious positive relationship in content between Fe2O3, Mn, Sb, B, V and As indicates that the distribution of arsenic in the sediments may be related to Fe and Mn oxides, and the mobilization of Sb, B and V may be affected by similar geochemical processes as that of As.  相似文献   

13.
The influx of Sr responsible for increase in marine Sr has been attributed to rise of Himalaya and weathering of the Himalayan rocks. The rivers draining Himalaya to the ocean by the northern part of the Indian sub-continent comprising the Ganga Alluvial Plain (GAP) along with Central parts of the Himalaya and the northern part of the Indian Craton are held responsible for the transformation of Sr isotopic signature. The GAP is basically formed by the Himalayan-derived sediments and serves as transient zone between the source (Himalaya) and the sink (Bay of Bengal). The Gomati River, an important alluvial tributary of the Ganga River, draining nearly 30,500 km2 area of GAP is the only river which is originating from the GAP. The river recycles the Himalayan-derived sediments and transport its weathering products into the Ganga River and finally to Bay of Bengal. 11 water samples were collected from the Gomati River and its intrabasinal lakes for measurement of Sr isotopic composition. Sr concentration of Gomati River water is about 335 μg/l, which is about five times higher than the world’s average of river water (70 μg/l) and nearly three times higher than the Ganga River water in the Himalaya (130 μg/l) The Sr isotopic ratios reported are also higher than global average runoff (0.7119) and to modern seawater (0.7092) values. Strong geochemical sediment–water interaction appearing on surface is responsible for the dissolved Sr isotopic ratios in the River water. Higher Sr isotopic rations found during post-monsoon than in pre-monsoon season indicate the importance of fluxes due to monsoonal erosion of the GAP into the Gomati River. Monsoon precipitation and its interaction with alluvium appear to be major vehicle for the addition of dissolved Sr load into the alluvial plain rivers. This study establishes that elevated 87Sr/86Sr ratios of the Gomati River are due to input of chemical weathering of alluvial material present in the Ganga Alluvial Plain.  相似文献   

14.
金戈  邓娅敏  杜尧  陶艳秋  范红晨 《地球科学》2022,47(11):4161-4175
高砷地下水不仅直接危害供水安全,还可通过与湿地之间的交互作用,影响湿地水质进而威胁湿地生态安全.长江中游河湖平原已被报道广泛分布有高砷地下水,而位于长江中游故道区域的天鹅洲湿地地下水中砷的空间分布特征尚不明确,湿地与地下水的交互作用对地下水中砷季节性动态的控制机理尚不明确.本研究在天鹅洲湿地采集2个水文地质钻孔的35件沉积物样品、12个分层监测井不同季节的共72组地下水样和18组地表水样,通过水位-水化学监测、沉积物地球化学组成分析和砷、铁形态表征探究天鹅洲湿地地下水中砷的时空分布规律及控制机理.研究发现天鹅洲湿地地下水砷含量为1.08~147 μg/L,牛轭湖外侧浅井(10 m)地下水砷含量普遍高于深井(25 m)和牛轭湖内侧浅井(10 m)、深井(25 m)地下水,枯水期和平水期的砷含量高于丰水期.牛轭湖外侧浅层地下水系统具有更厚的粘土、亚粘土沉积,沉积物中总砷、强吸附态砷和易还原的铁氧化物的含量更多,吸附砷的水铁矿等无定形铁氧化物还原性溶解导致砷释放进入地下水中.枯水期天鹅洲湿地底部向牛轭湖外侧浅层含水层输送不稳定的有机质,使天鹅洲湿地地下水-地表水界面成为砷释放的热点区域.丰水期时牛轭湖外侧含水层受长江补给的影响,还原环境发生改变使地下水中的砷和铁被氧化固定从而不利于砷向地下水释放.   相似文献   

15.
 The aquifer system of the Upper Triassic Keuper Sandstone, an important source of drinking water in northern Bavaria, is affected by elevated arsenic concentrations. Within the study area of 8000 km2, no evidence exists for any artificial source of arsenic. Data from about 500 deep water wells show that in approximately 160 wells arsenic concentrations are 10–150 μg/L. The regional distribution of arsenic in the groundwater shows that elevated arsenic concentrations are probably related to specific lithofacies of the aquifers that contain more sediments of terrestrial origin. Geochemical measurements on samples from four selected well cores show that arsenic has accumulated in the rocks. This indigenous arsenic is the source of arsenic in the groundwater of certain facies of the middle unit of the Keuper Sandstone. Received, June 1998 / Revised, January 1999, May 1999 / Accepted, June 1999  相似文献   

16.
The authors’ survey of the Ganga–Meghna–Brahmaputra (GMB) plain (area 569,749 km2; population >500 million) over the past 20 years and analysis of more than 220,000 hand tube-well water samples revealed groundwater arsenic contamination in the floodplains of the Ganga–Brahmaputra river (Uttar Pradesh, Bihar, Jharkhand, West Bengal, and Assam) in India and the Padma–Meghna–Brahmaputra river in Bangladesh. On average, 50 % of the water samples contain arsenic above the World Health Organization guideline value of 10 μg/L in India and Bangladesh. More than 100 million people in the GMB plain are potentially at risk. The authors’ medical team screened around 155,000 people from the affected villages and registered 16,000 patients with different types of arsenical skin lesions. Arsenic neuropathy and adverse pregnancy outcomes have been recorded. Infants and children drinking arsenic-contaminated water are believed to be at high risk. About 45,000 biological samples analyzed from arsenic-affected villages of the GMB plain revealed an elevated level of arsenic present in patients as well as non-patients, indicating that many are sub-clinically affected. In West Bengal and Bangladesh, there are huge surface water in rivers, wetlands, and flooded river basins. In the arsenic-affected GMB plain, the crisis is not over water scarcity but about managing the available water resources.  相似文献   

17.
Arsenic concentrations surpassing potability limit of 10 μg/L in the groundwater supplies of an extensive area in the Duero Cenozoic Basin (central Spain) have been detected and the main sources of arsenic identified. Arsenic in 514 samples of groundwater, having mean values of 40.8 μg/L, is natural in origin. Geochemical analysis of 553 rock samples, assaying arsenic mean values of 23 mg/kg, was performed. Spatial coincidence between the arsenic anomaly in groundwater and the arsenic lithogeochemical distribution recorded in the Middle Miocene clayey organic-rich Zaratan facies illustrates that the rocks of this unit are the main source of arsenic in groundwater. The ferricretes associated to the Late Cretaceous–Middle Miocene siliciclastics also constitute a potential arsenic source. Mineralogical study has identified the presence of arsenic in iron oxides, authigenic pyrite, manganese oxides, inherited titanium–iron oxides, phyllosilicates and organomineral compounds. Arsenic mobilization to groundwater corresponds to arsenic desorption from iron and manganese oxides and from organic matter.  相似文献   

18.
Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25–40 m depth, 9.6–4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25–94 μg/L) than in the HUA (5.2–42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.  相似文献   

19.
Groundwater arsenic contamination and its health effects in India   总被引:2,自引:0,他引:2  
During a 28-year field survey in India (1988–2016), groundwater arsenic contamination and its health effects were registered in the states of West Bengal, Jharkhand, Bihar and Uttar Pradesh in the Ganga River flood plain, and the states of Assam and Manipur in the flood plain of Brahamaputra and Imphal rivers. Groundwater of Rajnandgaon village in Chhattisgarh state, which is not in a flood plain, is also arsenic contaminated. More than 170,000 tubewell water samples from the affected states were analyzed and half of the samples had arsenic >10 μg/L (maximum concentration 3,700 μg/L). Chronic exposure to arsenic through drinking water causes various health problems, like dermal, neurological, reproductive and pregnancy effects, cardiovascular effects, diabetes mellitus, diseases of the respiratory and gastrointestinal systems, and cancers, typically involving the skin, lungs, liver, bladder, etc. About 4.5% of the 8,000 children from arsenic-affected villages of affected states were registered with mild to moderate arsenical skin lesions. In the preliminary survey, more than 10,000 patients were registered with different types of arsenic-related signs and symptoms, out of more than 100,000 people screened from affected states. Elevated levels of arsenic were also found in biological samples (urine, hair, nails) of the people living in affected states. The study reveals that the population who had severe arsenical skin lesions may suffer from multiple Bowens/cancers in the long term. Some unusual symptoms, such as burning sensation, skin itching and watering of eyes in the presence of sun light, were also noticed in arsenicosis patients.  相似文献   

20.
Manipur State, with a population of 2.29 million, is one of the seven North-Eastern Hill states in India, and is severely affected by groundwater arsenic contamination. Manipur has nine districts out of which four are in Manipur Valley where 59% of the people live on 10% of the land. These four districts are all arsenic contaminated. We analysed water samples from 628 tubewells for arsenic out of an expected total 2,014 tubewells in the Manipur Valley. Analyzed samples, 63.3%, contained >10 μg/l of arsenic, 23.2% between 10 and 50 μg/l, and 40% >50 μg/l. The percentages of contaminated wells above 10 and 50 μg/l are higher than in other arsenic affected states and countries of the Ganga–Meghna–Brahmaputra (GMB) Plain. Unlike on the GMB plains, in Manipur there is no systematic relation between arsenic concentration and the depth of tubewells. The source of arsenic in GMB Plain is sediments derived from the Himalaya and surrounding mountains. North-Eastern Hill states were formed at late phase of Himalaya orogeny, and so it will be found in the future that groundwater arsenic contamination in the valleys of other North-Eastern Hill states. Arsenic contaminated aquifers in Manipur Valley are mainly located within the Newer Alluvium. In Manipur, the high rainfall and abundant surface water resources can be exploited to avoid repeating the mass arsenic poisoning that has occurred on the GMB plains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号