首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张文杰  林午  董林兵 《岩土力学》2014,35(5):1263-1268
作为替代型垃圾填埋场封顶,毛细阻滞型腾发封顶具有诸多优点,但目前主要在欧美干旱、半干旱地区使用,对其在湿润气候区工作性能的研究较少。选用低塑性粉质黏土和砾砂作为填料,在杭州市一露天环境构筑模型土柱并培育植被,量测自然降雨、蒸发和植被蒸腾作用下土柱透水量、地表径流量和各深度含水率变化,探讨毛细阻滞型腾发封顶的工作机制。试验历时15个月,得到该封顶在降雨高峰期、晴热高温期、台风影响期和冬季阴冷期等时段的响应。试验结果表明,降雨和腾发作用下粉质黏土含水率变化较大,底部砾砂中也有较小幅度干湿循环,腾发可在整个封顶土层范围内起作用;当粉质黏土底部达到饱和,砾砂含水率接近4%时底部有水透出,此时该封顶暂时失效,后随水汽运移毛细阻滞界面功能恢复,该封顶仍能正常工作;试验过程中,降雨总量为1 782.6 mm,共产生地表径流为53.08 mm,透水为19.64 mm,其他降水均在土层吸持与腾发交替作用下最终返回大气,在试验期间该封顶能有效地阻止降雨入渗。  相似文献   

2.
Rainfall infiltration can cause a dramatic decrease of suction in unsaturated soils and, consequently, of shear strength, triggering various instability phenomena, such as the slip of steep surface soil layers. Swelling of cracked soils and capillary barrier effects, induced by fine-grained soils overlying a more permeable material, can also affect water flow through this type of soil systems. In the past, few studies on infiltration and rainfall-induced landslides considered the simultaneous effects of surface cracks, swelling materials, and/or the capillary barrier phenomenon. To this purpose, this paper presents the results obtained by a dual-permeability model, which simulates water flow through a fractured swelling soil overlying a more permeable soil and focusing on the influence of these phenomena on triggering of landslides. Numerical results show that for high-intensity precipitations, flow through fractures quickly reaches significant depths and the capillary barrier is broken, while soil swelling leads to a uniform narrowing of cracks. On the other hand, for low-intensity precipitations, fracture flow and swelling are limited only to the first 30–50 cm of the topsoil, while cracks almost completely closed. Evaluations of the slope stability show that prolonged low-intensity rainfalls might be more dangerous than short high-intensity rains in triggering surface landslides.  相似文献   

3.
A mechanism for fracture generation and for triggering land subsidence is presented. Infiltration through a pre-existing fracture zone into a two-layered system, as well as the deformation of unconsolidated sediments on the land surface, was numerically investigated. The numerical simulation of infiltration is based on a two-phase flow-model concept for porous media, and for the deformation, it is based on a Mohr-Coulomb model concept. Different studies with variations of the fracture parameter and infiltration conditions have been carried out. The infiltration results show that fast infiltration in a partially saturated aquifer leads to land subsidence, extension of pre-existing fractured zones and the generation of new cracks. If the water column is only on the fracture, the clay layer acts like a barrier and inhibits the infiltration through the fracture. If the water column covers the entire surface, the barrier effect is overcome; the infiltration intensity depends on the height of the water column, the fracture permeability and the fracture width. The deformation results show that a strong rainfall event of 2 h leads to deformations that are about 30 % of the vertical and 70 % of the horizontal annual land-subsidence rates.  相似文献   

4.
Effects of coarse-grained materials on properties of residual soil   总被引:3,自引:0,他引:3  
Residual soils are generally characterised by a low coefficient of permeability and high shrinkage potential. Several soil improvement methods can be applied to overcome these problems, including mixing the residual soil with coarse-grained soils. In order to study the effects of varying coarse-grained materials on the hydraulic properties and shrinkage characteristics of residual soils, a local residual soil was mixed with different percentages of a gravelly sand and a medium sand. The hydraulic properties and shrinkage potential of the residual soil and the soil mixtures were investigated. The measurements showed that increasing the amount of coarse-grained materials increased the saturated permeability and reduced the shrinkage potential of the residual soil mixture. Increasing the amount of coarse-grained materials in the residual soil produced changes in several key parameters of soil-water characteristic curve (e.g., the slope, the air-entry value, the residual matric suction, and the residual volumetric water content), as well as the unsaturated permeabilities of the soil mixtures.  相似文献   

5.
Wide-grading gravelly soils are often encountered in debris flow source areas. To perform stability analyses under rainfall conditions, the soil–water characteristic curves (SWCC) are significant. However, the studies for SWCC of wide-grading gravelly soils are rare. In order to investigate the effects of initial dry density and grain size distribution on the SWCCs of wide-grading gravelly, a large-scale osmotic column, allowing the measurement of both volumetric water content and matric suction at various levels, was fabricated for a series of osmotic column tests. The test data were best-fitted to Van Genuchten equation using a least-squares algorithm and found that both the initial dry density and grain size distribution had a greater effect on the SWCCs. An increase in the initial dry density resulted in an increase in water retention capacity. The air entry value and residual volumetric water content increased linearly with increases in the initial dry density, whereas the maximum slope of SWCC decreased linearly with increases in the initial dry density. The air entry value and residual volumetric water content increased linearly with increases in the fine content (particle diameter <0.075), whereas the maximum slope increases linearly with increases in the effective size, d 10.  相似文献   

6.
The Saga Plain in Japan contains a 10–30 m thick Holocene clayey soil deposit with a natural water content generally more than 100% and a liquidity index (I L ) larger than 1.0. Most of this is a marine deposit known as the Ariake clay formation. Using salinity in the pore water of this deposit as an index, the mechanism of post-depositional salinity leaching from the Ariake clay formation has been investigated. This has been achieved using current measurements of the salinity distribution in the deposit and the groundwater flow velocity in an underlying Pleistocene gravelly sand layer, together with advection–diffusion analyses. It is suggested that diffusion together with possible rainfall percolation and/or upward seepage flow from the Pleistocene gravelly sand layer was the main mechanism causing salinity leaching. Detailed analysis of the test results from four boreholes indicates that for the locations where the activity of the clay minerals was less than 1.25, salinity leaching probably accounts for the observed low undrained shear strength (<0.5 kPa) of remoulded soil samples, high values of the sensitivity (S t ), and the formation of a quick clay.  相似文献   

7.
河流渗滤系统对入渗的地表水有一定的净化作用,过去人们很少从理论上研究河流渗滤系统对污染河水的净化作用。本文采用室内土柱实验装置来模拟渭河渗滤系统,研究了硝态氮污染的河水在该系统中的环境行为及净化机制,其环境行为主要为反硝化作用。其净化程度与该渗滤系统的渗滤介质有关,如果渗滤介质为粘土,其净化率达到100%。若介质为粗砂粒物质,其净化程度较低。  相似文献   

8.
宽级配砾质土是由砾石料和黏土料按一定比例混合而成,其具有压缩性低、抗剪强度大等特点,目前常作为土石坝心墙料或路基填料而得到广泛应用。由于宽级配砾质土渗透系数较小,在常规三轴固结排水剪(CD)试验中固结排水较慢,导致其试验周期很长。为了提高固结排水的效率,可采用一种在试样中心加圆柱形砂芯的快速三轴CD试验方法。基于快速三轴CD试验,通过变化不同砂芯类别、不同砂芯直径、不同掺砾量等各因素,全面研究了各因素对宽级配砾质土快速三轴CD试验的影响。研究结果表明,快速三轴CD试验方法能够有效加快试样排水固结,从而加快整个试验进程;砂芯类别、砂芯直径、掺砾量等因素均对试验固结排水速度和剪切过程应力应变产生不同程度影响;砂芯直径越小,其试验成果与无砂芯试样越接近。  相似文献   

9.
Carbonate rocks distribute widely in China. The total area of the carbonate rocks is about 3,430,000 km2, and the exposed area of the carbonate is approximately 13 % of China’s territory. In 2003, soil loss in Yunnan, Guizhou, and Guangxi provinces reached 179,600 km2, which is almost 40.1 % of the total area, causing rocky desertification. In this study, the erosion-creep-collapse mechanism of underground soil loss for the karst rocky desertification in Chenqi village, Puding county, Guizhou province is proposed. The mechanism occurs under the following geological environment: slope surface undulation, underlying bedrock surface fluctuation and thin and inhomogeneous soil overlying, overlying soil generation by bedrock weathering, underground karst development, and large groundwater depth and lying water table under the bottom of soils. The erosion-creep-collapse mechanism of underground soil loss in the karst slopes is explained as follows: power loss due to human cultivation activities that destroy the soil structure, hydraulic force formed by rainfall infiltration, wet–dry cycle generated by rainfall, erosion effect caused by rainfall penetration, creeping and flowing of plastic-stream soil, and collapse. The erosion-creep-collapse mechanism of underground soil loss has seven steps: disturbance of soils filled in underground karst cave by human activities, internal soil erosion and partial collapse caused by hydraulic power, internal free surface formation within the soil in the filled karst cave, internal soil creeping, soil pipe formation, soil pipe collapse, and ground surface collapse and filling. Soil loss develops slowly, and sudden transportation occurs by collapse. Soil loss can be explained by the proposed mechanism, and soil loss can be prevented by controlling soil collapse.  相似文献   

10.
Evaporation capacity is an important factor that cannot be ignored when judging whether extreme precipitation events will produce groundwater recharge. The evaporation layer’s role in groundwater recharge was evaluated using a lysimeter simulation experiment in the desert area of Dunhuang, in the western part of the Hexi Corridor in northwestern China’s Gansu Province. The annual precipitation in the study area is extremely low, averaging 38.87 mm during the 60-year study period, and daily pan evaporation amounts to 2,486 mm. Three simulated precipitation regimes (normal, 10 mm; ordinary annual maximum, 21 mm; and extreme, 31 mm) were used in the lysimeter simulation to allow monitoring of water movement and weighing to detect evaporative losses. The differences in soil-water content to a depth of 50 cm in the soil profile significantly affected rainfall infiltration during the initial stages of rainfall events. It was found that the presence of a dry 50-cm-deep sand layer was the key factor for “potential recharge” after the three rainfall events. Daily precipitation events less than 20 mm did not produce groundwater recharge because of the barrier effect created by the dry sand. Infiltration totaled 0.68 mm and penetrated to a depth below 50 cm with 31 mm of rainfall, representing potential recharge equivalent to 1.7 % of the rainfall. This suggests that only extreme precipitation events offer the possibility of recharge of groundwater in this extremely arid area.  相似文献   

11.
马林 《岩土力学》2016,37(Z1):309-316
钙质土因其颗粒形状不规则、易破碎、高孔隙比等特征,其力学性质较为特殊。采用室内大型直接剪切试验设备,对取自南海珊瑚礁和三亚岸礁的粗颗粒钙质土进行了直剪试验,研究了粗颗粒钙质土在不同含水率、不同密度和不同矿物组成条件下的钙质土剪切特性。结果表明,粗颗粒钙质土表现出与常规无黏性土截然不同的力学性质,即(1)与石英砂相比,表观黏聚力较大,内摩擦角较高,软化性较弱;(2)表观黏聚力随着平均粒径的增大而增大,内摩擦角随着干密度的增大而增大;(3)与峰值强度相比,土体剪切破坏后其残余强度的表观黏聚力锐减而内摩擦角仅略有减小。研究成果可为岛礁工程建设提供借鉴,也可为其他粗颗粒土的研究提供参考。  相似文献   

12.
Nitrate contamination of groundwater arises from anthropogenic activities, such as, fertilizer and animal manure applications and infiltration of wastewater/leachates. During migration of wastewater and leachates, the vadose zone (zone residing above the groundwater table), is considered to facilitate microbial denitrification. Particle voids in vadose zone are deficient in dissolved oxygen as the voids are partially filled by water and the remainder by air. Discontinuities in liquid phase would also restrict oxygen diffusion and therefore facilitate denitrification in the vadose/unsaturated soil zone. The degree of saturation of soil specimen (S r) quantifies the relative volume of voids filled with air and water. Unsaturated specimens have S r values ranging between 0 and 100 %. Earlier studies from naturally occurring nitrate losses in groundwater aquifers in Mulbagal town, Kolar District, Karnataka, showed that the sub-surface soils composed of residually derived sandy soil; hence, natural sand was chosen in the laboratory denitrification experiments. With a view to understand the role of vadose zone in denitrification process, experiments are performed with unsaturated sand specimens (S r = 73–90 %) whose pore water was spiked with nitrate and ethanol solutions. Experimental results revealed 73 % S r specimen facilitates nitrate reduction to 45 mg/L in relatively short durations of 5.5–7.5 h using the available natural organic matter (0.41 % on mass basis of sand); consequently, ethanol addition did not impact rate of denitrification. However, at higher S r values of 81 and 90 %, extraneous ethanol addition (C/N = 0.5–3) was needed to accelerate the denitrification rates.  相似文献   

13.
Structures are commonly founded on layered soil deposits. In this study, settlement due to a circular load on a two-layer soil system overlying a rock stratum or a stiff soil deposit is estimated and compared with the values obtained using Steinbrenner’s and Finite element approaches. Design tables are proposed for settlements due to uniform circular loading (of radius equal to a) applied on two-layer soil system for top-layer thickness H 1 = 0.2a–6.0a, bottom-layer thickness H 2 = 1.0a–6.0a, moduli ratio of top and bottom layers E 1 /E 2 = 0.01–100 and Poisson’s ratio v = 0.2–0.5. The settlement factors from the study were also compared with the Ueshita and Meyerhof’s values for a finite top layer overlying a semi-infinite bottom layer. Results were compared with the observed settlement of a structure resting on a layered soil profile overlying a rock stratum. Proposed settlement of the two-layer system shows good agreement with these studies.  相似文献   

14.
Soil structural disturbance influences the downward flow of water that percolates deep enough to become aquifer recharge. Data from identical experiments in an undisturbed silt-loam soil and in an adjacent simulated waste trench composed of the same soil material, but disturbed, included (1) laboratory- and field-measured unsaturated hydraulic properties and (2) field-measured transient water content profiles through 24 h of ponded infiltration and 75 d of redistribution. In undisturbed soil, wetting fronts were highly diffuse above 2 m depth, and did not go much deeper than 2 m. Darcian analysis suggests an average recharge rate less than 2 mm/year. In disturbed soil, wetting fronts were sharp and initial infiltration slower; water moved slowly below 2 m without obvious impediment. Richards’ equation simulations with realistic conditions predicted sharp wetting fronts, as observed for disturbed soil. Such simulations were adequate for undisturbed soil only if started from a post-initial moisture distribution that included about 3 h of infiltration. These late-started simulations remained good, however, through the 76 d of data. Overall results suggest the net effect of soil disturbance, although it reduces preferential flow, may be to increase recharge by disrupting layer contrasts.  相似文献   

15.
某水利枢纽厂房基坑开挖渗透变形评估   总被引:4,自引:3,他引:1  
夏艳华  白世伟  张超 《岩土力学》2007,28(11):2435-2439
在对渗流评估方法进行一定探讨的基础上,对某水利枢纽工程坝址区厂房基坑开挖进行了渗透变形评估。结果表明,在坝轴线方向上,无防渗墙时坡面土体在渗透力的作用下是不稳定的,有防渗墙时坡面水力坡降降到0.05以下。在砂卵砾石层与基岩的交界处仍存在略大的水力坡降(值为0.56),如有水在细砂层、砾质中粗砂层渗出,则有可能出现渗流失稳,但总的说来由于防渗墙使水力坡降已降到很小,出现流土和管涌失稳的可能性不大。  相似文献   

16.
简文彬  黄聪惠  罗阳华  聂闻 《岩土力学》2020,41(4):1123-1133
我国东南沿海地区丘陵山地发育,降雨入渗到土体中的水分是导致滑坡灾害频发的关键因素。以福建省泉州市德化县地质灾害点为主要研究对象,考察典型地质灾害点具有代表性的坡积土与花岗岩残积土的渗透特性。利用自行研制的土体入渗装置,分别在降雨强度为15、30、60 mm/h条件下,考虑降雨历时一致(180 min)与过程降雨量一致(90 mm)两种工况开展一维土柱入渗试验,得到相应的各个土柱含水率、湿润锋、入渗率随时间变化的响应规律。试验结果表明:(1)土体渗透系数越大、雨强越大,土体湿润蔓延距离越深、速度越快。(2)降雨入渗过程中,土体含水率由浅及深逐次对降雨进行响应。不同雨强对含水率的影响主要体现在第一次响应时间以及饱和速度上,雨强越大,响应时间越快,饱和速度也越快。(3)提出可表征在不同雨强作用下,德化县马坪滑坡与崩土岭滑坡的湿润锋入渗公式。该研究成果对台风暴雨型滑坡的孕灾机制分析以及精细化监测预警具有重要的理论及实际意义。  相似文献   

17.
为了分析降雨入渗影响下非饱和土坡渗流特性,利用自制降雨模拟系统和实时监测系统,对降雨诱发非饱和土坡失稳过程进行全方位、多参量的实时监测,研究不同降雨条件下,不同坡度、不同压实度边坡坡体不同位置雨水入渗率和湿润峰的实变规律.结果表明:降雨入渗条件下,陡坡和高压实度土体不利于雨水入渗,而缓坡和低密实度土体入渗率变化快;实际土体吸力和含水量实时变化规律不同步,提出试验湿润峰概念,含水率(吸力)湿润峰点可按含水率(吸力)实时曲线的过渡区和雨后残余含水率(吸力)的线性交叉点确定;考虑单向吸湿或脱湿路径下土体含水率和吸力具有唯一对应关系,含水率湿润峰点与吸力湿润峰点的绝对值时差即为形成湿润峰所需时间;对比湿润峰实测值与Lumb半经验值散点分布规律,基于Lumb湿润峰深度计算公式提出非线性修正表达式.   相似文献   

18.
利用Van Genuchten模型拟合土壤水分特征曲线   总被引:12,自引:0,他引:12  
肖建英  李永涛  王丽 《地下水》2007,29(5):46-47
利用Van Genuchten模型对用砂性漏斗测量中砂的吸湿过程和脱湿过程土壤水分特征曲线进行拟合,结果表明实测曲线和拟合曲线吻合很好,并得出Van Genuchten模型中的残余含水量、特性参数α和n,模拟计算表明,中砂有αw=1.69αd的关系,为研究水分和污染物在非饱和土壤中运移问题提供土壤水分运动键参数.  相似文献   

19.
高珩  谭行  任宇  朱乐诚  毕二平 《地学前缘》2021,28(5):125-135
土壤含水层处理系统(soil aquifer treatment,SAT)是一种重要的人工回灌地下水方式。以再生水为回灌水源时,水中含有的“三氮”可能会对回灌区地下水造成污染风险。研究各种因素对在SAT中去除再生水中“三氮”的影响具有重要意义。本研究中,通过高200 cm、内径50 cm土柱试验,研究了SAT系统中粒径、干湿比(落干期与淹水期的比值)、在系统表层增加生物炭及渗透流速对实际再生水“三氮”去除效果的影响。结果表明,在干湿比1∶1条件下,实际河道细砂和中细砂柱底部出水中NH4-N平均去除率分别为73%和66%,去除机理主要为吸附和硝化作用,NO2-N基本被去除。系统中硝化作用导致NO3-N浓度升高,出水中NO3-N浓度平均增长了3.0%4.1%。在深度115 cm以上, 中细砂柱内比细砂柱内的硝化作用更强,这导致了更高的NH4-N去除率和更低的NO3-N去除率。延长落干期后(干湿比3∶1),系统具有了更强的复氧能力,促进了硝化作用,使得NH4-N的平均去除率提高了20%,而NO3-N的降低了3%4%,增加了NO3-N污染风险。在中细砂层添加5%重量生物炭后,吸附性能增强,使其对NH4-N平均去除率增加了20%32%,但对NO3-N影响不明显。渗透流速与NH4-N的去除和NO3-N的增加均呈负相关。综合分析可得出,影响SAT系统去除“三氮”的最主要因素是干湿比和渗透流速,在回补水源中NH4-N浓度较高时,可考虑在SAT系统表层添加生物炭以增强其去除效果。  相似文献   

20.
蒋家沟砾石土的特性及其对斜坡失稳的意义   总被引:1,自引:0,他引:1  
王志兵  汪稔  胡明鉴  陈中学 《岩土力学》2010,31(Z2):206-211
云南蒋家沟是世界上著名的由降雨导致泥石流、浅层滑坡频发的沟谷之一。组成蒋家沟斜坡表层的砾石土具有孔隙度高、级配宽、不均匀系数大等特点,级配曲线为上凹型或双峰型,为内在不稳定性土。X射线衍射分析表明,粒径小于1 mm 的细粒部分主要由绿泥石和伊利石等黏土矿物及次生石英组成,黏土矿物会影响砾石土的物理力学性质。在环境电镜扫描中观测了砾石土的微观结构,发现一种特殊的“桥式”胶结结构,并在遇水条件下发生断裂,不仅降低了微弱黏聚力,而且土颗粒容易分离成粒径为数十微米的散微粒。这与砾石土中黏性部分具有高分散性有关。此外这些散微粒在自滤过程中会能发生运移,并在孔喉等处积聚而堵塞孔隙,会降低砾石土的渗透性以及有利于斜坡中暂态上层滞水的积聚。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号