首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
It is quantified the properties of seismic waves in fully saturated homogeneous porous media within the framework of Sahay's modified and reformulated poroelastic theory. The computational results comprise amplitude attenuation, velocity dispersion and seismic waveforms. They show that the behaviour of all four waves modelled as a function of offset, frequency, porosity, fluid viscosity and source bandwidth depicts realistic dissipation within the sonic–ultrasonic band. Therefore, it appears that there is no need to include material heterogeneity to model attenuation. By inference it is concluded that the fluid viscosity effects may be enhanced by dynamic porosity.  相似文献   

2.
Small-scale elastic heterogeneities (<5  km) are found in the upper lithosphere underneath the Gräfenberg array, southeast Germany. The results are based on the analysis of broadband recordings of 17 intermediate-depth (201–272  km) events from the Hindu Kush region. The wavefront of the first P arrival and the following 40  s coda are separated into coherent and incoherent (scattered) parts in the frequency range from 0.05 to 5  Hz. The frequency-dependent intensities of the mean and fluctuation wavefields are used to describe the scattering characteristics of the lithosphere underneath the receivers. It is possible to discriminate a weak-fluctuation regime of the wavefield in the frequency range below approximately 1.5–2.5  Hz and a strong-fluctuation regime starting at 2.0–2.5  Hz and continuing to higher frequencies. In order to explain the observed wavefield fluctuations, an approach with seismic scattering at random media-type structures is proposed. The preferred model contains heterogeneities with 3–7 per cent perturbations in seismic velocity and correlation lengths of 0.6–4.8  km in the crust. This is compatible with models from active seismic experiments. Scattering in the lithospheric mantle is not required, but cannot be excluded at weak velocity contrasts (<3 per cent).  相似文献   

3.
4.
The influence of fluid-sensitive dispersion and attenuation on AVO analysis   总被引:9,自引:0,他引:9  
Analysis of seismic data suggests that hydrocarbon deposits are often associated with higher than usual values of attenuation, but this is generally ignored during amplitude-versus-offset (AVO) analysis. The effect can be modelled with equivalent medium theory based on the squirt flow concept, but the excess attenuation is associated with strong velocity dispersion. Consequently, when we study reflections from the interface between such an equivalent medium and an elastic overburden we find that the reflection coefficient varies with frequency. The impact of this variation depends on the AVO behaviour at the interface; class I reflections tend to be shifted to higher frequency while class III reflections have their lower frequencies amplified. We calculate synthetic seismograms for typical models using the reflectivity method for materials with frequency dependent velocities and attenuations, and find that these effects are predicted to be detectable on stacked data. Two field data sets show frequency anomalies similar to those predicted by the analysis, and we suggest that our modelling provides a plausible explanation of the observations.  相似文献   

5.
Teleseismic P -wave recordings are analysed in the frequency range 0.3–6  Hz to derive structural (statistical) parameters of the lithosphere underneath the French Massif Central. For this we analyse differences in frequency-dependent intensities of the mean wavefield and the fluctuation wavefield. It is possible to discriminate a weak fluctuation regime of the wavefield in the frequency range below 1  Hz and a strong fluctuation regime starting above 1  Hz and continuing to higher frequencies. The observed wavefield fluctuations in the frequency range 0.3–3  Hz can be explained by scattering of the teleseismic P wave front at elastic inhomogeneities in the lithosphere. A statistical distribution of the inhomogeneities is assumed and the concept of random media is applied. The lithospheric structure under the Massif Central can be described as a 70  km thick heterogeneous layer with velocity fluctuations of 3–7 per cent and correlation lengths of the heterogeneities of 1–16  km.  相似文献   

6.
Summary. In order to separate the scattering effect from the intrinsic attenuation, we need a multiple scattering model for seismic wave propagation in random heterogeneous media. In this paper, we apply radiative transfer theory to seismic wave propagation and formulate in the frequency domain the energy density distribution in space for a point source. We consider the cases of isotropic scattering and strong forward scattering. Some numerical examples are shown. It is seen that the energy density–distance curves have quite different shapes depending on the values of medium seismic albedo B 0s/(ηsa) where ηs is the scattering coefficient and ηa is the absorption coefficient of the medium. For a high albedo ( B > 0.5) medium, the energy–distance curve is of arch shape and the position of the peak is a function of the extinction coefficient of the medium ηesa. Therefore it is possible to separate the scattering effect and the absorption based on the measured energy density distribution curves.  相似文献   

7.
Offset-dependent characteristics of seismic scattering are useful for characterizing fractured reservoirs. We use two models that have different background medium properties and different azimuthal AVO responses to study elastic wave propagation and scattering in gas-saturated, heterogeneously fractured reservoirs. Heterogeneous fracture density distributions are built through stochastic modelling. Synthetic seismograms are generated by 3-D finite difference modelling, and waveforms along crack-normal and strike directions are considered in this paper. The multiple signal classification (MUSIC) frequency estimator is used in waveform estimation to provide frequency-domain attributes related to seismic wave scattering by fracture heterogeneity. Our results indicate that the strength of the scattering field is a function of the background medium. The strength also increases with increasing fracture scatterer density and with decreasing correlation length of spatial variations of fracture density. The scattering field is weak at the top of the fractured reservoir. The first-order results are dominated by velocity anisotropy of the mean fracture density field. However, the base of the fractured reservoir corresponds to a strong scattering field on which fracture heterogeneity has a larger effect and is characterized by the loss of coherence.  相似文献   

8.
Numerical simulation of the propagation of P waves in fractured media   总被引:1,自引:0,他引:1  
We study the propagation of P waves through media containing open fractures by performing numerical simulations. The important parameter in such problems is the ratio between crack length and incident wavelength. When the wavelength of the incident wavefield is close to or shorter than the crack length, the scattered waves are efficiently excited and the attenuation of the primary waves can be observed on synthetic seismograms. On the other hand, when the incident wavelength is greater than the crack length, we can simulate the anisotropic behaviour of fractured media resulting from the scattering of seismic waves by the cracks through the time delay of the arrival of the transmitted wave. The method of calculation used is a boundary element method in which the Green's functions are computed by the discrete wavenumber method. For simplicity, the 2-D elastodynamic diffraction problem is considered. The rock matrix is supposed to be elastic, isotropic and homogeneous, while the cracks are all empty and have the same length and strike direction. An iterative method of calculation of the diffracted wavefield is developed in the case where a large number of cracks are present in order to reduce the computation time. The attenuation factor Q −1 of the direct waves passing through a fractured zone is measured in several frequency bands. We observe that the attenuation factor Q −1 of the direct P wave peaks around kd = 2, where k is the incident wavenumber and d the crack length, and decreases proportionally to ( kd ) −1 in the high-wavenumber range. In the long-wavelength domain, the velocity of the direct P wave measured for two different crack realizations is very close to the value predicted by Hudson's theory on the overall elastic properties of fractured materials.  相似文献   

9.
A new numerical approach to the solution of waves propagating in a fluid-saturated medium, using Biot's theory as a foundation, has important implications for oil reservoir management and earthquake prediction. A numerical scheme is developed using an exponential transformation that explicitly treats the petrophysical and fluid properties of the medium within the framework of a generalized model. The scheme accounts for wave dissipation and velocity modifications. The numerical solution is used to perform numerical experiments to study the dynamic behaviour of waves in a fluid-saturated medium at well-logging frequencies (15 kHz). The results from the numerical experiments indicate that the degree of saturation by a high-viscosity fluid (HVF) such as oil, the temperature and the porosity of a medium strongly influence the spectral power distribution, frequency content and the velocity of waves propagating through the medium. An increase in HVF saturation causes enhanced attenuation of the low-frequency components, and increases the seismic velocity. An increase in porosity, however, enriches the low-frequency components and decreases the seismic velocity. A spectral quantification procedure is suggested and used to obtain information about the petrophysical and fluid properties of the medium from the spectral characteristics of the transmitted waveform. The procedure involves segmentation of the energy or power distribution of the transmitted waveforms into specified energy bands. The energy or power in these bands is then estimated. The extracted quantification variables are found to have strong correlations with the degree of HVF saturation, and the temperature and the porosity of the medium.  相似文献   

10.
Summary. Using a single scattering approximation, we derive equations for the scattering attenuation coefficients of P- and S -body waves. We discuss our results in the light of some recent energy renormalization approaches to seismic wave scattering. Practical methods for calculating the scattering attenuation coefficients for various earth models are emphasized. The conversions of P - to S -waves and S- to P -waves are included in the theory. The earth models are assumed to be randomly inhomogeneous, with their properties known only through their average wavenumber power spectra. We approximate the power spectra with piecewise constant functions, each segment of which contributes to the net, frequency-dependent, scattering attenuation coefficient. The smallest and largest wavenumbers of a segment can be plotted along with the wavevectors of the incident and scattered waves on a wavenumber diagram. This diagram gives a geometric interpretation for the frequency behaviour associated with each spectral segment, including a 'transition' peak that is due entirely to the wavenumber limits of the segment. For regions of the earth where the inhomogeneity spectra are concentrated in a band of wavenumbers, it should be possible to observed such a peak in the apparent attenuation of seismic waves. We give both the frequency and distance limits on the accuracy of the theoretical results.  相似文献   

11.
Summary. The influence of a simple mountain range on seismic ground motion is studied. A two-dimensional model of the medium and vertically incident plane SH -waves are considered. Attention is devoted not only to the wavefield along the Earth's surface, but also within the medium. The wavefield is computed in two steps: (1) the computation of the impulse response by the finite-difference method, (2) the computation of the response to a time variation of the incident wave. approximately corresponding to a 'hundred-year' local earthquake at the site. Numerical results (the impulse response, the transfer function, the accelerograms, and their spectra) indicate strong spatial variability of the wavefield due to the topographical anomaly. The differences as large as 100 per cent in the peak amplitudes of the accelerograms, and of the order of 5 Hz in their predominant frequencies, at closely (∼ 200 m) spaced internal points of the medium have been found. Attention is focused also on the effect of causal absorption. Even unrealistically strong absorption seems to be unable to reduce significantly the spatial variability of the ground motion, caused by the topography. A variability like this. implying the occurrence of underground differential strains, might be of engineering importance in the antiseismic design of underground structures (tunnels, for example) in mountainous seismic regions. The ground-motion variability along the surface of the mountain is considerably smaller than within the medium.  相似文献   

12.
When full 3-D modelling is too costly or cumbersome, computations of 3-D elastic wave propagation in laterally heterogeneous, multilayered 2-D geological structures may enhance considerably our ability to predict strong ground motion for seismological and engineering purposes. Towards this goal, we extend the method based on the combination of the thin-layer finite-element and boundary-element methods (TLFE-BEM) and calculate windowend f - k spectra of the 3-D wavefield. The windowed f - k spectra are spatially localized spectra from which the local properties of the wavefield can be extracted. The TLFE-BEM is particularly suited for calculating the complete wavefield where surface waves are dominant in multilayered media. The computations are performed in the frequency domain, providing the f - k spectra directly. From the results for the 3-D wavefield excited by a point source in a 2-D multilayered, sloped structure, it can be said that the phase velocity of the fundamental-mode Rayleigh wave in a laterally heterogeneous multilayered medium, estimated from the windowed f - k spectra, varies with the location of the point source. For the model calculated in this article, the phase velocity varies between the value for the flat layered structure of the thick-layer side and that for the structure just under the centre of the window. The exact subsurface structure just under the centre of an array in a laterally heterogeneous medium cannot be obtained if we use the f - k spectral analysis assuming a flat layered structure.  相似文献   

13.
Summary. The transient and impulse responses (Green's function) for onedimensional wave propagation in a standard linear solid are calculated using a Laplace Transform method. The spectrum of relaxation times is chosen so as to model a constant Q medium within an absorption band covering a broad frequency range which may be chosen so as to include the seismic frequencies. The inverse transform may be evaluated asymptotically in the limit of very long propagation times using the saddle point method. For shorter propagation times the method of steepest descent may be modified so as to yield an accurate first motion approximation. The character of the small amplitude precursor to the large amplitude Visible' signal is investigated analytically. It is shown that the signal velocity is intermediate between the high-frequency ('unrelaxed') and the low-frequency ('relaxed') limits of the phase velocity.  相似文献   

14.
15.
We present a technique based on the single-scattering approximation that relates time-lapse localized changes in the propagation velocity to changes in the traveltime of singly scattered waves. We describe wave propagation in a random medium with homogeneous statistical properties as a single-scattering process where the fluctuations of the velocity with respect to the background velocity are assumed to be weak. This corresponds to one of two end-member regimes of wave propagation in a random medium, the first being single scattering, and the second multiple scattering. We present a formulation that relates the change in the traveltime of the scattered waves to a localized change in the propagation velocity by means of the Born approximation for the scattered wavefield. We validate the methodology with synthetic seismograms calculated with finite differences for 2-D acoustic waves. Potential applications of this technique include non-destructive evaluation of heterogeneous materials and time-lapse monitoring of heterogeneous reservoirs.  相似文献   

16.
Inversion of seismic attributes for velocity and attenuation structure   总被引:1,自引:0,他引:1  
We have developed an inversion formuialion for velocity and attenuation structure using seismic attributes, including envelope amplitude, instantaneous frequency and arrival times of selected seismic phases. We refer to this approach as AFT inversion for amplitude, (instantaneous) frequency and time. Complex trace analysis is used to extract the different seismic attributes. The instantaneous frequency data are converted to t * using a matching procedure that approximately removes the effects of the source spectra. To invert for structure, ray-perturbation methods are used to compute the sensitivity of the seismic attributes to variations in the model. An iterative inversion procedure is then performed from smooth to less smooth models that progressively incorporates the shorter-wavelength components of the model. To illustrate the method, seismic attributes are extracted from seismic-refraction data of the Ouachita PASSCAL experiment and used to invert for shallow crustal velocity and attenuation structure. Although amplitude data are sensitive to model roughness, the inverted velocity and attenuation models were required by the data to maintain a relatively smooth character. The amplitude and t * data were needed, along with the traveltimes, at each step of the inversion in order to fit all the seismic attributes at the final iteration.  相似文献   

17.
A general one-way representation of seismic data can be obtained by substituting a Green's one-way wavefield matrix into a reciprocity theorem of the convolution type for one-way wavefields. From this general one-way representation, several special cases can be derived.
By introducing a Green's one-way wavefield matrix for primaries , a generalized Bremmer series representation is obtained. Terminating this series after the first-order term yields a primary representation of seismic reflection data. According to this representation, primary seismic reflection data are proportional to a reflection operator, 'modified' by primary propagators for downgoing and upgoing waves. For seismic imaging, these propagators need to be inverted. Stable inverse primary propagators can easily be obtained from a one-way reciprocity theorem of the correlation type.
By introducing a Green's one-way wavefield matrix for generalized primaries , an alternative representation is obtained in which multiple scattering is organized quite differently (in comparison with the generalized Bremmer series representation). According to the generalized primary representation, full seismic reflection data are proportional to a reflection operator, 'modified' by generalized primary propagators for downgoing and upgoing waves. Internal multiple scattering is fully included in the generalized primary propagators {either via a series expansion or in a parametrized way). Stable inverse generalized primary propagators can be obtained from the one-way reciprocity theorem of the correlation type. These inverse propagators are the nucleus for seismic imaging techniques that take the angle-dependent dispersion effects due to fine-layering into account.  相似文献   

18.
Laboratory measurements of ultrasonic wave propagation in tuffaceous sandstone (Kimachi, Japan) and granite (Iidate, Japan) were performed during increasing fracturing of the samples. The fracturing was achieved by unconfined uniaxial compression up to and beyond the point of macrofracture of the specimen using a constant low strain rate. The observed variation of wave velocity (up to 40 per cent) due to the development of micro- and macrofractures in the rock is interpreted by rock models relating velocity changes to damage and crack density. The calculated density of the newly formed cracks reaches higher values for the sandstone than for the granite. Using the estimated crack densities, the attenuation behaviour is interpreted in terms of different attenuation mechanisms; that is, friction and scattering. Rayleigh scattering as described by the model of Hudson (1981 ) may explain the attenuation qualitatively if the largest plausible crack dimensions are assumed in modelling.  相似文献   

19.
基于流速衰减特征的泥石流冲出距离预测方法   总被引:2,自引:0,他引:2  
铁永波 《山地学报》2012,(2):216-221
泥石流冲出距离的确定是泥石流灾害评价及防治中的关键环节。基于泥石流在堆积区流速的变化特征,提出了泥石流流速"衰减系数"的概念。通过对泥石流流速衰减系数的定义和计算公式的推导,提出了一种基于泥石流流速衰减系数来确定泥石流冲出距离的新方法,并以四川省泸定县干沟泥石流为实例进行计算和验证。研究结果表明:当干沟泥石流在堆积区的流速大于初始(沟口)流速的15%时,流速的衰减程度极为显著;而当堆积区流速小于初始速度的15%时,流速的衰减极为缓慢。研究结果对泥石流灾害的危险性评价及防灾减灾具有一定的理论和实践意义。  相似文献   

20.
Multicomponent near-surface correction for land VSP data   总被引:1,自引:0,他引:1  
Multicomponent seismic data collected using directional sources are degraded by the wave excitation process due to inaccurate control of the ground motion. unequal activation strengths or ground couplings between differently oriented sources, and misalignment of the pad. These acquisition uncertainties are exacerbated by the complicated near-surface scattering present in most seismic areas. Neither group of effects should be neglected in multicomponent analyses that make use of relative wavefield attributes derived from compressional and shear waves. These effects prevent analysis of the direct and reflected waves using procedures based on standard scalar techniques or a prima facia interpretation of the vector wavefield properties, even for the seemingly straightforward case of a near-offset vertical seismic profile (VSP). Near-surface correction, using a simple matrix operator designed from the shallowest recordings, alleviates many of these interpretational difficulties in near-offset VSP data. Results from application of this technique to direct waves from a nine-component VSP shot at the Conoco test-site facility, Oklahoma, are encouraging. The technique corrects for unexpected compressional-wave energy from shear-wave vibrators and collapses near-surface multiples, thus facilitating further processing for the upgoing wavefield. The method provides a simple and effective processing step for routine application to near-offset VSP analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号