首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A new two-dimensional zonal model of the stratosphere, based on a formulation in an isentropic framework, with complete chemistry has been coupled with a high resolution detailed microphysical model for polar stratospheric clouds (PSCs). The 2D model chemistry includes all presently known heterogeneous processes on sulfate aerosols and PSCs. The coupling of these two models, with inherently different time scales, is discussed. It is demonstrated that in order to obtain a realistic interrelationship between NOy and N2O an accurate simulation of the sedimentation by PSC particles is necessary. A good agreement of model PSC presence and observations is found for the Antarctic polar winter without the need to impose additional artificial temperature variations in the model. The calculated occurrence of polar stratospheric clouds and resulting heterogeneous chemistry during the Antarctic winter are discussed. Sensitivity of the polar stratospheric chemical composition and cloud formation for different perturbations is investigated by studying the effects of transport across the polar vortex boundary and heterogeneous processing by an enhanced sulfate aerosol load. The importance of including sedimentation for all cases is also discussed.  相似文献   

2.
A three-dimensional transport model has been used to compare and contrast the extent of processing by polar stratospheric clouds during the northern hemisphere winters of 1991/1992 and 1992/1993. The model has also been used to compare the potential for ozone loss between these two winters. The TOMCAT off-line model is forced using meteorological analyses from the ECMWF. During winter 1992/1993 polar stratospheric clouds (PSCs) in the model persisted into late February/early March, which is much later than in 1991/1992. This persistence of PSCs should have resulted in much more ozone loss in the later winter. Interestingly, however, the extent of PSC processing and ozone loss was greater in January 1992 than January 1993. In January 1992 PSCs occurred at the edge of a distorted polar vortex whilst in January 1993 the PSCs were located at the centre of a much more zonally symmetrical vortex. In March 1993, distortions of the vortex led to the tearing off of vortex air and its mixing into midlatitudes.  相似文献   

3.
The stratosphere holds a variety of particulates like polar stratospheric clouds (PSCs) and sulphate aerosols which catalyse chemical reactions. These reactions cause changes in the composition of the stratosphere, including the redistribution of active chlorine which might lead to ozone destruction. As a result during recent years a lot of effort has been directed towards the quantification of the uptake of trace gases like ClONO2, HCl, etc. into these particulates. However, it has been observed that many of the two and three dimensional models used in such studies are constrained by the lack of adequate rate constant data. This paper describes a theoretical approach to estimate the reaction rate constants for 23 gases on both types of polar stratospheric clouds (type I and II). It is found that for gases like N2O5, ClONO2 and HCl, diffusional uptake is important and contributes significantly to the heterogeneous reaction rate. A complete Lennard-Jones calculation is used to accurately compute the trace gas diffusion coefficients.  相似文献   

4.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

5.
The solid and liquid particles which constitute polar stratospheric clouds (PSCs) are of manifold importance to the meteorology of the stratosphere. The heterogeneous reactions which take place on and within these particles release halogens from relatively inert reservoir species into forms which can destroy ozone in the polar spring. In addition, solid PSC particles are instrumental in the physical removal of nitrogen oxides (denitrification) and water (dehydration) of regions of the polar stratosphere. Denitrification, in particular, allows extended ozone destruction by slowing the conversion of chlorine radicals back into reservoir species.We review the historical development of PSC studies, with particular emphasis on results from the last decade, encompassing developments in observations, in laboratory experiments, and in theoretical treatments. The technical challenge of measuring sufficient of the parameters describing any given PSC, to allow its microphysics to be understood, has driven forward balloon-borne, aircraft, and satellite instrumentation. The technical challenge of finding suitable laboratory proxies for PSCs, in order to observe the microphysics under controlled conditions, has resulted in a wide variety of experimental designs, some of which maximise the probability of observing phase change, others which mimic the surface–volume ratios of PSCs more closely. The challenge to theory presented by PSCs has resulted in improvements in the thermodynamics of concentrated inorganic solutions of volatile compounds, and a new general theory of freezing of water ice from concentrated aqueous solutions. Of the major processes involving PSCs, heterogeneous reaction probabilities for ternary HNO3/H2SO4/H2O solutions, and heterogeneous freezing to produce nitric-acid hydrates, are the least well understood.  相似文献   

6.
The Stratospheric Regular Sounding project was planned to measure regularly the vertical profiles of several tracers like ozone, water vapor, NOx, ClOx and BrOx radicals, aerosol, pressure and temperature, at three latitudes, to discriminate between the transport and photochemical terms which control their distribution. As part of this project, the “Istituto di Fisica dell’Atmosfera” launched nine laser backscattersondes (LABS) on board stratospheric balloons to make observations of background aerosol and PSCs. LABS was launched with an optical particle counter operated by the University of Wyoming. Observations have been performed in the arctic, mid-latitudes and tropical regions in different seasons. Polar stratospheric clouds have been observed in areas inside and outside the polar vortex edge. A background aerosol was observed both in mid-latitudes and in arctic regions with a backscattering ratio of 1.2 at 692 nm. Very stratified aerosol layers, possibly transported into the lower stratosphere by deep convective systems, have been observed in the lower stratosphere between 20 and 29 km in the tropics in the Southern Hemisphere.  相似文献   

7.
During the past decades, concurrent with global warming, most of global oceans, particularly the tropical Indian Ocean, have become warmer. Meanwhile, the Southern Hemispheric stratospheric polar vortex (SPV) exhibits a deepening trend. Although previous modeling studies reveal that radiative cooling effect of ozone depletion plays a dominant role in causing the deepening of SPV, the simulated ozone-depletion-induced SPV deepening is stronger than the observed. This suggests that there must be other factors canceling a fraction of the influence of the ozone depletion. Whether the tropical Indian Ocean warming (IOW) is such a factor is unclear. This issue is addressed by conducting ensemble atmospheric general circulation model (AGCM) experiments. And one idealized IOW with the amplitude as the observed is prescribed to force four AGCMs. The results show that the IOW tends to warm the southern polar stratosphere, and thus weakens SPV in austral spring to summer. Hence, it offsets a fraction of the effect of the ozone depletion. This implies that global warming will favor ozone recovery, since a warmer southern polar stratosphere is un-beneficial for the formation of polar stratospheric clouds (PSCs), which is a key factor to ozone depletion chemical reactions. Supported by National Natural Science Foundation of China (Grant Nos. 40775053 and 90711004), National Basic Research Program of China (Grant No. 2009CB421401), and Innovation Key Program of Chinese Academy of Sciences (Grant Nos. KZCXZ-YW-Q11-03, KZCZ2-YW-Q03-08)  相似文献   

8.
Although stratosphere penetrating volcanic eruptions have been infrequent during the last half century, periods have existed in the last several hundred years when such eruptions were significantly more frequent. Several mechanisms exist for these injections to affect stratospheric minor constitutent chemistry, both on the long-term average and for short-term perturbations. These mechanisms are reviewed and, because of the sensitivity of current models of stratospheric ozone to chlorine perturbations, quantitative estimates are made of chlorine injection rates. It is found that, if chlorine makes up as much as 0.5 to 1% of the gases released and if the total gases released are about the same magnitude as the fine ash, then a major stratosphere penetrating eruption could deplete the ozone column by several percent. The estimate for the Agung eruption of 1963 is just under 1% an amount not excluded by the ozone record but complicated by the peak in atmospheric nuclear explosions at about the same time. The long-term contribution to stratospheric CIX by volcanic eruptions is estimated as 0.1 ppbv for the period 1900–60 and 1 ppbv for the much more volcanically active period 1780–1840. All of the estimates are subject to large uncertainties, perhaps a factor of 2 or 3 on the high side and a factor of 10 or more on the low side.Paper presented at the IAGA/IAMAP Joint Assembly, Seattle, WA, U.S.A., August 1977.  相似文献   

9.
This paper reports the study data on variations in the ozone content in the middle stratosphere over Moscow based on millimeter wavelength observations during a range of midwinter sudden stratospheric warmings that occurred in the past two decades. The relation of ozone with planetary waves and the intensity of the polar stratospheric vortex has been established. The ozone vertical distribution has been monitored with a highly sensitive spectrometer with a two-millimeter wave band. The discovered phenomena of a relatively long-term lower ozone content in December in the considered cold half-year periods are related to the higher amplitude of the planetary wave with n = 1. Such phenomena preceded the development of strong midwinter stratospheric warmings, which, in turn, were accompanied by a significant increase in the ozone content in January. This ozone enrichment was related to the lower amplitude of the wave with n = 1 and higher amplitude of the wave with n = 2 and was accompanied by geopotential H c.v. growth in the polar vortex center. Specific features of variations in the ozone content under the influence of the major atmospheric processes are observed not only in certain cold half-year periods but are also well seen in the general averaged pattern for winters with strong stratospheric warmings.  相似文献   

10.
The implicit time integration scheme of Stott and Harwood (1993) was proposed as an efficient scheme for use in three-dimensional chemical models of the atmosphere. The scheme was designed for chemistry schemes using chemical families, in which species with short lifetimes are grouped into longer-lived families. Further study with more complex chemistry, more species and reactions showed the scheme to be non-convergent and unstable under certain conditions; particularly for the perturbed chemical scenarios of polar stratospheric winters. In this work the scheme has been improved by revising the treatment of families and the convergence properties of the scheme. The new scheme has been named IMPACT (IMPlicit Algorithm for Chemical Time-stepping). It remains easy to implement and produces simulations that compare well with integrations using more accurate higher order schemes.  相似文献   

11.
The global structures of annual oscillation (AO) and semiannual oscillation (SAO) of stratospheric ozone are examined by applying spherical harmonic analysis to the ozone data obtained from the Nimbus-7 solar backscattered UV-radiation (SBUV) measurements for the period November 1978 to October 1980. Significant features of the results are: (1) while the stratospheric ozone AO is prevalent only in the polar regions, the ozone SAO prevails both in the equatorial and polar stratospheres; (2) the vertical distribution of the equatorial ozone SAO has a broad maximum of the order of 0.5 (mixing ratio in g/g) and the maximum appears earlier at high altitude (shifting from May [and November] at 0.3 mb [60 km] to November [and May] at 40 mb); (3) above the 40 km level, the maximum of the polar ozone SAO shifts upward towards later phase with altitude with a rate of approximately 10 km/month in both hemispheres; (4) vertical distributions of the polar ozone AOs and SAOs show two peaks in amplitude with a minimum (nodal layer) in between and a rapid phase change with altitude takes place in the respective nodal layers; and (5) the heights of the ozone AO- and SAO-peaks decrease with latitude. The main part of AOs and SAOs of stratospheric ozone including hemispheric asymmetries is ascribable to: (i) temperature dependent ozone photochemistry in the upper stratosphere and mesosphere, (ii) variations of radiation field in the lower stratosphere affected by the annual cycle of solar illumination and temperature in the upper stratosphere and (iii) meridional ozone transport by dynamical processes in the lower stratosphere.  相似文献   

12.
Polar stratospheric clouds (PSCs) are often observed in the Kiruna region in northern Sweden, east of the Scandinavian mountain range, during wintertime. PSC occurrence can be detected by ground-based optical instruments. Most of these require clear tropospheric weather. By applying the zenith-sky colour index technique, which works under most weather conditions, the data availability can be extended. The observations suggest that PSC events, especially of type II (water PSCs) may indeed more common than predicted by synoptic models, which is expected because of the frequent presence of mountain-induced leewaves. However, it will be of importance to increase the density of independent observations.  相似文献   

13.
利用本文所建立的平流层下部臭氧异相光化学系统,研究硫酸气溶胶表面积浓度以及氯化物和氮氧化物的排放强度对系统状态的影响.光化系统由19种分别来自氧族、氢族、氮族、氯族和碳族的化学成分组成.研究结果指出,仅就气溶胶而言,它不是一个重要的决定光化系统行为的因子.然而,当它与奇氯ClOx或奇氮NOx的外源共同影响系统时,通过复杂的非线性光化学过程,它将使系统的行为发生重大变化.可以看到,在某些确定的参数范围内,系统存在多平衡态解,并构成一个“折叠"突变流型.  相似文献   

14.
Total ozone anomalies (deviation from the long-term mean) are created by anomalous circulation patterns. The dynamically produced ozone anomalies can be estimated from known circulation parameters in the layer between the tropopause and the middle stratosphere by means of statistics. Satellite observations of ozone anomalies can be compared with those expected from dynamics. Residual negative anomalies may be due to chemical ozone destruction. The statistics are derived from a 14 year data set of TOMS (Total Ozone Mapping Spectrometer January 1979-Dec. 1992) and corresponding 300 hPa geopotential (for the tropopause height) together with 30 hPa temperature (for stratospheric waves) at 60°N. The correlation coefficient for the linear multiple regression between total ozone (dependent variable) and the dynamical parameters (independent variables) is 0.88 for the zonal deviations in the winter of the Northern Hemisphere. Zonal means are also significantly dependent on circulation parameters, besides showing the known negative trend function of total ozone observed by TOMS. The significant linear trend for 60°N is 3 DU/year in the winter months taking into account the dependence on the dynamics between the tropopause region and the mid-stratosphere. The highest correlation coefficient for the monthly mean total ozone anomalies is reached in November with 0.94.  相似文献   

15.
The global distribution of total ozone is derived for the period April, May, June and July of 1969 from Nimbus-3 Infrared Interferometer Spectrometer (IRIS) experiment. Preliminary estimates of ozone amounts from Nimbus-4 IRIS for the same period of 1970 show similar results. The standard error of estimation of total ozone from both IRIS experiments is 6% with respect to Dobson Spectrophotometer measurements. A systematic variation in the ozone distribution from April to July in the tropical, middle and polar latitudes is observed indicating the changes in the lower stratospheric circulation.The total ozone measurements show a strong correlation with the upper tropospheric geopotential height in the extratropical latitudes. From this relationship total ozone is used as a quasi-stream function to deduce geostrophic winds at the 200 mb level over extratropical regions of the northern and southern hemispheres. These winds reveal the subtropical and polar jet streams over the globe.Allied research associates.  相似文献   

16.
冬季太阳11年周期活动对大气环流的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
刘毅  陆春晖 《地球物理学报》2010,53(6):1269-1277
利用气象场的再分析资料和太阳辐射活动资料,对太阳11年周期活动影响北半球冬季(11月~3月)大气环流的过程进行了统计分析和动力学诊断.根据赤道平流层纬向风准两年振荡(QBO)的东、西风状态对太阳活动效应进行了分类讨论,结果表明:东风态QBO时,太阳活动效应主要集中在赤道平流层中、高层和南半球平流层,强太阳活动时增强的紫外辐射加热了赤道地区的臭氧层,造成平流层低纬明显增温,同时加强了南半球的Brewer-Dobson(B-D)环流,引起南极高纬平流层温度增加;而北半球中高纬的环流主要受行星波的影响,太阳活动影响很小.西风态QBO时,太阳活动效应在北半球更为重要,初冬时强太阳活动除了加热赤道地区臭氧层外,还抑制了北半球的B-D环流,造成赤道平流层温度增加和纬向风梯度在垂直方向的变化,从而改变了对流层两支行星波波导的强度;冬末时在太阳活动调制下,行星波向极波导增强,B-D环流逐渐恢复,造成北半球极地平流层明显增温,同时伴随着赤道区域温度的下降.  相似文献   

17.
The local effects of the emission of a solid-fueled rocket on the stratospheric ozone concentration have been investigated by photochemical model calculations. A one-dimensional horizontal model has been applied which calculates the trace gas composition at a single atmospheric altitude spatially resolved around the exhaust plume. Different cases were tested for the emissions of the Space Shuttle concerning the composition of the exhaust and the effects of heterogeneous reactions on atmospheric background aerosol.The strongest depletion of ozone is achieved when a high amount of the emitted chlorine is Cl2. If it is purely HCl, the effect is smallest, though in this case the heterogeneous reactions show their largest influence. From the results it may be estimated whether ozone depletion caused by rocket launches can be detected by satellite instruments. It appears that the chance of coincidental detection of such an event is rather small.  相似文献   

18.
The information content of the 7-year BUV data set has been reexamined by a comparison with a fairly large set of ground Dobson and M-83 instruments. The satellite-ground intercomparison of total ozone was done under different types of ground observation techniques (observation code) and different instrument exposure (exposure code) and for various distances of the subsatellite point from the station. Because of the existing latitudinal gradient in total ozone, at a given station the bias ground-BUV tends to be smaller when the subsatellite point is at a latitude higher than the station's latitude. Knowing the total ozone gradient at a given station, the BUV total ozone has been corrected to account for the ozone gradient and the correlation was calculated with the corresponding ground observations. These correlations seem to offer no improvement when compared with the correlations between the ground ozone and the actual BUV ozone at distances of the subsatellite point from the station within 200 km from the station used in previous studies. The seasonal variation of the BUV-ground correlation reveals information on the noise level of the measurements and the geographical distribution of the percentage mean bias: (Ground-BUV)×100/(Ground) is discussed. Both on short and on longer time scales it appears that the BUV derived recommended total ozone data set is reasonably good and possible instrumental drifts are not large. The analysis includes an extension through April 1977 of the BUV and contour-derived total ozone trends byLondon andLing (1980). Over the northern hemisphere both data sets (contour and BUV) show comparable trends over middle and high latitudes which range from –3 D.U./year to –5 D.U./year during the 7-year period April 1970–April 1977. In the southern hemisphere, however, long-term variation in total ozone cannot be determined from ground observations alone. It is concluded that for unknown reasons during the 7-year period of study, total ozone has been decreasing over most of the globe. The negative growth rates at high latitudes of the northern hemisphere are highly significant.  相似文献   

19.
Based on radiative transfer calculations, it is studied whether polar stratospheric clouds (PSCs) can be detected by the new Global Ozone Monitoring Experiment (GOME) on board the second European Research Satellite (ERS-2) planned to be launched in 1995. It is proposed to identify PSC-covered areas by use of an indicator, the Normalized Radiance Difference (NRD), which relates the difference of two spectral radiances at 0.515 µm and 0.67 µm to one radiance measured in the centre of the oxygen A-band at 0.76 µm. Simulations are carried out for two solar zenith angles, =78.5° and =86.2°. They indicate that, in presence of PSCs and with increasing solar zenith angles above =80°, the NRD decrease to values clearly below those derived under conditions of a cloud-free stratosphere. Results for =86.2° show that the method is successful independent of existing tropospheric clouds, of different tropospheric aerosol loadings, and of surface albedos. Results for =78.5° illustrate that PSC detection under conditions of smaller solar zenith angles <80° needs additional information about tropospheric clouds.  相似文献   

20.
Observations of noctilucent clouds have revealed a surprising coupling between the winter stratosphere and the summer polar mesopause region. In spite of the great distance involved, this inter-hemispheric link has been suggested to be the principal reason for both the year-to-year variability and the hemispheric differences in the frequency of occurrence of these high-altitude clouds. In this study, we investigate the dynamical influence of the winter stratosphere on the summer mesosphere using simulations from the vertically extended version of the Canadian Middle Atmosphere Model (CMAM). We find that for both Northern and Southern Hemispheres, variability in the summer polar mesopause region from one year to another can be traced back to the planetary-wave flux entering the winter stratosphere. The teleconnection pattern is the same for both positive and negative wave-flux anomalies. Using a composite analysis to isolate the events, it is argued that the mechanism for inter-hemispheric coupling is a feedback between summer mesosphere gravity-wave drag (GWD) and zonal wind, which is induced by an anomaly in mesospheric cross-equatorial flow, the latter arising from the anomaly in winter hemisphere GWD induced by the anomaly in stratospheric conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号