首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
When full 3-D modelling is too costly or cumbersome, computations of 3-D elastic wave propagation in laterally heterogeneous, multilayered 2-D geological structures may enhance considerably our ability to predict strong ground motion for seismological and engineering purposes. Towards this goal, we extend the method based on the combination of the thin-layer finite-element and boundary-element methods (TLFE-BEM) and calculate windowend f - k spectra of the 3-D wavefield. The windowed f - k spectra are spatially localized spectra from which the local properties of the wavefield can be extracted. The TLFE-BEM is particularly suited for calculating the complete wavefield where surface waves are dominant in multilayered media. The computations are performed in the frequency domain, providing the f - k spectra directly. From the results for the 3-D wavefield excited by a point source in a 2-D multilayered, sloped structure, it can be said that the phase velocity of the fundamental-mode Rayleigh wave in a laterally heterogeneous multilayered medium, estimated from the windowed f - k spectra, varies with the location of the point source. For the model calculated in this article, the phase velocity varies between the value for the flat layered structure of the thick-layer side and that for the structure just under the centre of the window. The exact subsurface structure just under the centre of an array in a laterally heterogeneous medium cannot be obtained if we use the f - k spectral analysis assuming a flat layered structure.  相似文献   

2.
The eikonal equation is the equation of the phase slowness surface for isotropic and anisotropic media. In general anisotropic media, there is no simple explicit expression for the phase slowness surface. An approximate expression of the eikonal equation may be obtained in weakly anisotropic media. In orthorhombic media, the approximate eikonal equation of the qP wave is the sum of an ellipsoidal form and a more complicated term. The ellipsoidal form corresponds to what we call ellipsoidal anisotropy. Ray equations written in the Hamiltonian formulation are characteristics of the eikonal equation. Ray perturbation theory may be used to compute changes in ray paths and physical attributes (traveltime, polarization, amplitude) due to changes in the medium with respect to a reference medium. Examples obtained in homogeneous orthorhombic media show that a reference medium with ellipsoidal anisotropy is a better choice to develop the perturbation approach than an isotropic reference medium. Models with strong anisotropy can be considered. The comparison with results obtained by an exact ray program shows a relative traveltime error of less than 0.5 per cent for a model with relatively strong anisotropy. We propose a finite element approach in which the medium is divided into a set of elements with polynomial elastic parameter distributions. Inside each element, using a perturbation approach, analytical expressions for rays and traveltimes are obtained Ray tracing reduces to connecting these analytical solutions at the vertices of the cells.  相似文献   

3.
Numerical simulation of the propagation of P waves in fractured media   总被引:1,自引:0,他引:1  
We study the propagation of P waves through media containing open fractures by performing numerical simulations. The important parameter in such problems is the ratio between crack length and incident wavelength. When the wavelength of the incident wavefield is close to or shorter than the crack length, the scattered waves are efficiently excited and the attenuation of the primary waves can be observed on synthetic seismograms. On the other hand, when the incident wavelength is greater than the crack length, we can simulate the anisotropic behaviour of fractured media resulting from the scattering of seismic waves by the cracks through the time delay of the arrival of the transmitted wave. The method of calculation used is a boundary element method in which the Green's functions are computed by the discrete wavenumber method. For simplicity, the 2-D elastodynamic diffraction problem is considered. The rock matrix is supposed to be elastic, isotropic and homogeneous, while the cracks are all empty and have the same length and strike direction. An iterative method of calculation of the diffracted wavefield is developed in the case where a large number of cracks are present in order to reduce the computation time. The attenuation factor Q −1 of the direct waves passing through a fractured zone is measured in several frequency bands. We observe that the attenuation factor Q −1 of the direct P wave peaks around kd = 2, where k is the incident wavenumber and d the crack length, and decreases proportionally to ( kd ) −1 in the high-wavenumber range. In the long-wavelength domain, the velocity of the direct P wave measured for two different crack realizations is very close to the value predicted by Hudson's theory on the overall elastic properties of fractured materials.  相似文献   

4.
In isotropic ray tracing, the ray approximation to the wavefield undergoes a phase shift when the ray crosses a caustic. The cumulative number of such phase shifts along a ray is usually called the KMAH index. The sign of these phase shifts is prescribed by the sign of the angular frequency in combination with the sign convention used for the Fourier transformation. In isotropic media the KMAH index always increases by one or by two, depending on the type of caustic crossed. For (quasi-)shear waves in anisotropic media the KMAH index may decrease. This is the case if the associated slowness sheet is locally concave in one or two of its principal directions of curvature.  相似文献   

5.
Teleseismic P -wave recordings are analysed in the frequency range 0.3–6  Hz to derive structural (statistical) parameters of the lithosphere underneath the French Massif Central. For this we analyse differences in frequency-dependent intensities of the mean wavefield and the fluctuation wavefield. It is possible to discriminate a weak fluctuation regime of the wavefield in the frequency range below 1  Hz and a strong fluctuation regime starting above 1  Hz and continuing to higher frequencies. The observed wavefield fluctuations in the frequency range 0.3–3  Hz can be explained by scattering of the teleseismic P wave front at elastic inhomogeneities in the lithosphere. A statistical distribution of the inhomogeneities is assumed and the concept of random media is applied. The lithospheric structure under the Massif Central can be described as a 70  km thick heterogeneous layer with velocity fluctuations of 3–7 per cent and correlation lengths of the heterogeneities of 1–16  km.  相似文献   

6.
Wave propagation in weakly anisotropic inhomogeneous media is studied by the quasi-isotropic approximation of ray theory. The approach is based on the ray-tracing and dynamic ray-tracing differential equations for an isotropic background medium. In addition, it requires the integration of a system of two complex coupled differential equations along the isotropic ray.
The interference of the qS waves is described by traveltime and polarization corrections of interacting isotropic S waves. For qP waves the approach leads to a correction of the traveltime of the P wave in the isotropic background medium.
Seismograms and particle-motion diagrams obtained from numerical computations are presented for models with different strengths of anisotropy.
The equivalence of the quasi-isotropic approximation and the quasi-shear-wave coupling theory is demonstrated. The quasi-isotropic approximation allows for a consideration of the limit from weak anisotropy to isotropy, especially in the case of qS waves, where the usual ray theory for anisotropic media fails.  相似文献   

7.
Summary. A coupled mode theory is used to examine surface wave propagation in a laterally inhomogeneous acoustic waveguide. The theory is developed from the equations of motion for the pressure and velocity fields. The presence of lateral inhomogeneities in the form of varying layer thickness causes coupling among the discrete modes of the waveguide and radiation to the continuum. Expressions for the coupling coefficients among all mode types including coupling to the continuum spectrum are derived. The coupling coefficients are proportional to the horizontal derivative of the function describing the interface between layers of constant material properties but varying thickness. The coupled mode equations are solved in approximation for the case of a sinusoidal boundary and a sloping boundary. The results for radiation losses due to interaction with the irregular boundary of the waveguide are presented in analytical form, which clearly show the primary physical effects on the wavefield of the interaction. The far field amplitude of the scattered modes, excited by the interaction of some incident signal with a weak boundary irregularity, is modulated by the spatial Fourier transform of the irregularity.  相似文献   

8.
Summary. The Backus-Gilbert method has been extended to the estimation of the seismic wave velocity distribution in 2-D or 3-D inhomogeneous media from a finite set of travel-time data. The method may be applied to the inversion of body wave as well as surface wave data. The problem of determining a local average of the unknown velocity corrections may be reduced to a choice of a suitable δ-ness criterion for the averaging kernel. For 2-D and 3-D inhomogeneous media the simplest criterion is to minimize a sum of 'spreads' over all the coordinates. The use of this criterion requires the solution (the averaged velocity corrections) to be represented as a sum of functions, each of which depends only on one coordinate. This is a basic restriction of the method. In practice it is possible to achieve good agreement between the solution and a real velocity distribution by a reasonable choice of the coordinate system.
Numerical tests demonstrate the efficiency of the method. Some examples of the application of the method to the inversion of real seismological data for body and surface waves are given.  相似文献   

9.
The phase velocity and the attenuation coefficient of compressional seismic waves, propagating in poroelastic, fluid-saturated, laminated sediments, are computed analytically from first principles. The wavefield is found to be strongly affected by the medium heterogeneity. Impedance fluctuations lead to poroelastic scattering; variations of the layer compressibilities cause inter-layer flow (a 1-D macroscopic local flow). These effects result in significant attenuation and dispersion of the seismic wavefield, even in the surface seismic frequency range, 10–100 Hz. The various attenuation mechanisms are found to be approximately additive, dominated by inter-layer flow at very low frequencies. Elastic scattering is important over a broad frequency range from seismic to sonic frequencies. Biot's global flow (the relative displacement of solid frame and fluid) contributes mainly in the range of ultrasonic frequencies. From the seismic frequency range up to ultrasonic frequencies, attenuation due to heterogeneity is strongly enhanced compared to homogeneous Biot models. Simple analytical expressions for the P -wave phase velocity and attenuation coefficient are presented as functions of frequency and of statistical medium parameters (correlation lengths, variances). These results automatically include different asymptotic approximations, such as poroelastic Backus averaging in the quasi-static and the no-flow limits, geometrical optics, and intermediate frequency ranges.  相似文献   

10.
We study properties of the energy-flux vector and other related energy quantities of homogeneous and inhomogeneous time-harmonic P and S plane waves, propagating in unbounded viscoelastic anisotropic media, both analytically and numerically. We propose an algorithm for the computation of the energy-flux vector, which can be used for media of unrestricted anisotropy and viscoelasticity, and for arbitrary homogeneous or inhomogeneous plane waves. Basic part of the algorithm is determination of the slowness vector of a homogeneous or inhomogeneous wave, which satisfies certain constraints following from the equation of motion. Approaches for determination of a slowness vector commonly used in viscoelastic isotropic media are usually difficult to use in viscoelastic anisotropic media. Sometimes they may even lead to non-physical solutions. To avoid these problems, we use the so-called mixed specification of the slowness vector, which requires, in a general case, solution of a complex-valued algebraic equation of the sixth degree. For simpler cases, as for SH waves propagating in symmetry planes, the algorithm yields simple analytic solutions. Once the slowness vector is known, determination of energy flux and of other energy quantities is easy. We present numerical examples illustrating the behaviour of the energy-flux vector and other energy quantities, for homogeneous and inhomogeneous plane P , SV and SH waves.  相似文献   

11.
We propose approximate equations for P -wave ray theory Green's function for smooth inhomogeneous weakly anisotropic media. Equations are based on perturbation theory, in which deviations of anisotropy from isotropy are considered to be the first-order quantities. For evaluation of the approximate Green's function, earlier derived first-order ray tracing equations and in this paper derived first-order dynamic ray tracing equations are used.
The first-order ray theory P -wave Green's function for inhomogeneous, weakly anisotropic media of arbitrary symmetry depends, at most, on 15 weak-anisotropy parameters. For anisotropic media of higher-symmetry than monoclinic, all equations involved differ only slightly from the corresponding equations for isotropic media. For vanishing anisotropy, the equations reduce to equations for computation of standard ray theory Green's function for isotropic media. These properties make the proposed approximate Green's function an easy and natural substitute of traditional Green's function for isotropic media.
Numerical tests for configuration and models used in seismic prospecting indicate negligible dependence of accuracy of the approximate Green's function on inhomogeneity of the medium. Accuracy depends more strongly on strength of anisotropy in general and on angular variation of phase velocity due to anisotropy in particular. For example, for anisotropy of about 8 per cent, considered in the examples presented, the relative errors of the geometrical spreading are usually under 1 per cent; for anisotropy of about 20 per cent, however, they may locally reach as much as 20 per cent.  相似文献   

12.
Summary. Numerical modelling is one of the most efficient methods for an investigation of the relationship between structural features and peculiarities of observed wavefields. It is practically the only method for 2-D and 3-D inhomogeneous media.
An algorithm based on ray theory has been developed for calculations of travel times and amplitudes of seismic waves in 3-D inhomogeneous media with curved interfaces. It was applied for numerical modelling of kinematic and dynamic characteristics of seismic waves propagating in laterally inhomogeneous media.
Travel-time and amplitude patterns were studied in the 2-D and 3-D models of a geosyncline, in which velocity distribution was given by an analytical function of the coordinates. For a more complicated model representing a subducting high-velocity lithospheric plate in a transition zone between oceanic and continental upper mantle, the velocity distribution was given by discrete values on a 2-D non-rectangular grid. It was shown that when a source was placed above the lithospheric plate, a shadow zone appeared along a strike of the structure, i.e. in the direction which is perpendicular to a strong lateral velocity gradient. Travel-time residuals were calculated along the seismological profile for a 3-D velocity distribution in the upper mantle beneath Central Asia, obtained as a result of inversion of travel times by the Backus-Gilbert method. They were found to be in a good agreement with the observed data.  相似文献   

13.
Real plane-waves constitute the building blocks for recently developed spectral techniques in synthetic seismology. While providing numerical convenience, real slowness-spectra model certain wave phenomena in a distributed 'unnatural' way, whereas complex spectra model these phenomena in a compact, more 'natural' way. The theory of complex spectra, called by us the 'Spectral Theory of Transients' (STT) and developed elsewhere, is summarized here and contrasted with the real-spectrum approach. Relying strongly on the theory of analytic functions, STT permits the transient responses to be classified and evaluated according to the singularities they introduce in the complex slowness plane. The method is illustrated for a number of 2-D SH -wave model propagation environments, including interface reflection, head waves, multiple encounters with caustics due to concave boundaries or ducting medium inhomogeneities, and diffraction by structures with edges.  相似文献   

14.
Summary. A new method is presented for the direct inversion of seismic refraction data in dipping planar structure. Three recording geometries, each consisting of two common-shot profiles, are considered: reversed, split, and roll-along profiles. Inversion is achieved via slant stacking the common-shot wavefield to obtain a delay time–slowness (tau– p ) wavefield. The tau– p curves from two shotpoints describing the critical raypath of refracted and post-critically reflected arrivals are automatically picked using coherency measurements and the two curves are jointly used to calculate velocity and dip of isovelocity lines iteratively, thereby obtaining the final two-dimensional velocity model.
This procedure has been successfully applied to synthetic seismograms calculated for a dipping structure and to field data from central California. The results indicate that direct inversion of closely-spaced refraction/wide-aperture reflection data can practically be achieved in laterally inhomogeneous structures.  相似文献   

15.
Generalized Born scattering of elastic waves in 3-D media   总被引:1,自引:0,他引:1  
It is well known that when a seismic wave propagates through an elastic medium with gradients in the parameters which describe it (e.g. slowness and density), energy is scattered from the incident wave generating low-frequency partial reflections. Many approximate solutions to the wave equation, e.g. geometrical ray theory (GRT), Maslov theory and Gaussian beams, do not model these signals. The problem of describing partial reflections in 1-D media has been extensively studied in the seismic literature and considerable progress has been made using iterative techniques based on WKBJ, Airy or Langer type ansätze. In this paper we derive a first-order scattering formalism to describe partial reflections in 3-D media. The correction term describing the scattered energy is developed as a volume integral over terms dependent upon the first spatial derivatives (gradients) of the parameters describing the medium and the solution. The relationship we derive could, in principle, be used as the basis for an iterative scheme but the computational expense, particularly for elastic media, will usually prohibit this approach. The result we obtain is closely related to the usual Born approximation, but differs in that the scattering term is not derived from a perturbation to a background model, but rather from the error in an approximate Green's function. We examine analytically the relationship between the results produced by the new formalism and the usual Born approximation for a medium which has no long-wavelength heterogeneities. We show that in such a case the two methods agree approximately as expected, but that in a media with heterogeneities of all wavelengths the new gradient scattering formalism is superior. We establish analytically the connection between the formalism developed here and the iterative approach based on the WKBJ solution which has been used previously in 1-D media. Numerical examples are shown to illustrate the examples discussed.  相似文献   

16.
The radiative transfer theory (RTT) describes the energy transport through a random heterogeneous medium, neglecting phase information. It provides an adequate framework for modelling high-frequency seismogram envelopes. For isotropic scattering and sources, the radiative transfer equation (RTE) has been formulated analytically and numerically simulated using Monte Carlo methods for acoustic and elastic media. Here, we derive an exact analytical solution of the RTE in 2-D space for the acoustic case, including anisotropic scattering for a anisotropic point-like impulsive source. For this purpose, we generalize the path integral method, which has been used before in the isotropic case, to take into account the anisotropy of both the source radiation pattern and scattering processes, simultaneously. Then we obtain a general solution, which is written in a closed form in the Fourier space. To illustrate the theoretical results, we compute the full space and time evolution of the specific intensity for an arbitrary case. We also compare the time traces computed from our general solution with cases in which the source and/or the scattering process are isotropic. The importance of taking into account both anisotropies simultaneously becomes obvious in our examples. We also show that at long lapse time, our example approaches the solution of the diffusion equation.  相似文献   

17.
A general tomographic technique is designed in order (i) to operate in anisotropic media; (ii) to account for the uneven seismic sampling and (iii) to handle massive data sets in a reasonable computing time. One modus operandi to compute a 3-D body wave velocity model relies on surface wave phase velocity measurements. An intermediate step, shared by other approaches, consists in translating, for each period of a given mode branch, the phase velocities integrated along ray paths into local velocity perturbations. To this end, we develop a method, which accounts for the azimuthal anisotropy in its comprehensive form. The weakly non-linear forward problem allows to use a conjugate gradient optimization. The Earth's surface is regularly discretized and the partial derivatives are assigned to the individual grid points. Possible lack of lateral resolution, due to the inescapable uneven ray path coverage, is taken into account through the a priori covariances on parameters with laterally variable correlation lengths. This method allows to efficiently separate the 2ψ and the 4ψ anisotropic effects from the isotropic perturbations. Fundamental mode and overtone phase velocity maps, derived with real Rayleigh wave data sets, are presented and compared with previous maps. The isotropic models concur well with the results of Trampert & Woodhouse. Large 4ψ heterogeneities are located in the tectonically active regions and over the continental lithospheres such as North America, Antarctica or Australia. At various periods, a significant 4ψ signature is correlated with the Hawaii hotspot track. Finally, concurring with the conclusions of Trampert & Woodhouse, our phase velocity maps show that Rayleigh wave data sets do need both 2ψ and 4ψ anisotropic terms.  相似文献   

18.
Geometric ray theory is an extremely efficient tool for modelling wave propagation through heterogeneous media. Its use is, however, only justified when the inhomogeneity satisfies certain smoothness criteria. These criteria are often not satisfied, for example in wave propagation through turbulent media. In this paper, the effect of velocity perturbations on the phase and amplitude of transient wavefields is investigated for the situation that the velocity perturbation is not necessarily smooth enough to justify the use of ray theory. It is shown that the phase and amplitude perturbations of transient arrivals can to first order be written as weighted averages of the velocity perturbation over the first Fresnel zone. The resulting averaging integrals are derived for a homogeneous reference medium as well as for inhomogeneous reference media where the equations of dynamic ray tracing need to be invoked. The use of the averaging integrals is illustrated with a numerical example. This example also shows that the derived averaging integrals form a useful starting point for further approximations. The fact that the delay time due to the velocity perturbation can be expressed as a weighted average over the first Fresnel zone explains the success of tomographic inversions schemes that are based on ray theory in situations where ray theory is strictly not justified; in that situation one merely collapses the true sensitivity function over the first Fresnel zone to a line integral along a geometric ray.  相似文献   

19.
An explicit analytical formula for the complete elastodynamic Green tensor for homogeneous unbounded weak transversely isotropic media is presented. The formula was derived by analytical calculations of higher-order approximations of the ray series. The ray series is finite and consists of seven non-zero terms. The formula for the Green tensor is complete and correct for the whole frequency range, thus it describes correctly the wavefield at all distances and at all directions including the shear-wave singularity direction. The Green tensor consists of P, SV and SH far-field waves and four coupling waves. Three of them couple P and SV waves, and the fourth wave couples the SV and SH waves. The P-SV coupling waves behave similarly to the near-field waves in isotropy. However, the SV-SH coupling wave, which is called 'shear-wave coupling', behaves exceptionally and it has no analogy in the Green tensor for isotropy. The formula for the elastostatic Green tensor is also derived.  相似文献   

20.
Summary. Asymptotic ray theory is applied to surface waves in a medium where the lateral variations of structure are very smooth. Using ray-centred coordinates, parabolic equations are obtained for lateral variations while vertical structural variations at a given point are specified by eigenfunctions of normal mode theory as for the laterally homogeneous case. Final results on wavefields close to a ray can be expressed by formulations similar to those for elastic body waves in 2-D laterally heterogeneous media, except that the vertical dependence is described by eigenfunctions of 'local' Love or Rayleigh waves. The transport equation is written in terms of geometrical-ray spreading, group velocity and an energy integral. For the horizontal components there are both principal and additional components to describe the curvature of rays along the surface, as in the case of elastic body waves. The vertical component is decoupled from the horizontal components. With complex parameters the solutions for the dynamic ray tracing system correspond to Gaussian beams: the amplitude distribution is bell-shaped along the direction perpendicular to the ray and the solution is regular everywhere, even at caustics. Most of the characteristics of Gaussian beams for 2-D elastic body waves are also applicable to the surface wave case. At each frequency the solution may be regarded as a set of eigenfunctions propagating over a 2-D surface according to the phase velocity mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号