首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many popular groundwater modeling codes are based on the finite differences or finite volume method for orthogonal grids. In cases of complex subsurface geometries this type of grid either leads to coarse geometric representations or to extremely fine meshes. We use a coordinate transformation method (CTM) to circumvent this shortcoming. In computational fluid dynamics (CFD), this method has been applied successfully to the general Navier–Stokes equation. The method is based on tensor analysis and performs a transformation of a curvilinear into a rectangular unit grid, on which a modified formulation of the differential equations is applied. Therefore, it is not necessary to reformulate the code in total. We applied the CTM to an existing three-dimensional code (SHEMAT), a simulator for heat conduction and advection in porous media. The finite volume discretization scheme for the non-orthogonal, structured, hexahedral grid leads to a 19-point stencil and a correspondingly banded system matrix. The implementation is straightforward and it is possible to use some existing routines without modification. The accuracy of the modified code is demonstrated for single phase flow on a two-dimensional analytical solution for flow and heat transport. Additionally, a simple case of potential flow is shown for a two-dimensional grid which is increasingly deformed. The result reveals that the corresponding error increases only slightly. Finally, a thermal free-convection benchmark is discussed. The result shows, that the solution obtained with the new code is in good agreement with the ones obtained by other codes.  相似文献   

2.
IINTRODUCTIONNumericalmethodsasatooltosimulateflowsandpollutanttransportareincreasinglyimportantinhydraulicandenvironmentalengineering.AveryusefulapplicationofthenumericalmethodologyinengineeringproblemswouldbetosolvethesystemofZDdepth-integratedshallowwaterequations.ManysolutionsofthegoverningequationsarederivedusingtraditionalfinitedifferencemethodonCartesianregulargrids.ThedisadvantageofthismethodseemstobetheinflexibilityofCartesiangridstocomplywithirregularorcurvedperimeterswhichsur…  相似文献   

3.
The GeoClaw software for depth-averaged flows with adaptive refinement   总被引:3,自引:0,他引:3  
Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems of this nature, consisting of open source Fortran programs together with Python tools for the user interface and flow visualization. This software uses high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude-longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incorporates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems. Examples are given illustrating its use for modeling tsunamis and dam-break flooding problems. Documentation and download information is available at www.clawpack.org/geoclaw.  相似文献   

4.
When applying the conventional Fourier pseudospectral method (FSM) on a Cartesian grid that has a sufficient size to propagate a pulse, spurious diffractions from the staircase representation of the curved interfaces appear in the wavefield. It is demonstrated that these non-physical diffractions can be eliminated by using curved grids that conform to all the interfaces of the subsurface. Methods for solving the 2D acoustic wave equation using such curved grids have been published previously by the authors. Here the extensions to the full 2D elastic wave equations are presented. The curved grids are generated by using the so-called multiblock strategy which is a well-known concept in computational fluid dynamics. In principle the sub-surface is divided into a number of contiguous subdomains. A separate grid is generated for each subdomain patching the grid lines across domain boundaries to obtain a globally continuous grid. Using this approach, even configurations with pinch outs can be handled. The curved grid is taken to constitute a generalized curvilinear coordinate system. Thus, the elastic equations have to be written in a curvilinear frame before applying the numerical scheme. The method implies that twice the number of spatial derivatives have to be evaluated compared to the conventional FSM on a Cartesian grid. However, it is demonstrated that the extra terms are more than compensated for by the fewer grid points needed in the curved approach.  相似文献   

5.
Romero DM  Silver SE 《Ground water》2006,44(6):797-802
The ground water flow model MODFLOW inherently implements a nongeneralized integrated finite-difference (IFD) numerical scheme. The IFD numerical scheme allows for construction of finite-difference model grids with curvilinear (piecewise linear) rows. The resulting grid comprises model cells in the shape of trapezoids and is distorted in comparison to a traditional MODFLOW finite-difference grid. A version of MODFLOW-88 (herein referred to as MODFLOW IFD) with the code adapted to make the one-dimensional DELR and DELC arrays two dimensional, so that equivalent conductance between distorted grid cells can be calculated, is described. MODFLOW IFD is used to inspect the sensitivity of the numerical head and velocity solutions to the level of distortion in trapezoidal grid cells within a converging radial flow domain. A test problem designed for the analysis implements a grid oriented such that flow is parallel to columns with converging widths. The sensitivity analysis demonstrates MODFLOW IFD's capacity to numerically derive a head solution and resulting intercell volumetric flow when the internal calculation of equivalent conductance accounts for the distortion of the grid cells. The sensitivity of the velocity solution to grid cell distortion indicates criteria for distorted grid design. In the radial flow test problem described, the numerical head solution is not sensitive to grid cell distortion. The accuracy of the velocity solution is sensitive to cell distortion with error <1% if the angle between the nonparallel sides of trapezoidal cells is <12.5 degrees. The error of the velocity solution is related to the degree to which the spatial discretization of a curve is approximated with piecewise linear segments. Curvilinear finite-difference grid construction adds versatility to spatial discretization of the flow domain. MODFLOW-88's inherent IFD numerical scheme and the test problem results imply that more recent versions of MODFLOW 2000, with minor modifications, have the potential to make use of a curvilinear grid.  相似文献   

6.
We propose an improvement of the overland‐flow parameterization in a distributed hydrological model, which uses a constant horizontal grid resolution and employs the kinematic wave approximation for both hillslope and river channel flow. The standard parameterization lacks any channel flow characteristics for rivers, which results in reduced river flow velocities for streams narrower than the horizontal grid resolution. Moreover, the surface areas, through which these wider model rivers may exchange water with the subsurface, are larger than the real river channels potentially leading to unrealistic vertical flows. We propose an approximation of the subscale channel flow by scaling Manning's roughness in the kinematic wave formulation via a relationship between river width and grid cell size, following a simplified version of the Barré de Saint‐Venant equations (Manning–Strickler equations). The too large exchange areas between model rivers and the subsurface are compensated by a grid resolution‐dependent scaling of the infiltration/exfiltration rate across river beds. We test both scaling approaches in the integrated hydrological model ParFlow. An empirical relation is used for estimating the true river width from the mean annual discharge. Our simulations show that the scaling of the roughness coefficient and the hydraulic conductivity effectively corrects overland flow velocities calculated on the coarse grid leading to a better representation of flood waves in the river channels.  相似文献   

7.
Finite difference methods have been widely employed in solving the eikonal equation so as to calculate traveltime of seismic phase. Most previous studies used regular orthogonal grid. However, much denser grid is required to sample the interfaces that are undulating in depth direction, such as the Moho and the 660 km discontinuity.Here we propose a new finite difference algorithm to solve the eikonal equation on non-orthogonal grid(irregular grid).To demonstrate its efficiency and accuracy, a test was conducted with a two-layer model. The test result suggests that the similar accuracy of a regular grid with ten times grids could achieve with our new algorithm, but the time cost is only about 0.1 times. A spherical earth model with an undulant660 km discontinuity was constructed to demonstrate the potential application of our new method. In that case, the traveltime curve fluctuation corresponds to topography. Our new algorithm is efficient in solving the first arrival times of waves associated with undulant interfaces.  相似文献   

8.
Three-dimensional grids representing a heterogeneous, ground water system are generated at 10 different resolutions in support of a site-scale flow and transport modeling effort. These grids represent hydrostratigraphy near Yucca Mountain, Nevada, consisting of 18 stratigraphic units with contrasting fluid flow and transport properties. The grid generation method allows the stratigraphy to be modeled by numerical grids of different resolution so that comparison studies can be performed to test for grid quality and determine the resolution required to resolve geologic structure and physical processes such as fluid flow and solute transport. The process of generating numerical grids with appropriate property distributions from geologic conceptual models is automated, thus making the entire process easy to implement with fewer user-induced errors. The series of grids of various resolutions are used to assess the level at which increasing resolution no longer influences the flow and solute transport results. Grid resolution is found to be a critical issue for ground water flow and solute transport. The resolution required in a particular instance is a function of the feature size of the model, the intrinsic properties of materials, the specific physics of the problem, and boundary conditions. The asymptotic nature of results related to flow and transport indicate that for a hydrologic model of the heterogeneous hydrostratigraphy under Yucca Mountain, a horizontal grid spacing of 600 m and vertical grid spacing of 40 m resolve the hydrostratigraphic model with sufficient precision to accurately model the hypothetical flow and solute transport to within 5% of the value that would be obtained with much higher resolution.  相似文献   

9.
A numerical model is presented that compute the geometrical dimensions and movement of downstream migrating antidunes. The model solves the Navier–Stokes equations together with the k‐epsilon turbulence model to find the water flow field over the bedforms. A two‐dimensional width‐averaged grid is used. The bed elevation changes are computed by solving the convection–diffusion equation for suspended sediments and bedload, together with the Engelund–Hansen sediment transport formula. The free surface is computed with an algorithm based on water continuity in the surface cells. Non‐orthogonal adaptive grids were used, moving vertically with the computed location of the bed and the free water surface. The numerical model was tested on data from a physical model study where regular downstream migrating antidunes had been observed. The numerical model started out with a flat bed and the trains of antidunes formed over time. Many of the physical processes observed in earlier studies were replicated by the numerical model. Four dune parameters were computed in the current tests: The antidune wavelength, height and celerity, together with the average water depth. The antidune wavelengths were best predicted with an accuracy of 3 to 8% compared with the measurements. The antidune heights were computed with a deviation of 11 to 25% compared with an empirical formula. The water depths over the antidunes were predicted with an accuracy of 3 to 9% related to the measured values. The average antidune celerity was the parameter with largest deviation: For the coarsest grid it was overpredicted with 37%. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
A depth-averaged 2-D numerical model for unsteady flow, salinity and cohesive sediment transport in estuaries is established using the finite volume method on the non-staggered, curvilinear grid. The convection terms are discretized by upwind schemes, the diffusion terms are by the central difference scheme, and the time derivative terms are by the three-time-level implicit scheme. The coupling of flow velocity and water level in the 2-D shallow water equations is achieved by the SIMPLEC algorithm with the Rhie and Chow's momentum interpolation method. The sediment model calculates the settling, deposition, erosion and transport of cohesive sediment, taking into account the influence of sediment size, sediment concentration, salinity and turbulence intensity on the flocculation of cohesive sediment. The flow model is first tested against the measurement data in the Tokyo Bay and San Francisco Bay, showing good agreements. And then, the entire model of flow, salinity and sediment transport is verified in the Gironde Estuary. The water elevation, flow velocity, salinity and sediment concentration are well predicted.  相似文献   

11.
The Fourier pseudospectral method has been widely accepted for seismic forward modelling because of its high accuracy compared to other numerical techniques. Conventionally, the modelling is performed on Cartesian grids. This means that curved interfaces are represented in a ‘staircase fashion‘causing spurious diffractions. It is the aim of this work to eliminate these non-physical diffractions by using curved grids that generally follow the interfaces. A further advantage of using curved grids is that the local grid density can be adjusted according to the velocity of the individual layers, i.e. the overall grid density is not restricted by the lowest velocity in the subsurface. This means that considerable savings in computer storage can be obtained and thus larger computational models can be handled. One of the major problems in using the curved grid approach has been the generation of a suitable grid that fits all the interfaces. However, as a new approach, we adopt techniques originally developed for computational fluid dynamics (CFD) applications. This allows us to put the curved grid technique into a general framework, enabling the grid to follow all interfaces. In principle, a separate grid is generated for each geological layer, patching the grid lines across the interfaces to obtain a globally continuous grid (the so-called multiblock strategy). The curved grid is taken to constitute a generalised curvilinear coordinate system, where each grid line corresponds to a constant value of one of the curvilinear coordinates. That means that the forward modelling equations have to be written in curvilinear coordinates, resulting in additional terms in the equations. However, the subsurface geometry is much simpler in the curvilinear space. The advantages of the curved grid technique are demonstrated for the 2D acoustic wave equation. This includes a verification of the method against an analytic reference solution for wedge diffraction and a comparison with the pseudospectral method on Cartesian grids. The results demonstrate that high accuracies are obtained with few grid points and without extra computational costs as compared with Cartesian methods.  相似文献   

12.
We develop an efficient and versatile numerical model for carrying out high-resolution simulations of turbulent flows in natural meandering streams with arbitrarily complex bathymetry. The numerical model solves the 3D, unsteady, incompressible Navier-Stokes and continuity equations in generalized curvilinear coordinates. The method can handle the arbitrary geometrical complexity of natural streams using the sharp-interface curvilinear immersed boundary (CURVIB) method of Ge and Sotiropoulos (2007) [1]. The governing equations are discretized with three-point, central, second-order accurate finite-difference formulas and integrated in time using an efficient, second-order accurate fractional step method. To enable efficient simulations on grids with tens of millions of grid nodes in long and shallow domains typical of natural streams, the algebraic multigrid (AMG) method is used to solve the Poisson equation for the pressure coupled with a matrix-free Krylov solver for the momentum equations. Depending on the desired level of resolution and available computational resources, the numerical model can either simulate, via direct numerical simulation (DNS), large-eddy simulation (LES), or unsteady Reynolds-averaged Navier-Stokes (URANS) modeling. The potential of the model as a powerful tool for simulating energetic coherent structures in turbulent flows in natural river reaches is demonstrated by applying it to carry out LES and URANS in a 50-m long natural meandering stream at resolution sufficiently fine to capture vortex shedding from centimeter-scale roughness elements on the bed. The accuracy of the simulations is demonstrated by comparisons with experimental data and the relative performance of the LES and URANS models is also discussed.  相似文献   

13.
This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497–511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, “cage-shell” interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size—a coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.  相似文献   

14.
Prediction of elastic full wavefields is required for reverse time migration, full waveform inversion, borehole seismology, seismic modelling, etc. We propose a novel algorithm to solve the Navier wave equation, which is based on multi‐block methodology for high‐order finite‐difference schemes on curvilinear grids. In the current implementation, the blocks are subhorizontal layers. Smooth anisotropic heterogeneous media in each layer can have strong discontinuities at the interfaces. A curvilinear adaptive hexahedral grid in blocks is generated by mapping the original 3D physical domain onto a parametric cube with horizontal layers and interfaces. These interfaces correspond to the main curvilinear physical contrast interfaces of a subhorizontally layered formation. The top boundary of the parametric cube handles the land surface with smooth topography. Free‐surface and solid–solid transmission boundary conditions at interfaces are approximated with the second‐order accuracy. Smooth media in the layers are approximated up to sixth‐order spatial schemes. All expected properties of the developed algorithm are demonstrated in numerical tests using corresponding parallel message passing interface code.  相似文献   

15.
A multilayer lattice Boltzmann (LB) model is introduced to solve three-dimensional wind-driven shallow water flow problems. The multilayer LB model avoids the expensive Navier–Stokes equations and obtains stratified horizontal flow velocities as vertical velocities are relatively small and the flow is still within the shallow water regime. A single relaxation time BGK method is used to solve each layer coupled by the vertical viscosity forcing term. To increase solution stability, an implicit step is suggested to obtain flow velocities. The main advantage of using the LBM is that after selecting appropriate equilibrium distribution functions, the LB algorithm is only slightly modified for each layer and retains all the simplicities of the LBM within the high performance computing (HPC) environment. The performance of the parallel LB model for the multilayer shallow water equations is investigated on CPU-based HPC environments using OpenMP. We found that the explicit loop control with cache optimization in LBM gives better performance on execution time, speedup and efficiency than the implicit loop control as the number of processors increases. Numerical examples are presented to verify the multilayer LB model against analytical solutions. We demonstrate the model’s capability of calculating lateral and vertical distributions of velocities for wind-driven circulation over non-uniform bathymetry.  相似文献   

16.
Kanarska  Y.  Maderich  V. 《Ocean Dynamics》2003,53(3):176-185
A three-dimensional non-hydrostatic numerical model for simulation of the free-surface stratified flows is presented. The model is a non-hydrostatic extension of free-surface primitive equation model with a general vertical coordinate and horizontal orthogonal curvilinear coordinates. The model equations are integrated with mode-splitting technique and decomposition of pressure and velocity fields on hydrostatic and non-hydrostatic components. The model was tested against laboratory experiments on the steep wave transformation over the longshore bar, solitary wave impact on the vertical wall, the collapse of the mixed region in the thin pycnocline, mixing in the lock-exchange flows and water exchange through the sea strait. The agreement is generally fair.Responsible Editor: Hans Burchard  相似文献   

17.
A Stable and Efficient Numerical Algorithm for Unconfined Aquifer Analysis   总被引:2,自引:0,他引:2  
The nonlinearity of equations governing flow in unconfined aquifers poses challenges for numerical models, particularly in field-scale applications. Existing methods are often unstable, do not converge, or require extremely fine grids and small time steps. Standard modeling procedures such as automated model calibration and Monte Carlo uncertainty analysis typically require thousands of model runs. Stable and efficient model performance is essential to these analyses. We propose a new method that offers improvements in stability and efficiency and is relatively tolerant of coarse grids. It applies a strategy similar to that in the MODFLOW code to the solution of Richard's equation with a grid-dependent pressure/saturation relationship. The method imposes a contrast between horizontal and vertical permeability in gridblocks containing the water table, does not require "dry" cells to convert to inactive cells, and allows recharge to flow through relatively dry cells to the water table. We establish the accuracy of the method by comparison to an analytical solution for radial flow to a well in an unconfined aquifer with delayed yield. Using a suite of test problems, we demonstrate the efficiencies gained in speed and accuracy over two-phase simulations, and improved stability when compared to MODFLOW. The advantages for applications to transient unconfined aquifer analysis are clearly demonstrated by our examples. We also demonstrate applicability to mixed vadose zone/saturated zone applications, including transport, and find that the method shows great promise for these types of problem as well.  相似文献   

18.
A 3D non-hydrostatic model is developed to compute internal waves. A novel grid arrangement is incorporated in the model. This not only ensures the homogenous Dirichlet boundary condition for the non-hydrostatic pressure can be precisely and easily imposed but also renders the model relatively simple in its discretized form. The Perot scheme is employed to discretize horizontal advection terms in the horizontal momentum equations, which is based on staggered grids and has the conservative property. Based on previous water wave models, the main works of the present paper are to (1) utilize a semi-implicit, fractional step algorithm to solve the Navier-Stokes equations (NSE); (2) develop a second-order flux-limiter method satisfying the max–min property; (3) incorporate a density equation, which is solved by a high-resolution finite volume method ensuring mass conservation and max–min property based on a vertical boundary-fitted coordinate system; and (4) validate the developed model by using four tests including two internal seiche waves, lock-exchange flow, and internal solitary wave breaking. Comparisons of numerical results with analytical solutions or experimental data or other model results show reasonably good agreement, demonstrating the model’s capability to resolve internal waves relating to complex non-hydrostatic phenomena.  相似文献   

19.
Lattice Boltzmann simulations of the transient shallow water flows   总被引:1,自引:0,他引:1  
A two-dimensional lattice Boltzmann model (LBM) is presented for transient shallow water flows. The model is based on the shallow water equations coupled with the large eddy simulation model. In order to obtain accurate results efficiently, a multi-block lattice scheme is applied at the area where a local finer grid is needed for strong change in physical variables. The model is verified by applying to five cases with transient processes: (a) a tidal wave over steps; (b) a perturbation over a submerged hump; (c) partial dam break flow; (d) circular dam break flow; (e) interaction between a dam break surge and four square cylinders. The objectives of this study are to validate the two-dimensional LBM in transient flow simulation and provide the detailed transient processes in shallow water flows.  相似文献   

20.
This paper evaluates the effects of using data observed on regular nested grids on the parameter estimates of a two-parameter Gompertz diffusion model. This new spatial diffusion process represents a technically more complex stage of Gompertz modeling. Firstly, the diffusion model is introduced through an appropriate transformation of a two-parameter Gaussian diffusion process. Probabilistic characteristics of this model, such as the transition densities and the trend functions, are obtained. Secondly, statistical estimation is considered using data obtained on a regular or irregular grid; the explicit expression of the likelihood equations and the parameter estimators are given for regular grids. Finally, a simulation experiment illustrates the results of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号