首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of increasing blooms of toxic cyanobacteria in freshwaters has received much attention due to the ability of many cyanobacteria to produce potent cyanotoxins. In this paper, the occurrence of dominant cyanobacteria and the concentration of microcystins (MCs) analysis were investigated monthly from July 2008 to April 2009 in the Hoan Kiem Lake and from February to April 2009 in the Nui Coc reservoir. Concentrations of intracellular MCs from water, bloom samples, and isolated strains were quantified by using high performance liquid chromatography (HPLC). During the study period, the microscopic examination of the phytoplankton samples showed the dominance of the genus Microcystis in the water environment of the Hoan Kiem Lake and the Nui Coc reservoir. The toxin analysis by HPLC demonstrated the presence of two MC variants: MC-LR and MC-RR in water samples. Total concentrations of the toxins in filtered samples from surface water ranged from non-detected to 0.91 μg L?1 at Nui Coc reservoir and they ranged from 2.1 to 46.0 μg L?1 at Hoan Kiem Lake. The results of the HPLC analysis confirmed the production of MCs in bloom samples (ranged from 115.9 to 184.6 μg L?1 in the Hoan Kiem Lake and from 726.5 to 1116 μg L?1 in the Nui Coc reservoir) and isolated strains of Anabaena sp. and Microcystis with the concentration of MC ranging from 152 to 396.2 μg g?1 dry mass, respectively.  相似文献   

2.
Conventional methods that assessed the mercury (Hg) levels were not only an outcome of atmospheric pollution, but also the possibility of Hg contamination from the sample collection to laboratory analyses. Our studies used the direct mercury analyzer that measured Hg rapidly and precisely at ultra-trace concentrations with detection limit of 0.0015 ng g?1 on six favored desert plants and their surrounding soil in Kuwait. Analysis revealed elevated Hg concentrations in Tamarix chinensis Lour., and Salsola imbricate Forssk., among the chosen desert plants, especially during summer than in winter, thus labeling the qualities of a bio-indicator to Hg pollution. The overall parts-wise analysis on the six selected plants showed the elevated mean Hg concentrations in the leaves (0.89 ng g?1) followed by root (0.51 ng g?1) and stem (0.39 ng g?1) in the desert plants. Reasons attribute to the capability of these plant parts to absorb, accumulate, and assimilate Hg at varying concentrations. The overall mean Hg concentration was high in soil (2.24 ng g?1) in comparison with the mean Hg concentrations in the desert plants (0.60 ng g?1) irrespective of the two seasons. Translocation and bioaccumulation factors indicated low uptake of Hg translocation in the plant parts from the soil. Furthermore, the mean Hg concentration was found high in samples collected from Governorates (GIII) in comparison with the samples collected from other Governorates indicating the effect of pollution from various sources. The present study characterizes the selected plants as bio-indicators and also validates the impact of regional and seasonal variations to Hg pollution at ultra-trace levels in the arid ecosystem.  相似文献   

3.
The present work is the first attempt to compare the data of a comprehensive study of the origin and distribution of 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in surface sediments (<63 μm) from 18 sampling stations, 9 from Sundarban of Bangladesh and 9 from Indian counterpart. Σ19PAHs concentration in sediments showed wide variations from 208.3 to 12,993.1 ng g?1 dry weight in Indian Sundarban, whereas 208.4 to 4,687.9 ng g?1 in the case of Bangladesh. Fluoranthene, pyrene, benzo(b)fluoranthene, benzo(a)pyrene and dibenzo(a,h)anthracene were predominant species for both the countries. The PAH diagnostic ratios indicated that the PAHs in sediments from both the countries were of mixed source of hydrocarbons of both petrogenic and pyrolytic origin. According to the numerical effect-based sediment quality guidelines, the levels of PAHs in the Sundarban wetland of Bangladesh and India should not exert adverse biological effects. The TEQ values calculated for samples from the Bangladesh and Indian Sundarban varied from 13.68 to 1,014.75 and 1.31 to 2,451 ng g?1 d.w. with an average of 221.02 and 358.63 ng g?1, respectively. The overall contamination status of PAH was higher in India than Bangladesh.  相似文献   

4.
The distribution and bioavailability of Hg in vegetable-growing soils collected from the estuary areas of Jiulong River, China, were studied. Concentrations of Hg in top-soils, soil profiles and plant samples were measured with the method of hydride generation atomic fluorescence spectrometry after microwave digestion. Mercury species in soils were determined with the sequential extraction procedures based on Kingston method. Results showed that Hg concentrations in top-soils ranged from 49.8 to 1,685 ng g?1, with an average of 510 ng g?1 which was more than twice higher than the mercury limit (250 ng g?1 at pH < 6.5) of soil quality set for edible agricultural products in China (HJ 332-2006). High levels of Hg were found to mainly distribute in the top-soils from the northern, western and southern part of the estuary areas. Hg concentrations decreased with the increases of profile depths, except for one sample (S15) in which Hg level in the depth of 0–20 cm was found lower than that in the 20–40 cm. Hg in most of soil samples in non-mobile forms accounted for 46–82 % of total Hg in soils, while Hg in the mobile forms only 0.6–8.7 %. No significant correlation of Hg concentrations between the vegetables and the soils was observed in the studied areas, which indicates that the transfer factors could only reflect the abilities of Hg uptake and accumulation in a specific plant, but they are unsuitable to be used as the general indexes for the mobility and bioavailability of Hg in soils.  相似文献   

5.
Levels and distributions of organochlorine pesticides (OCPs) and phenolic endocrine-disrupting chemicals (EDCs) in surficial sediments of the Shaying River, the largest tributary of the Huaihe River in eastern China, were investigated to understand their relationship with the hydrodynamics. Concentrations of total hexachlorocyclohexane isomers (ΣHCHs) and dichlorodiphenyltrichloroethanes (ΣDDT) were in the range of 26.7–119 and 9.64–214 ng g?1 with mean values of 104 and 80.7 ng g?1, respectively. Residues of HCHs in sediments can be considered as originating from the application of both technical mixtures and lindane in the past. According to the spatial distribution of (DDD + DDE)/ΣDDT ratios, the influence of recent DDT inputs was dominant upstream, whereas DDD prevailed downstream, due to anaerobic degradation. Concentrations of total phenolic EDCs (ΣEDCs) including nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA) ranged widely from 425 to 3,953 ng g?1 with the highest level occurring in the middle reach. This accumulation could be attributed to the retransfer of surficial sediment from upstream, where the main sources are located. Spatial distribution of contaminants indicated that riverine hydrodynamics can significantly affect their behavior and fate in sediment. This evidence was further verified by multivariate statistical techniques such as Cluster Analysis (CA), Principle Component Analysis (PCA) and Discriminant Analysis (DA). The CA identified three distinct clusters reflecting the large complexity of river system like geography setting, hydrodynamic condition, etc. This finding was also confirmed by the DA. Furthermore, a PCA demonstrated that about 80.8 % of total spatial variance can be explained by the first three factors, which also indicated that contaminant spatial distributions are driven by local inputs, biodegradation and riverine hydrodynamics.  相似文献   

6.
Karst areas have much higher ecological vulnerability and are prone to be contaminated. Organochlorine pesticides (OCPs) were detected in waters and sediment from the two sites of the karst Nanshan underground river system, China, to understand the sources and transport of OCPs in the underground river systems. Obviously, seasonal variations were found both in the waters and the sediments. Detected OCPs ranged from 61 to 936 ng L?1 in the groundwaters and 51–3,842.0 ng g?1 in the underground sediments, respectively. OCPs in groundwaters were mixture of younger and older residues from commercial sources. The maximum OCPs in the sediments of the underground river were historically older residues from commercial sources. The sources of OCPs in the waters and sediments of the underground river indicated that the surface systems play an important role in OCPs transport and pollution in the underground river. Karst features were liable for the transport behavior.  相似文献   

7.
The present study fills a gap in the knowledge in regards to the occurrence of banned pesticides at both coastal and inland locations at the Southwest Buenos Aires region, Argentina. Superficial sediment and soil samples were collected from different sites along the Bahia Blanca Estuary and surrounding sites to assess the concentration levels and spatial distribution of 12 selected organochlorine pesticides (OCs); 13 spatial locations including inland and shore-coast were sampled to evaluate occurrence and concentration levels of hexachlorocyclohexanes α-HCH, β-HCH, δ-HCH, γ-HCH, dichlorodiphenyltrichloroethane and its degradation products (DDXs: p,p′-DDT, o,p′-DDT, p,p′-DDE, o,p′-DDE, p,p′-DDD, o,p′-DDD) and the polychlorobenzenes PeCB (pentachlorobenzene) and HCB (hexachlorobenzene). After cleaning and extractions steps, samples were analyzed by means of gas chromatography/mass spectrometry. ∑OCs (sum of all studied compounds) ranged between 0.206 and 1040 ng g?1 dw (mean?=?82.4 and SD?=?277 ng g?1 dw). Total HCHs (sum of α-HCH, β-HCH, γ-HCH and δ-HCH) ranged from 0.0858 to 0.876 ng g?1 dw (mean?=?0.43 and SD?=?0.23 ng g?1 dw), DDXs (sum of p,p′and o,p′ isomers) from 0.080 to 1040 ng g?1 dw (mean?=?81.3 and SD?=?277 ng g?1 dw). Lower concentrations were found for PeCB (mean?=?0.095 and SD 0.17 ng g?1 dw) and HCB (mean?=?0.56 and SD 1.7 ng g?1 dw). Principal component analysis (PCA) permitted the extraction of underlying information about common factors, providing an overview of the distribution of pesticides and allowing the characterization of sites in regards to the major pesticide signature.  相似文献   

8.
Twenty-eight polychlorinated biphenyls (PCB) congeners were measured in surface sediments from Chaohu Lake to assess their characteristics, potential risk, and the correlation with lake trophic status. PCB levels ranged from 11.074 to 42.712 ng g?1 dry weight (d.w.) in the western lake and 2.017 to 20.189 ng g?1 d.w. in the eastern lake. The highest concentrations were found at the sites near the inlets of western lake tributary rivers where big cities and industrial centers are located. Congeners concentrations showed decreasing order of tetra-CB > tri-CB > deca-CB (PCB-209 detected) > penta-CB > hexa-CB > di-CB > hepta-CB > Octa-CB. It indicated that light and heavy Aroclor mixtures were simultaneously used surrounding the lake basin. PCB levels in the western lake are potentially dangerous to humans and the local fauna. There was a significant positive relationship between tetra-CB (one abundant PCB congener) concentration distribution and sediment grain size in the 16–64 μm fraction, whereas a negative correlation was found in the 4–8 μm fraction. Furthermore, PCB distributions were positively correlated with the total organic carbon of sediments and lake trophic status, especially in the more seriously polluted western lake zone. However, the correlation completely disappeared in eastern lake zone. It suggested that PCB contamination might be attributed to industrial wastewaters and domestic sewages from western lake basin, reaching the lake through rivers, rains and floods.  相似文献   

9.
Aquatic ecosystems have been identified as a globally significant source of nitrous oxide (N2O) due to continuous active nitrogen involvement, but the processes and influencing factors that control N2O production are still poorly understood, especially in reservoirs. For that, monthly N2O variations were monitored in Dongfeng reservoir (DFR) with a mesotrophic condition. The dissolved N2O concentration in DFR displayed a distinct spatial–temporal pattern but lower than that in the eutrophic reservoirs. During the whole sampling year, N2O saturation ranging from 144% to 640%, indicating that reservoir acted as source of atmospheric N2O. N2O production is induced by the introduction of nitrogen (NO3 ?, NH4 +) in mesotrophic reservoirs, and is also affected by oxygen level and water temperature. Nitrification was the predominate process for N2O production in DFR due to well-oxygenated longitudinal water layers. Mean values of estimated N2O flux from the air–water interface averaged 0.19 µmol m?2 h?1 with a range of 0.01–0.61 µmol m?2 h?1. DFR exhibited less N2O emission flux than that reported in a nearby eutrophic reservoir, but still acted as a moderate N2O source compared with other reservoirs and lakes worldwide. Annual emissions from the water–air interface of DFR were estimated to be 0.32 × 105 mol N–N2O, while N2O degassing from releasing water behind the dam during power generation was nearly five times greater. Hence, N2O degassing behind the dam should be taken into account for estimation of N2O emissions from artificial reservoirs, an omission that historically has probably resulted in underestimates. IPCC methodology should consider more specifically N2O emission estimation in aquatic ecosystems, especially in reservoirs, the default EF5 model will lead to an overestimation.  相似文献   

10.
Continuous measurements of speciated atmospheric mercury (Hg), including gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM) were conducted in Guizhou Province, southwestern China. Guiyang Power Plant (GPP), Guiyang Wujiang Cement Plant, Guizhou Aluminum Plant (GAP), and Guiyang Forest Park (GFP) in Guiyang were selected as study sites. Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A) were used for GEM analysis. PHg and RGM were simultaneously collected by a manual sampling system, including elutriator, coupler/impactor, KCl-coated annular denuder, and a filter holder. Results show that different emission sources dominate different species of Hg. The highest average GEM value was 22.2 ± 28.3 ng·m?3 and the lowest 6.1 ± 3.9 ng·m?3, from samples collected at GPP and GAP, respectively. The maximum average PHg was 1984.9 pg·m?3 and the minimum average 55.9 pg·m?3, also from GPP and GAP, respectively. Similarly, the highest average RGM of 68.8 pg·m?3 was measured at GPP, and the lowest level of 20.5 pg·m?3 was found at GAP. We conclude that coal combustion sources are still playing a key role in GEM; traffic contributes significantly to PHg; and domestic pollution dominates RGM.  相似文献   

11.
The Estero de Urías Lagoon (EUL) is an inner shelf barrier coastal lagoon, located in the Mexican Pacific Coast (SE Gulf of California). It is surrounded by Mazatlán City, one of the most important international tourist areas of Mexico. To provide a comprehensive reassessment of the concentration levels and spatial variability of Hg and 210Pb in the EUL, 40 surface sediment samples were analyzed for several geochemical variables (e.g. grain size distribution, organic matter and reference element concentrations) that could explain the observed variability of Hg and 210Pb. The Hg concentrations ranged from 23 to 214 ng g?1, whereas 210Pb activities varied from 20 to 56 Bq kg?1. No defined distribution pattern was observed for Hg and 210Pb concentrations in the lagoon and no evidence of a common atmospheric delivery route was observed. The sediments from EUL were found contaminated by Hg, and according to international guidelines 48 % of the sampling sites have concentrations that could be harmful to biota.  相似文献   

12.
A set of forty-one surface sediment samples were collected in River Pánuco and its adjoining lagoon areas in NE Mexico to identify the enrichment pattern of trace elements. The samples were analyzed for sediment texture, carbonates, organic carbon and acid leachable trace elements (ALTEs) using autoclave method [Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd, V, Be, Ba, Sr, As]. Geochemical results of Fe, Cr, Ni, Co, V and Sr in zone 1 indicate that erosion in the upland region (Sierra Madre Oriental Mountains) is very high. The above feature is supported by the supremacy of finer sediments (82.12 %), carbonates (44.67 %) and organic carbon (10.74 %), which are brought down from the drainage basin. The overall average concentration of ALTEs Mn (607 μg g?1), Cu (28.29 μg g?1), Ni (16.56 μg g?1), Pb (46.11 μg g?1), Cd (1.81 μg g?1) and Zn (92.18 μg g?1) indicates higher values than the lowest effect level (LEL) and effects range low (ERL) of environmental indicators. The results suggest that they are due to the increase in oil refineries, metal based industries, shipping activities and the effluent input which could enter the biological cycle and might create human health problems.  相似文献   

13.
Artificial lakes (reservoirs) are regulated water bodies with large stage fluctuations and different interactions with groundwater compared with natural lakes. A novel modelling study characterizing the dynamics of these interactions is presented for artificial Lake Turawa, Poland. The integrated surface-water/groundwater MODFLOW-NWT transient model, applying SFR7, UZF1 and LAK7 packages to account for variably-saturated flow and temporally variable lake area extent and volume, was calibrated throughout 5 years (1-year warm-up, 4-year simulation), applying daily lake stages, heads and discharges as control variables. The water budget results showed that, in contrast to natural lakes, the reservoir interactions with groundwater were primarily dependent on the balance between lake inflow and regulated outflow, while influences of precipitation and evapotranspiration played secondary roles. Also, the spatio-temporal lakebed-seepage pattern was different compared with natural lakes. The large and fast-changing stages had large influence on lakebed-seepage and water table depth and also influenced groundwater evapotranspiration and groundwater exfiltration, as their maxima coincided not with rainfall peaks but with highest stages. The mean lakebed-seepage ranged from ~0.6 mm day?1 during lowest stages (lake-water gain) to ~1.0 mm day?1 during highest stages (lake-water loss) with largest losses up to 4.6 mm day?1 in the peripheral zone. The lakebed-seepage of this study was generally low because of low lakebed leakance (0.0007–0.0015 day?1) and prevailing upward regional groundwater flow moderating it. This study discloses the complexity of artificial lake interactions with groundwater, while the proposed front-line modelling methodology can be applied to any reservoir, and also to natural lake interactions with groundwater.  相似文献   

14.
Soil losses and siltation of the hydrological system (watershed–dam) of K’sob were obtained using direct and indirect methods. The Wadi K’sob watershed of 1,484 km2, average slope of 0.14, and average elevation of 1,060 m is located in a semiarid climate. The average annual rainfall is 341 mm and the mean annual water discharge is 0.89 m3/s. Data from the Medjez gauging station located 6 km upstream of the dam, are the daily liquid flow and instantaneous concentrations of suspended sediments. Over a time period from 1973 to 2010, the relationship between water and sediment discharges is quantified by the equation: Q s?=?5.6 Q 1.31. Thus, in view of the availability data on a daily scale, the assessment of soil erodibility of the K’sob watershed was used to estimate specific soil losses of 203 t?km?2?year?1or 301,000 t eroded annually from the K’sob basin. The bathymetric measurements of the sediment volumes deposited in the K’sob dam, has quantified the annual siltation of 0.8 hm3, corresponding to an average erodibility of the K’sob watershed of 809 t?km?2?year?1. However, when adding the volume of sediment removed by the dredging operation and de-silting by the valves during heavy floods, the value of soil losses is 2,780 t?km?2?year?1. The indirect assessment of soil erodibility of the basin was obtained by applying two models: the quantitative geomorphological analysis (QGA) and PISA model (prediction of silting in the artificial reservoirs, in Italian: Previsioni dell’Interimento nei Serbatoi Artificiali) using physical and climatic factors in the watershed. The obtained results by QGA method underestimate specific soil losses of 524 t?km?2?year?1. The PISA model gives a value of 2,915 t?km?2?year?1, which is close to the value obtained by bathymetric measurements. This study concludes that PISA model is most suitable to estimate soil loss and siltation of the K’sob hydrological system.  相似文献   

15.
This work was carried out in order to study the impact of car body repair activities in Bouzaréah City (suburban area located at the plateau of Algiers) on the air quality. Atmospheric particulate matter was targeted using high-volume sampler. Precisely, the particulate organic matter such as organophosphate esters, especially triphenyl phosphate and tributyl phosphate, was evaluated by the implementation of accelerated solvent extraction. The results of the major extractable organic components revealed that tributyl phosphate and triphenyl phosphate were found at 5.46 and 1.78 ng m?3, respectively. On the other hand, the classical pollutants such as n-alkanes, n-alkanoic monocarboxylic acids and polycyclic aromatic hydrocarbons were also measured, respectively, at average total concentrations of 35.8, 107.4 and 9.8 ng m?3. This work confirms that sanding and painting car bodies may contribute to air pollution, especially after detection of diethylnitrosamine which remains the most surprising compound in the particulate matter due to its volatility and can be considered as emerging contaminant.  相似文献   

16.
Different bacterial and fungal strains, isolated from petroleum hydrocarbon-contaminated soil, were tested, in isolation as well as in combination, for their ability to degrade total petroleum hydrocarbon (TPH) in soil samples spiked with crude oil (2, 5 or 10 %, w/w) for 30 days. The selected combination of bacterial and fungal isolates, i.e., Pseudomonas stutzeri BP10 and Aspergillus niger PS9, exhibited the highest efficiency of TPH degradation (46.7 %) in soil spiked with 2 % crude oil under control condition. Further, when this combination was applied under natural condition in soil spiked with 2 % (w/w) crude oil along with inorganic fertilizers (NPK) and different bulking agents such as rice husk, sugarcane, vermicompost or coconut coir, the percent degradation of TPH was found to be maximum (82.3 %) due to the presence of inorganic fertilizers and rice husk as bulking agent. Further, results showed that the presence of NPK and bulking agents induced the activity of degradative enzymes, such as catalase (0.718 m mol H2O2 g?1), laccase (0.77 µmol g?1), dehydrogenase (37.5 µg g?1 h?1), catechol 1, 2 dioxygenase (276.11 µ mol g?1) and catechol 2, 3 dioxygenase (15.15 µ mol g?1) as compared to control (without bioaugmentation). It was inferred that the selected combination microbes along with biostimulants could accentuate the crude oil degradation as evident from the biostimulant-induced enhanced activity of degradative enzymes.  相似文献   

17.
Enzymatic and alkali pretreatments were employed to improve nickel biosorption capacity of Rhizomucor pusillus biomass. Pretreatment with 0.002–80 g l?1 NaOH and 0.0001–0.1 Anson Unit (AU) g?1 protease enhanced the biosorption capacity of fungal biomass. Increasing the concentration of NaOH from 0.002 to 5 g l?1 improved nickel removal from 93.2 to 100.0 % while untreated biomass showed 64.6 % Ni(II) removal. Pretreatment with higher concentrations of NaOH, 5–80 g l?1 resulted in nearly complete removal of nickel ions. Pretreatment of the biomass with 0.0001 AU g?1 protease improved the nickel removal to over 91 %, while increasing the enzyme loading to 0.1 AU g?1 improved the removal to 93 %. Untreated biomass removed 78.4, 63.0, and 96.3 % of chromium, copper, and lead ions, respectively, from a mixture solution of the ions. Respective metal removals were increased to 100, 98.9, and 100 % after pretreatment with 0.2 g l?1 NaOH solution and to 87.8, 86.7, and 100 % after the enzymatic pretreatment with 0.1 AU g?1 protease. Scanning electron microscopy analysis indicated that alkali and enzymatic pretreatments enhanced the porosity of the biomass. Furthermore, compositional analysis showed that both of the pretreatments removed a major part of fungal proteins (2.1–95.8 % removal). Glucosamine, N-acetyl glucosamine, and phosphates were the major ingredients of the pretreated biomass.  相似文献   

18.
The adsorption properties of eggshell membranes (ESM), eggshells (ES) and orange peels (OP) were studied for the removal of arsenic (total As) and selenium (total Se). The effect of chemical treatment of these adsorbents by HNO3 and NaOH was also investigated using Fourier transform infrared spectroscopy (FT-IR). Analysis of the FT-IR spectra showed that treatment with NaOH and HNO3 had an effect on the functional groups present in the materials and also on the adsorption by extension. Thermal analysis showed that ES were more thermally stable than the others with no water molecules in their matrix, which could have caused a substantial weight loss at around 70 °C. In terms of adsorption capacities, chemical treatment increased the adsorption capacities of ESM and OP achieving up to 170 μg g?1 (As) and 160 μg g?1 (Se), and 120 μg g?1 (As) and 70 μg g?1 (Se), respectively, with not much activity for ES in terms of adsorption. The two adsorbents (NaOH-treated OP and ESM) were then tested in environmental water samples and the results showed that 68.9 % of As and 74.8 % of Se, and 54.1 % of As and 47.3 % of Se were removed from domestic wastewater samples investigated using OP and ESM, respectively. Moreover, better selectivities towards the compounds of interest were achieved.  相似文献   

19.
During 2003–2006, a pilot project of alternating water and CO2 injection was performed on a limited part of the Upper Miocene sandstone oil reservoir of the Ivani? Field. During the test period oil and gas recovery was significantly increased. Additionally 4,440 m3 of oil and 2.26 × 106 m3 of gas were produced. It has initiated further modelling of sandstone reservoirs in the Ivani? Field in order to calculate volumes available for CO2 injection for the purpose of increasing hydrocarbon production from depleted sandstone reservoirs in the entire Croatian part of the Pannonian Basin System. In the first phase, modelling was based on results of laboratory testing on the core samples. It considered applying analogies with world-known projects of CO2 subsurface storage and its usage to enhance hydrocarbon production. In the second phase, reservoir variables were analysed by variograms and subsequently mapped in order to reach lithological heterogeneities and to determine reliable average values of reservoir volumes. Data on porosity, depth and reservoir thickness for the “Gamma 3” and the “Gamma 4” reservoirs, are mapped by the ordinary kriging technique. Calculated volume of CO2 expressed at standard condition which can be injected in the main reservoirs of the Ivani? Field at near miscible conditions is above 15.5 billion m3.  相似文献   

20.
Dams and their reservoirs, constructed to manage the water scarcity problems of a region, sometimes lose whole or part of their functionality due to sedimentation. This issue, seen as a negative impact as far as reservoir life and its purpose is concerned, can be a boon to the construction industry, by providing a highly demanding construction material in the form of sand dredged from the reservoirs. Malampuzha reservoir, a multipurpose reservoir in the South Indian state of Kerala, is also losing considerable part of its storage due to siltation. This paper assesses the rate of sedimentation in Malampuzha reservoir, through bathymetric survey and suggests measures for utilization of the removable sediment. Our analysis has shown that the reservoir capacity is reduced from 226 to 205.19 Mm3; a reduction in capacity of 20.81 Mm3 in 55 years. The rate of sedimentation of the reservoir is estimated as 16.95 mm/year. The dead storage capacity of the reservoir has reduced to 47.5 % from the original at present. The composition of deposited sediments is also identified, based on which its productive use is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号