首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 935 毫秒
1.
The earthquakes in the seismicity belt extending through Indonesia, New Guinea, Vanuatu and Fiji to the Tonga–Kermadec subduction zone recorded at the 65 portable broad-band stations deployed during the Skippy experiment from 1993–1996 provide good coverage of the lithosphere and mantle under the Australian continent, Coral Sea and Tasman Sea.
The variation in structure in the upper part of the mantle is characterized by deter-mining a suite of 1-D structures from stacked record sections utilizing clear P and S arrivals, prepared for all propagation paths lying within a 10° azimuth band. The azimuth of these bands is rotated by 20° steps with four parallel corridors for each azimuth. This gives 26 separate azimuthal corridors for which 15 independent 1-D seismic velocity structures have been derived, which show significant variation in P and S structure.
The set of 1-D structures is combined to produce a 3-D representation by projecting the velocity values along the ray path using a turning point approximation and stacking into 3-D cells (5° by 50 km in depth). Even though this procedure will tend to underestimate wave-speed perturbations, S -velocity deviations from the ak135 reference model exceed 6 per cent in the lithosphere.
In the uppermost mantle the results display complex features and very high S -wave speeds beneath the Precambrian shields with a significant low-velocity zone beneath. High velocities are also found towards the base of the transition zone, with high S -wave speeds beneath the continent and high P -wave speeds beneath the ocean. The wave-speed patterns agree well with independent surface wave studies and delay time tomography studies in the zones of common coverage.  相似文献   

2.
We present a new technique for the efficient measurement of the traveltimes of long period body wave phases. The technique is based on the fact that all arrivals of a particular seismic phase are remarkably similar in shape for a single event. This allows the application of cross-correlation techniques that are usually used in a regional context to measure precise global differential times. The analysis is enhanced by the inclusion of a clustering algorithm that automatically clusters waveforms by their degree of similarity. This allows the algorithm to discriminate against unusual or distorted waveforms and makes for an extremely efficient measurement technique.
This technique can be applied to any seismic phase that is observed over a reasonably large distance range. Here, we present the results of applying the algorithm to the long-period channels of all data archived at the IRIS DMC from 1976 to 2005 for the seismic phases S and P (from 23° to 100°) and SS and PP (from 50° to 170°). The resulting large data sets are inverted along with existing surface wave and updated differential traveltime measurements for new mantle models of S and P velocity. The resolution of the new model is enhanced, particularly, in the mid-mantle where SS and PP turn. We find that slow anomalies in the central Pacific and Africa extend from the core–mantle boundary to the upper mantle, but their direct connection to surface hotspots is beyond our resolution. Furthermore, we find that fast anomalies that are likely associated with subducting slabs disappear between 1700 and 2500 km, and thus are not continuous features from the upper to lower mantle despite our extensive coverage and high resolution of the mid-mantle.  相似文献   

3.
Broad-band power-law spectra of well-log data in Japan   总被引:3,自引:1,他引:3  
For the purpose of revealing the statistical characteristics of P -wave velocity, S -wave velocity and density in the uppermost part of the crust, we analysed well-log data obtained from five deep wells in different tectonic regions in Japan: three wells through the mainly sedimentary rocks in the Kanto plain and two wells in the Kuju volcano group in Kyushu Island. In the Kanto plain, the power spectral density of fractional fluctuation of P -wave velocity and that of density are proportional to a power of the spatial wavelength from a few metres to 100 m. where the power index (slope of the power spectral density at double logarithmic scale) is 1.1-1.3. At the Kuju volcano group, that of P - and S -wave velocity and density also obey a power law, with a power index of 1.3-1.6 for wavelengths from a few metres to few hundred metres. Correcting the effect of the moving box-car observation window which corresponds to the separation of two receivers of the logging tool, we find that the power-law characteristics hold for wavelengths down to a few tens of centimetres. The 1-D sections of the elastic inhomogeneities follow a kind of band-limited self-affine random process. Comparing the power spectral densities, we find smaller values of the power index in stable areas and larger values in tectonically active areas. The difference in the power index arises from long-wavelength components.  相似文献   

4.
Broad-band P - and S -waves from earthquakes in South America recorded at Californian network stations are analysed to image lateral variations of the D"-discontinuity beneath the Cocos plate. We apply two array processing methods to the data set: a simplified migration method to the P -wave data set and a double-array method to both the P - and S -wave data sets, allowing us to compare results from the two methods. The double-array method images a dipping reflector at a depth range from 2650 to 2700 km in the southern part of the study area. We observe a step-like topography of 100 km to a shallower reflector at about 2600 km depth to the north, as well as evidence for a second (deeper) reflector at a depth range from 2700 to 2750 km in the north. Results from the simplified migration agree well with those from the double-array method, similarly locating a large step in reflector depth in a similar location (about 2650 km depth in the south and about 2550 km in the north) as well as the additional deeper reflector at the depth of about 2750 km in the north. Waveform modelling of the reflected waves from both methods suggests a positive velocity contrast for S waves, but a negative velocity contrast for P waves for the upper reflector in agreement with predictions from mineral physical calculations for a post-perovskite phase transition. The data also show some evidence for the existence of another deeper reflector that could indicate a double intersection of the geotherm with the post-perovskite stability field, that is, the back-transformation of post-perovskite to perovskite close to the core–mantle boundary.  相似文献   

5.
Transverse isotropy of thinly layered media   总被引:1,自引:0,他引:1  
Summary. Three problems of seismic anisotropy in thinly layered media (TPM) are discussed: (1) A dependence is established for the character of the ray velocity of longitudinal low-frequency waves on the ratio of P - and S -wave velocities in thin layers. (2) Conditions are specified for cusps on SV -wave surfaces. Nomograms are suggested for quick estimation of these conditions. (3) A comparison is made between TPM anisotropy and other types of transversely isotropic media.  相似文献   

6.
We investigate large-amplitude phases arriving in the P -wave coda of broad-band seismograms from teleseisms recorded by the Gräfenberg array, the German Regional Seismic Network and the Global Seismic Network. The data set consists of all events m b≤ 5.6 from the Aleutian arc between 1977 and 1992. Earthquakes with large-amplitude coda waves correlate with the presence of oceanic crust in the source region. The amplitudes sometimes approach those of the P wave, much larger than predicted by theory. Modelling indicates that phases in the P -wave coda cannot be P -wave multiples beneath the source and receiver, or underside reflections, which precede PP , from upper-mantle discontinuities. Among the events, seismograms are very similar, where the arrival times of the unusual phases agree approximately with the predicted times of S -to- P conversions from the upper-mantle discontinuities under the source. Because the large-amplitude phases in the P -wave coda have little, if any, dependence on event depth and have predominantly an SV -wave radiation pattern towards the receiver, we suggest that they originate as SV and/or Rayleigh waves and are enhanced by lateral heterogeneity and multipathing from the subducting Aleutian slab.  相似文献   

7.
Seismic velocity structure of the San Francisco Bay region crust is derived using measurements of finite-frequency traveltimes. A total of 57 801 relative traveltimes are measured by cross-correlation over the frequency range 0.5–1.5 Hz. From these are derived 4862 'summary' traveltimes, which are used to derive 3-D P -wave velocity structure over a 341 × 140 km2 area from the surface to 25 km depth. The seismic tomography is based on sensitivity kernels calculated on a spherically symmetric reference model. Robust elements of the derived P -wave velocity structure are: a pronounced velocity contrast across the San Andreas fault in the south Bay region (west side faster); a moderate velocity contrast across the Hayward fault (west side faster); moderately low velocity crust around the Quien Sabe volcanic field and the Sacramento River delta; very low velocity crust around Lake Berryessa. These features are generally explicable with surface rock types being extrapolated to depth ∼10 km in the upper crust. Generally high mid-lower crust velocity and high inferred Poisson's ratio suggest a mafic lower crust.  相似文献   

8.
Summary. Combined analysis of P - and S -wave data from seismic refraction lines in Jordan has led to the derivation of a Poisson's ratio model for the crust. This model shows that the upper crust, including the sediments, has an average Poisson's ratio of around 0.25, except beneath NW Jordan where the sediments have a high ratio of around 0.32. However, the lower crust below about 20 km depth has high Poisson's ratios ranging from 0.29 to 0.32. These high Poisson's ratios may be interpreted mineralogically in terms of high feldspar and low quartz content in the rocks (e.g. gneiss, amphibolite) of the lower crust or fluid phases in the form of separated penny-shaped inclusions.  相似文献   

9.
A crustal seismic velocity model for the UK, Ireland and surrounding seas   总被引:1,自引:0,他引:1  
A regional model of the 3-D variation in seismic P -wave velocity structure in the crust of NW Europe has been compiled from wide-angle reflection/refraction profiles. Along each 2-D profile a velocity–depth function has been digitised at 5 km intervals. These 1-D velocity functions were mapped into three dimensions using ordinary kriging with weights determined to minimise the difference between digitised and interpolated values. An analysis of variograms of the digitised data suggested a radial isotropic weighting scheme was most appropriate. Horizontal dimensions of the model cells are optimised at 40 × 40 km and the vertical dimension at 1 km. The resulting model provides a higher resolution image of the 3-D variation in seismic velocity structure of the UK, Ireland and surrounding areas than existing models. The construction of the model through kriging allows the uncertainty in the velocity structure to be assessed. This uncertainty indicates the high density of data required to confidently interpolate the crustal velocity structure, and shows that for this region the velocity is poorly constrained for large areas away from the input data.  相似文献   

10.
We propose a vertical array analysis method that decomposes complex seismograms into body and surface wave time histories by using a velocity structure at the vertical array site. We assume that the vertical array records are the sum of vertically incident plane P and S waves, and laterally incident Love and Rayleigh waves. Each phase at the surface is related to that at a certain depth by the transfer function in the frequency domain; the transfer function is obtained by Haskell's matrix method, assuming a 1-D velocity structure. Decomposed P , S and surface waves at the surface are estimated from the vertical array records and the transfer functions by using a least-squares method in the frequency domain; their time histories are obtained by the inverse Fourier transform. We carried out numerical tests of this method based on synthetic vertical array records consisting of vertically incident plane P and S waves and laterally incident plane Love and Rayleigh waves. Perfect results of the decomposed P , S , Love and Rayleigh waves were obtained for synthetic records without noise. A test of the synthetic records in which a small amount of white noise was added yielded a reasonable result for the decomposed P , S and surface waves. We applied this method to real vertical array records from the Ashigara valley, a moderate-sized sedimentary valley. The array records from two earthquakes occurring at depths of 123 and 148 km near the array (epicentral distance of about 31 km) exhibited long-duration later phases. The analysis showed that duration of the decomposed S waves was a few seconds and that the decomposed surface waves appeared a few seconds after the direct S -wave arrival and had very long duration. This result indicated that the long-duration later phases were generated not by multireflected S waves, but by basin-induced surface waves.  相似文献   

11.
A numerical method is presented for calculating complete theoretical seismograms, under the assumption that the earth models have velocity, density and attenuation profiles which are arbitrary piece-wise continuous functions of depth only. Solutions for the stress-displacement vectors in the medium are expanded in terms of orthogonal cylindrical functions. Our method for solving the resulting two-point boundary value problems differs from that of other investigators in three ways. First, collocation is used in traditionally troublesome situations, e.g. for highly evanescent waves, at turning points, and in regions having large gradient in material properties. Second, in some situations (high frequencies and small gradients) P and S -waves decouple and we use a different solution method for each wave type, instead of trying to force a single method to find all solutions. For example, above the P - and S -waves turning points an approximate fundamental matrix may be used for each wave type. At the P -wave turning point, the fundamental matrix may be used for the S -wave components but collocation is used for the P -wave. Between the P - and S -wave turning points collocation is used for the evanescent P -wave and the fundamental matrix is used for the S -wave. At the S -wave turning point and below, collocation is used for both. Third, the computational algorithm chooses the appropriate solution method and depth domain upon which it is employed based upon a specified error tolerance and the known inaccuracies of the various approximations employed. Once solutions of the boundary value problems are obtained, a Fourier—Bessel transform is then applied to get back into the space-time domain.  相似文献   

12.
Seismic imaging of the laterally varying D" region beneath the Cocos Plate   总被引:1,自引:0,他引:1  
We use an axisymmetric, spherical Earth finite difference algorithm to model SH -wave propagation through cross-sections of laterally varying lower mantle models beneath the Cocos Plate derived from recent data analyses. Synthetic seismograms with dominant periods as short as 4 s are computed for several models: (1) a D" reflector 264 km above the core–mantle boundary with laterally varying S -wave velocity increases of 0.9–2.6 per cent, based on localized structures from a 1-D double-array stacking method; (2) an undulating D" reflector with large topography and uniform velocity increase obtained using a 3-D migration method and (3) cross-sections through the 3-D mantle S -wave velocity tomography model TXBW. We apply double-array stacking to assess model predictions of data. Of the models explored, the S -wave tomography model TXBW displays the best overall agreement with data. The undulating reflector produces a double Scd arrival that may be useful in future studies for distinguishing between D" volumetric heterogeneity and D" discontinuity topography. Synthetics for the laterally varying models show waveform variability not observed in 1-D model predictions. It is challenging to predict 3-D structure based on localized 1-D models when lateral structural variations are on the order of a few wavelengths of the energy used, particularly for the grazing geometry of our data. Iterative approaches of computing synthetic seismograms and adjusting model characteristics by considering path integral effects are necessary to accurately model fine-scale D" structure.  相似文献   

13.
We describe a waveform modelling technique and demonstrate its application to determine the crust- and upper-mantle velocity structure beneath Africa. Our technique uses a parallelized reflectivity method to compute synthetic seismograms and fits the observed waveforms by a global optimization technique based on a Very Fast Simulated Annealing (VFSA). We match the S , Sp, SsPmP and shear-coupled PL phases in seismograms of deep (200–800 km), moderate-to-large magnitude (5.5–7.0) earthquakes recorded teleseismically at permanent broad-band seismic stations in Africa. Using our technique we produce P - and S -wave velocity models of crust and upper mantle beneath Africa. Additionally, our use of the shear-coupled PL phase, wherever observed, improves the constraints for lower crust- and upper-mantle velocity structure beneath the corresponding seismic stations. Our technique retains the advantages of receiver function methods, uses a different part of the seismogram, is sensitive to both P - and S -wave velocities directly, and obtains helpful constraints in model parameters in the vicinity of the Moho. The resulting range of crustal thicknesses beneath Africa (21–46 km) indicates that the crust is thicker in south Africa, thinner in east Africa and intermediate in north and west Africa. Crustal P - (4.7–8 km s−1) and S -wave velocities (2.5–4.7  km s−1) obtained in this study show that in some parts of the models, these are slower in east Africa and faster in north, west and south Africa. Anomalous crustal low-velocity zones are also observed in the models for seismic stations in the cratonic regions of north, west and south Africa. Overall, the results of our study are consistent with earlier models and regional tectonics of Africa.  相似文献   

14.
Summary. Bulletins of the International Seismological Centre (ISC) show very large residuals, up to 15 s early, for arrivals from events in the Tonga–Kermadec subduction zone to the New Zealand network of seismometers. The very early arrivals are confined to events south of about 22°S, and shallower than about 350 km. The waveforms show two distinct phases: an early, emergent, first phase with energy in the high-frequency band 2–10 Hz, and a distinct second phase, containing lower frequency energy, arriving at about the time predicted by JB tables.
The residuals are attributed to propagation through the cold, subducted lithosphere, which has a seismic velocity 5 per cent faster, on average, than normal. Ray tracing shows that the ray paths lie very close to the slab for events south of 22°S, but pass well beneath the slab for events further north, corresponding to the change in residual pattern. This characteristic of the ray paths is due to the curved shape of the seismic zone, and in particular to the bend in the zone where the Louisville ridge intersects the trench at 25°S.
The residuals can only be explained if the high velocity anomaly extends to a depth of 450 km in the region of the gap in deep seismicity from 32 to 36°S. The very high-frequency character of the first phase requires the path from the bottom of the slab to the stations to be of high Q , and to transmit 2–10 Hz energy with little attenuation.
The absence of low-frequency energy in the first phase is due to the narrowness of the high-velocity slab, which transmits only short-wavelength waves. The second phase, which contains low frequencies, is identified as a P -wave travelling beneath the subducted slab in normal mantle. There is no need to invoke any special structures, such as low-velocity waveguides or reflectors, to explain any of the observations. The S -wave arrivals show similar effects.  相似文献   

15.
Summary. Group velocities for first and second higher mode Rayleigh waves, in the frequency range 0.8–4.8 Hz, generated from a local earthquake of magnitude 3.7 M L in western Scotland, are measured at stations along the 1974 LISPB line. These provide detailed information about the crustal structure west of the line. The data divide the region into seven apparently homogeneous provinces. Averaged higher mode velocity dispersion curves for each province are analysed simultaneously using a linearized inversion technique, yielding regionalized shear velocity profiles down to a depth of 17 km into the upper crust. Shear wave velocity is between 3.0 and 3.4 km s−1 in the upper 2 km, with a slow increase to around 3.8 km s−1. P -wave models computed using these results agree with profiles from the LISPB and LUST refraction experiments.  相似文献   

16.
First-arrival waveforms remain underutilized in crustal refraction–reflection seismology by mostly reducing them to traveltime picks. However, as in earthquake seismology, the waveforms also contain important information about shallow near-receiver structures. We illustrate the use of three-component waveform analysis on the records from the ACCRETE wide-angle data set (SE Alaska and British Columbia; 1994), apply the Receiver Function (RF) methodology to the codas of P -wave arrivals, and draw two important conclusions. First, the P -wave polarization azimuths are found to be controlled by the near-receiver structures and virtually unrelated to the source–receiver backazimuths, from which they deviate by up to ∼40°. This observation might be important for studies of anisotropy and also for earthquake RF studies. Second, after correcting for the polarization azimuths, clear P / S mode conversions are reliably detected within 80–400 ms following the primary arrivals. The conversions are interpreted as originating at the base of the sedimentary cover of the fjord channel. In most cases, imaging of the basement requires only several records; however, notable exceptions are also found and interpreted as caused by multipathing, localized scattering, and onsets of crustal and Moho reflections. The ACCRETE example shows that RF methodology could be useful for constraining sediment thickness and deriving P - and S -wave receiver statics in land refraction surveys where collocated reflection profiles are not available. In addition, RFs from repeatable controlled sources could be useful for testing and calibration of RF techniques.  相似文献   

17.
A method to determine physical source parameter using free oscillation data is presented. It is assumed that the geometry of the source is known, e.g. from P -wave data. The source is assumed to propagate in the horizontal direction, while unknown parameters to be determined are the azimuth and velocity of propagation, the distance over which the seismic source propagated and the source intensity as a function of propagation distance.
The method consists in the systematic search for the set of source parameters rendering phase corrections which maximize the spectral peak amplitudes within the excitation criterion scheme.
If there is no precursive motion, the average dislocation time function can be determined from the spectrum of the seismic moment and the space source intensity. The source intensity as a function of instantaneous source location is found independently of the P -wave origin time and source dislocation time function. The method does not require to correct the data for attenuation.  相似文献   

18.
We investigate the sensitivity of finite-frequency body-wave observables to mantle anisotropy based upon kernels calculated by combining adjoint methods and spectral-element modelling of seismic wave propagation. Anisotropy is described by 21 density-normalized elastic parameters naturally involved in asymptotic wave propagation in weakly anisotropic media. In a 1-D reference model, body-wave sensitivity to anisotropy is characterized by 'banana–doughnut' kernels which exhibit large, path-dependent variations and even sign changes. P -wave traveltimes appear much more sensitive to certain azimuthally anisotropic parameters than to the usual isotropic parameters, suggesting that isotropic P -wave tomography could be significantly biased by coherent anisotropic structures, such as slabs. Because of shear-wave splitting, the common cross-correlation traveltime anomaly is not an appropriate observable for S waves propagating in anisotropic media. We propose two new observables for shear waves. The first observable is a generalized cross-correlation traveltime anomaly, and the second a generalized 'splitting intensity'. Like P waves, S waves analysed based upon these observables are generally sensitive to a large number of the 21 anisotropic parameters and show significant path-dependent variations. The specific path-geometry of SKS waves results in favourable properties for imaging based upon the splitting intensity, because it is sensitive to a smaller number of anisotropic parameters, and the region which is sampled is mainly limited to the upper mantle beneath the receiver.  相似文献   

19.
Summary. Two localized regions of velocity heterogeneity in the lower mantle with scale lengths of 1000–2000 km and 2 per cent velocity contrasts are detected and isolated through comparison of S, ScS, P and PcP travel times and amplitudes from deep earthquakes in Peru, Bolivia, Argentina and the Sea of Okhotsk. Comparison of the relative patterns of ScS-S differential travel times and S travel-time residuals across North American WWSSN and CSN stations for the different source regions provides baselines for interpreting which phases have anomalous times. A region of low S and P velocities is located beneath Northern Brazil and Venezuela at depths of 1700–2700 km. This region produces S -wave delays of up to 4 s for signals from deep Argentine events recorded at eastern North American stations. The localized nature of the anomaly is indicated by the narrow bounds in azimuth (15°) and take-off angle (13°) of the arrivals affected by it. The long period S -waves encountering this anomaly generally show 30–100 per cent amplitude enhancement, while the short-period amplitudes show no obvious effect. The second anomaly is a high-velocity region beneath the Caribbean originally detected by Jordan and Lynn, who used travel times from deep Peruvian events. The data from Argentine and Bolivian events presented here constrain the location of the anomaly quite well, and indicate a possible short- and long-period S -wave amplitude diminution associated with it. When the travel-time data are corrected for the estimated effects of these two anomalies, a systematic regional variation in ScS-S station residuals is apparent between stations east of and west of the Rocky Mountains. One possible explanation of this is a long wavelength lateral variation in the shear velocity structure of the lower mantle at depths greater than 2000 km beneath North America.  相似文献   

20.
A seismic-array study of the continental crust and upper mantle in the Ivrea-Yerbano and Strona-Ceneri zones (northwestern Italy) is presented. A short-period network is used to define crustal P - and S -wave velocity models from earthquakes. The analysis of the seismic-refraction profile LOND of the CROP-ECORS project provided independent information and control on the array-data interpretation.
Apparent-velocity measurements from both local and regional earthquakes, and time-term analysis are used to estimate the velocity in the lower crust and in the upper mantle. The geometry of the upper-lower crust and Moho boundaries is determined from the station delay times.
We have obtained a three-layer crustal seismic model. The P -wave velocity in the upper crust, lower crust and upper mantle is 6.1±0.2 km s−1, 6.5±0.3 km s−1 and 7.8±0.3 km s−1 respectively. Pronounced low-velocity zones in the upper and lower crust are not observed. A clear change in the velocity structure between the upper and lower crust is documented, constraining the petrological interpretation of the Ivrea-type reflective lower continental crust derived from small-scale petrophysical data. Moreover, we found a V P/ V S ratio of 1.69±0.04 for the upper crust and 1.82±0.08 for the lower crust and upper mantle. This is consistent with the structural and petrophysical differences between a compositionally uniform and seismically transparent upper crust and a layered and reflective lower crust. The thickness of the lower crust ranges from about 8 km in front of the Ivrea body (ARVO, Arvonio station) in the northern part of the array to a maximum of about 15 km in the southern part of the array. The lower crust reaches a minimum depth of 5 km below the PROV (Provola) station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号