首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the sensitivity of simulations of the last glacial inception (LGI) with respect to initial (size of the Greenland ice sheet) and surface (state of ocean/vegetation) conditions and two different CO2 reconstructions. Utilizing the CLIMBER-2 Earth system model, we obtain the following results: (a) ice-sheet expansion in North America at the end of the Eemian can be reduced or even completely suppressed when pre-industrial or Eemian ocean/vegetation is prescribed. (b) A warmer surrounding ocean and, in particular, a large Laurentide ice sheet reduce the size of the Greenland ice sheet before and during the LGI. (c) A changing ocean contributes much stronger to the expansion of the Laurentide ice sheet when we apply the CO2 reconstruction according to Barnola et al. (Nature 329:408–414, 1987) instead of Petit et al. (Nature 399:429–436, 1999). (d) In the fully coupled model, the CO2 reconstruction used has only a small impact on the simulated ice sheets but it does impact the course of the climatic variables. (e) For the Greenland ice sheet, two equilibrium states exist under the insolation and CO2 forcing at 128,000 years before present (128 kyear BP); the one with an ice sheet reduced by about one quarter as compared to its simulated pre-industrial size and the other with nearly no inland ice in Greenland. (f) Even the extreme assumption of no ice sheet in Greenland at the beginning of our transient simulations does not alter the simulated expansion of northern hemispheric ice sheets at the LGI.  相似文献   

2.
Several multi-century and multi-millennia simulations have been performed with a complex Earth System Model (ESM) for different anthropogenic climate change scenarios in order to study the long-term evolution of sea level and the impact of ice sheet changes on the climate system. The core of the ESM is a coupled coarse-resolution Atmosphere–Ocean General Circulation Model (AOGCM). Ocean biogeochemistry, land vegetation and ice sheets are included as components of the ESM. The Greenland Ice Sheet (GrIS) decays in all simulations, while the Antarctic ice sheet contributes negatively to sea level rise, due to enhanced storage of water caused by larger snowfall rates. Freshwater flux increases from Greenland are one order of magnitude smaller than total freshwater flux increases into the North Atlantic basin (the sum of the contribution from changes in precipitation, evaporation, run-off and Greenland meltwater) and do not play an important role in changes in the strength of the North Atlantic Meridional Overturning Circulation (NAMOC). The regional climate change associated with weakening/collapse of the NAMOC drastically reduces the decay rate of the GrIS. The dynamical changes due to GrIS topography modification driven by mass balance changes act first as a negative feedback for the decay of the ice sheet, but accelerate the decay at a later stage. The increase of surface temperature due to reduced topographic heights causes a strong acceleration of the decay of the ice sheet in the long term. Other feedbacks between ice sheet and atmosphere are not important for the mass balance of the GrIS until it is reduced to 3/4 of the original size. From then, the reduction in the albedo of Greenland strongly accelerates the decay of the ice sheet.  相似文献   

3.
The Greenland ice sheet is a very important potential source of fresh water inflow to the World Ocean under warming climate conditions. Apparently, it was the same during the Last Interglacial 130-115 thousand years ago. In order to quantify input of the Greenland ice sheet to the rise of the global mean sea level in the past or in the future, we include a surface mass balance model block into the Earth System Model. The computational algorithm is based on the calculation of energy balance on the ice sheet surface. The key tuning parameter of the model is the daily amplitude of air surface temperature. It defines the area and the rate of snow or ice melting. The range of possible values of this parameter is determined during a series of numerical experiments. High sensitivity of meltwater runoff volume to surface air temperature amplitude is revealed.  相似文献   

4.
This paper focuses on the rôle of accumulation and cloudiness changes in the response of the Greenland ice sheet to global warming. Changes in accumulation or cloudiness were often neglected, or coupled to temperature changes. We used model output on temperature, precipitation and cloudiness from a GCM (ECHAM4 T106). The GCM output was used to drive the Greenland model that exists of a vertically averaged ice flow model, coupled to a 1D surface energy balance model that calculates the ablation. Variables are temperature, accumulation and cloudiness. Sensitivity experiments with this model show that changes in accumulation are very important for the ice sheet mass balance, whereas cloudiness is of secondary importance. If the Greenland model is forced by the GCM output, the Greenland model is found to contribute 70% less to sea level rise after 70 years than is indicated by the results presented in the IPCC report. This large discrepancy is mainly due to the fact that the enhanced ablation is strongly compensated by increased accumulation. Comparing the result obtained here with changes in mass balance derived directly from the same general circulation model, indicates a 20% larger contribution to sea level. This increase is due to changes in ice flow, and a different method for the ablation calculation.  相似文献   

5.
Anthropogenic climate change will continue long after anthropogenic CO2 emissions cease. Atmospheric CO2, global warming and ocean circulation will approach equilibrium on the millennial timescale, whereas thermal expansion of the ocean, ice sheet melt and their contributions to sea level rise are unlikely to be complete. Atmospheric CO2 in year 3000 depends non-linearly on the total amount of CO2 emitted and is very likely to exceed the present level of ∼380 ppmv. CO2 is doubled for ∼2500 GtC emitted, quadrupled if all ∼5000 GtC of conventional fossil fuel resources are emitted, and increases by a factor of ∼32 if a further 20,000 GtC of exotic fossil fuel resources are emitted. Global warming in year 3000 will also depend on climate sensitivity to doubling CO2, which is most probably ∼3 C but highly uncertain. Thermal expansion will contribute 0.5–2 m to millennial sea level rise for each doubling of CO2. The Greenland ice sheet could melt completely within the millennium under > 8×CO2, adding a further ∼7 m to sea level. The rate of melt depends on the magnitude of forcing above a regional warming threshold of 1–3 C. The West Antarctic ice sheet could be threatened by 4–10 C local warming, and its potential contribution to millennial sea level rise exceeds current maximum estimates of ∼1 m. The fate of the ocean thermohaline circulation may depend on the rate as well as the magnitude of forcing.  相似文献   

6.
The Greenland ice sheet holds enough water to raise the global sea level with ??7 m. Over the last few decades, observations manifest a substantial increase of the mass loss of this ice sheet. Both enhanced melting and increase of the dynamical discharge, associated with calving at the outlet-glacier fronts, are contributing to the mass imbalance. Using a dynamical and thermodynamical ice-sheet model, and taking into account speed up of outlet glaciers, we estimate Greenland??s contribution to the 21st-century global sea-level rise and the uncertainty of this estimate. Boundary fields of temperature and precipitation extracted from coupled climate-model projections used for the IPCC Fourth Assessment Report, are applied to the ice-sheet model. We implement a simple parameterization for increased flow of outlet glaciers, which decreases the bias of the modeled present-day surface height. It also allows for taking into account the observed recent increase in dynamical discharge, and it can be used for future projections associated with outlet-glacier speed up. Greenland contributes 0?C17?cm to global sea-level rise by the end of the 21st century. This range includes the uncertainties in climate-model projections, the uncertainty associated with scenarios of greenhouse-gas emissions, as well as the uncertainties in future outlet-glacier discharge. In addition, the range takes into account the uncertainty of the ice-sheet model and its boundary fields.  相似文献   

7.
The budgets of momentum, heat and moisture of the atmospheric boundary layer overlying the melting zone of the west Greenland ice sheet during an 8-day period in summer are calculated. To do so, the governing budget equations are derived and presented in terms of vertically averaged quantities. Moreover, stationarity is assumed in the present study. Measurements collected during the GIMEX-91 experiment are used to calculate the contribution of the different terms in the equations to the budget.During summer, a well developed katabatic wind system is present over the melting zone of the Greenland ice sheet. The budgets show that advection in the katabatic layer is small for momentum, heat and humidity, when the horizontal length scale of the integration area is sufficiently large (>50 km). This indicates that in principle one-dimensional atmospheric models can be used to study the boundary layer over the melting zone of the Greenland ice sheet. The background stratification plays a crucial role in the heat and moisture budget. Vertical divergence of longwave radiation provides one-third and the turbulent flux of sensible heat the rest of the cooling of the boundary layer. Moisture is added to the boundary layer by evaporation which is a significant term in the moisture budget. Negative buoyancy (katabatic forcing) dominates the momentum budget in the downslope direction. Coriolis forcing is important, stressing the large spatial scale of the katabatic winds on the Greenland ice sheet.  相似文献   

8.
针对冰盖的定向地球工程研究旨在增强冰盖稳定性和减缓冰盖物质流失,从源头上减少冰盖对海平面上升的贡献,有望为应对气候变化和保护海岸线争取几百年的时间。冰盖地球工程主要作用在冰底和冰架-海洋界面上,主要途径如下:(1)排干或冻结冰盖底部水来干燥冰床,增强冰盖底部摩擦力;(2)在海洋中建造人造岛来支撑漂浮的冰架;(3)在冰架前端建造水下隔离墙,阻止温暖的海水到达冰川底部以减缓其融化。冰盖地球工程包括数值模拟、方案设计、工程试验和政治法律等诸多方面的研究。国际上的研究团队正在开展数值模拟和方案设计方面的研究,工程试验和政治法律等方面的研究尚未起步。预计工程试验的难度阶梯很可能是从实验室试验开始,到小尺度的野外试验,接着到格陵兰冰盖的入海冰川,最后到南极冰盖的入海冰川。针对冰盖的定向地球工程研究很有可能成为21世纪全球变化领域新兴的研究方向。  相似文献   

9.
Summary The feasibility of using satellite data for climate research over the Greenland ice sheet is discussed. In particular, we demonstrate the usefulness of Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) and Global Area Coverage (GAC) data for narrow-band albedo retrieval. Our study supports the use of lower resolution AVHRR (GAC) data for process studies over most of the Greenland ice sheet. Based on LAC data time series analysis, we can resolve relative albedo changes on the order of 2–5%. In addition, we examine Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave Imager (SSM/I) passive microwave data for snow typing and other signals of climatological significance. Based on relationships between in situ measurements and horizontally polarized 19 and 37 GHz observations, wet snow regions are identified. The wet snow regions increase in aerial percentage from 9% of the total ice surface in June to a maximum of 26% in August 1990. Furthermore, the relationship between brightness temperatures and accumulation rates in the northeastern part of Greenland is described. We found a consistent increase in accumulation rate for the northeastern part of the ice sheet from 1981 to 1986.With 16 Figures  相似文献   

10.
11.
The timing and nature of ice sheet variations on Greenland over the last ~5 million years remain largely uncertain. Here, we use a coupled climate-vegetation-ice sheet model to determine the climatic sensitivity of Greenland to combined sets of external forcings and internal feedbacks operating on glacial-interglacial timescales. In particular, we assess the role of atmospheric pCO2, orbital forcing, and vegetation dynamics in modifying thresholds for the onset of glaciation in late Pliocene and Pleistocene. The response of circum-Arctic vegetation to declining levels of pCO2 (from 400 to 200 ppmv) and decreasing summer insolation includes a shift from boreal forest to tundra biomes, with implications for the surface energy balance. The expansion of tundra amplifies summer surface cooling and heat loss from the ground, leading to an expanded summer snow cover over Greenland. Atmospheric and land surface fields respond to forcing most prominently in late spring-summer and are more sensitive at lower Pleistocene-like levels of pCO2. We find cold boreal summer orbits produce favorable conditions for ice sheet growth, however simulated ice sheet extents are highly dependent on both background pCO2 levels and land-surface characteristics. As a result, late Pliocene ice sheet configurations on Greenland differ considerably from late Pleistocene, with smaller ice caps on high elevations of southern and eastern Greenland, even when orbital forcing is favorable for ice sheet growth.  相似文献   

12.
Sea-level records show large glacial-interglacial changes over the past million years, which on these time scales are related to changes of ice volume on land. During the Pleistocene, sea-level changes induced by ice volume are largely caused by the waxing and waning of the large ice sheets in the Northern Hemisphere. However, the individual contributions of ice in the Northern and Southern Hemisphere are poorly constrained. In this study, for the first time a fully coupled system of four 3-D ice-sheet models is used, simulating glaciations on Eurasia, North America, Greenland and Antarctica. The ice-sheet models use a combination of the shallow ice and shelf approximations to determine sheet, shelf and sliding velocities. The framework consists of an inverse forward modelling approach to derive a self-consistent record of temperature and ice volume from deep-sea benthic δ18O data over the past 1 million years, a proxy for ice volume and temperature. It is shown that for both eustatic sea level and sea water δ18O changes, the Eurasian and North American ice sheets are responsible for the largest part of the variability. The combined contribution of the Antarctic and Greenland ice sheets is about 10 % for sea level and about 20 % for sea water δ18O during glacial maxima. However, changes in interglacials are mainly caused by melt of the Greenland and Antarctic ice sheets, with an average time lag of 4 kyr between melt and temperature. Furthermore, we have tested the separate response to changes in temperature and sea level for each ice sheet, indicating that ice volume can be significantly influenced by changes in eustatic sea level alone. Hence, showing the importance of a simultaneous simulation of all four ice sheets. This paper describes the first complete simulation of global ice-volume variations over the late Pleistocene with the possibility to model changes above and below present-day ice volume, constrained by observations of benthic δ18O proxy data.  相似文献   

13.
Ralf Greve 《Climatic change》2000,46(3):289-303
Numerical computations are performed with the three-dimensional polythermal ice-sheet model SICOPOLIS in order to investigate the possible impact of a greenhouse-gas-induced climate change on the Greenland ice sheet. The assumed increase of the mean annual air temperature above the ice covers a range from T = 1°C to 12°C, and several parameterizations for the snowfall and the surface melting are considered. The simulated shrinking of the ice sheet is a smooth function of the temperature rise, indications for the existence of critical thresholds of the climate input are not found. Within 1000 model years, the ice-volume decrease is limited to 10% of the present volume for T 3°C, whereas the most extreme scenario, T = 12°C, leads to an almost entire disintegration, which corresponds to a sea-level equivalent of 7 m. The different snowfall and melting parameterizations yield an uncertainty range of up to 20% of the present ice volume after 1000 model years.  相似文献   

14.
This paper investigates the possible implications for the earth-system of a melting of the Greenland ice-sheet. Such a melting is a possible result of increased high latitude temperatures due to increasing anthropogenic greenhouse gas emissions. Using an atmosphere-ocean general circulation model (AOGCM), we investigate the effects of the removal of the ice sheet on atmospheric temperatures, circulation, and precipitation. We find that locally over Greenland, there is a warming associated directly with the altitude change in winter, and the altitude and albedo change in summer. Outside of Greenland, the largest signal is a cooling over the Barents sea in winter. We attribute this cooling to a decrease in poleward heat transport in the region due to changes to the time mean circulation and eddies, and interaction with sea-ice. The simulated climate is used to force a vegetation model and an ice-sheet model. We find that the Greenland climate in the absence of an ice sheet supports the growth of trees in southern Greenland, and grass in central Greenland. We find that the ice sheet is likely to regrow following a melting of the Greenland ice sheet, the subsequent rebound of its bedrock, and a return to present day atmospheric CO2 concentrations. This regrowth is due to the high altitude bedrock in eastern Greenland which allows the growth of glaciers which develop into an ice sheet.  相似文献   

15.
The performance of a snow cover model in capturing the ablation on the Greenland ice sheet is evaluated. This model allows an explicit calculation of the formation of melt water, of the fraction of melt water which re-freezes, and of runoff in the ablation region. The input climate variables to the snowpack model come from two climate models. While the higher resolution general circulation model (ECHAM 4), is closest to observations in its estimate of accumulation, it fails to give accurate results in its predictions of runoff, primarily in the southern half of the ice sheet. The two-dimensional low-resolution climate model (MIT 2D LO) produces estimates of runoff from the Greenland ice sheet within the range of uncertainty of the Inter governmental Panel on Climate Change (IPCC1) 1995 estimates. Both models reproduce some of the characteristics of the extent of the wet snow zone observed with satellite remote sensing; the MIT model is closer to observations in terms of areal extent and intensity of the melting in the southern half of the ice-sheet in July and August while the ECHAM model reproduces melting in the northern half of the ice sheet well. Changes in runoff from Greenland and Antarctica are often cited as one of the major concerns linked to anthropogenic changes in climate. Because it is based on physical principles and relies on the surface energy balance as input, the snow cover model can respond to the current climatic forcing as well as to future changes in climate on the century time scale without the limitations inherent in empirical parametrizations. For a reference climate scenario similar to the IPCC's IS92a, the model projects that the Greenland ice sheet does not contribute significantly to changes in the level of the ocean over the twenty-first century. Increases in accumulation over the central portion of the ice sheet offset most of the increase in melting and runoff, which takes place along the margins of the ice sheet. The range of uncertainty in the predictions of sea-level rise is estimated by repeating the calculation with the MIT model for seven climate change scenarios. The range is –0.5 to 1.7 cm.  相似文献   

16.
The Greenland coastal temperatures have followed the early 20th century global warming trend. Since 1940, however, the Greenland coastal stations data have undergone predominantly a cooling trend. At the summit of the Greenland ice sheet the summer average temperature has decreased at the rate of 2.2 °C per decade since the beginning of the measurements in 1987. This suggests that the Greenland ice sheet and coastal regions are not following the current global warming trend. A considerable and rapid warming over all of coastal Greenland occurred in the 1920s when the average annual surface air temperature rose between 2 and 4 °C in less than ten years (at some stations the increase in winter temperature was as high as 6 °C). This rapid warming, at a time when the change in anthropogenic production of greenhouse gases was well below the current level, suggests a high natural variability in the regional climate. High anticorrelations (r = ?0.84 to?0.93) between the NAO (North Atlantic Oscillation) index and Greenland temperature time series suggest a physical connection between these processes. Therefore, the future changes in the NAO and Northern Annular Mode may be of critical consequence to the future temperature forcing of the Greenland ice sheet melt rates.  相似文献   

17.
Thresholds for irreversible decline of the Greenland ice sheet   总被引:1,自引:0,他引:1  
The Greenland ice sheet will decline in volume in a warmer climate. If a sufficiently warm climate is maintained for a few thousand years, the ice sheet will be completely melted. This raises the question of whether the decline would be reversible: would the ice sheet regrow if the climate cooled down? To address this question, we conduct a number of experiments using a climate model and a high-resolution ice-sheet model. The experiments are initialised with ice sheet states obtained from various points during its decline as simulated in a high-CO2 scenario, and they are then forced with a climate simulated for pre-industrial greenhouse gas concentrations, to determine the possible trajectories of subsequent ice sheet evolution. These trajectories are not the reverse of the trajectory during decline. They converge on three different steady states. The original ice-sheet volume can be regained only if the volume has not fallen below a threshold of irreversibility, which lies between 80 and 90% of the original value. Depending on the degree of warming and the sensitivity of the climate and the ice-sheet, this point of no return could be reached within a few hundred years, sooner than CO2 and global climate could revert to a pre-industrial state, and in that case global sea level rise of at least 1.3 m would be irreversible. An even larger irreversible change to sea level rise of 5 m may occur if ice sheet volume drops below half of its current size. The set of steady states depends on the CO2 concentration. Since we expect the results to be quantitatively affected by resolution and other aspects of model formulation, we would encourage similar investigations with other models.  相似文献   

18.
Sea ice induced changes in ocean circulation during the Eemian   总被引:1,自引:1,他引:0  
We argue that Arctic sea ice played an important role during early stages of the last glacial inception. Two simulations of the Institut Pierre Simon Laplace coupled model 4 are analyzed, one for the time of maximum high latitude summer insolation during the last interglacial, the Eemian, and a second one for the subsequent summer insolation minimum, at the last glacial inception. During the inception, increased Arctic freshwater export by sea ice shuts down Labrador Sea convection and weakens overturning circulation and oceanic heat transport by 27 and 15%, respectively. A positive feedback of the Atlantic subpolar gyre enhances the initial freshening by sea ice. The reorganization of the subpolar surface circulation, however, makes the Atlantic inflow more saline and thereby maintains deep convection in the Nordic Seas. These results highlight the importance of an accurate representation of dynamic sea ice for the study of past and future climate changes.  相似文献   

19.
Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (Simulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrlS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0-16 (0-27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7-22 (7-33) cm with 2~basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2~basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.  相似文献   

20.
A set of simple scaling formulas related to ice sheet evolution is derived from the dynamic and thermodynamic equations for ice and is used to consider two common situations: (a) when we wish to estimate potential ice sheet characteristics given the prescribed net snow accumulation over an area; and (b) when we wish to reconstruct net snow accumulation and vertical temperature difference within the ice sheet given empirical data only concerning ice sheet area and volume. The scaling formulas are applied to the present day Antarctic and Greenland ice sheets, as well as to some ancient ice sheets, and are used to estimate the potential global sea level change due to greenhouse warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号