首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
层积云覆盖的海洋边界层云详细微物理过程的数值模拟   总被引:1,自引:0,他引:1  
文中建立了一个含显式分档的云微物理模式和辐射传输模式的一维 3阶湍流闭合模式 ,该模式可用于研究海洋边界层云中气溶胶和云的相互作用过程 ,同时提出了一种新的动力模式和微物理模式耦合方法 ,该方法可使动力模式中液态水相关项可以直接由微物理模式变量计算得到。作为模式的初步应用模拟了 2 0 0 1年APEX/ACE Asia在西太平洋上所观测到的一个个例。模拟结果和观测资料比较表明该模式基本上模拟出层积云覆盖的海洋边界层的基本结构  相似文献   

2.
The problem of dynamically mapping high-frequency (HF) radar radial velocity observations is investigated using a three-dimensional hydrodynamic model of the San Diego coastal region and an adjoint-based assimilation method. The HF radar provides near-real-time radial velocities from three sites covering the region offshore of San Diego Bay. The hydrodynamical model is the Massachusetts Institute of Technology general circulation model (MITgcm) with 1 km horizontal resolution and 40 vertical layers. The domain is centered on Point Loma, extending 117 km offshore and 120 km alongshore. The reference run (before adjustment) is initialized from a single profile of T and S and is forced with wind data from a single shore station and with zero heat and fresh water fluxes. The adjoint of the model is used to adjust initial temperature, salinity, and velocity, hourly temperature, salinity and horizontal velocities at the open boundaries, and hourly surface fluxes of momentum, heat and freshwater so that the model reproduces hourly HF radar radial velocity observations. Results from a small number of experiments suggest that the adjoint method can be successfully used over 10-day windows at coastal model resolution. It produces a dynamically consistent model run that fits HF radar data with errors near the specified uncertainties. In a test of the forecasting capability of the San Diego model after adjustment, the forecast skill was shown to exceed persistence for up to 20 h.  相似文献   

3.
Three single-column models (all with an explicit liquid water budget and compara-tively high vertical resolution) and three two-dimensional eddy-resolving models (including one with bin-resolved microphysics) are compared with observations from the first ASTEX Lagrangian experiment. This intercomparison was a part of the second GCSS boundary-layer cloud modelling workshop in August 1995.In the air column tracked during the first ASTEX Lagrangian experiment, a shallow subtropical drizzling stratocumulus-capped marine boundary layer deepens after two days into a cumulus capped boundary layer with patchy stratocumulus. The models are forced with time varying boundary conditions at the sea-surface and the capping inversion to simulate the changing environment of the air column.The models all predict the observed deepening and decoupling of the boundary layer quite well, with cumulus cloud evolution and thinning of the overlying stratocumulus. Thus these models all appear capable of predicting transitions between cloud and boundary-layer types with some skill. The models also produce realistic drizzle rates, but there are substantial quantitative differences in the cloud cover and liquid water path between models. The differences between the eddy-resolving model results are nearly as large as between the single column model results. The eddy resolving models give a more detailed picture of the boundary-layer evolution than the single-column models, but are still sensitive to the choice of microphysical and radiative parameterizations, sub-grid-scale turbulence models, and probably model resolution and dimensionality. One important example of the differences seen in these parameterizations is the absorption of solar radiation in a specified cloud layer, which varied by a factor of four between the model radiation parameterizations.  相似文献   

4.
中国沿海地区以及濒临海域经常发生多种灾害性天气,包括大风、暴雨、大雾和海上强对流天气等,原位探测资料的缺乏极大影响了这些天气生消演变规律的深入研究以及预报准确性的提高。为了实现海上自动部署、机动安全和实时的多要素原位探测,研发了一种基于太阳能无人艇的海洋气象水文探测系统,工程样机命名为MWO-I(Marine Weather Observer-I),2015-2019年该系统进行了多次海上试验。本文对这一长航时海洋气象探测系统进行介绍,并给出2018年4月一次海上探测试验个例的初步结果。  相似文献   

5.
本文使用中尺度数值模式WRFV3.4中的8种不同云微物理过程参数化方案,模拟2010年5月6~7日华南一次暴雨事件,探讨不同云微物理方案对华南暴雨模拟的影响。结果表明:不同云微物理方案对不同量级降水模拟效果总体较好。WSM3方案对小到大雨和大暴雨的模拟效果最好,对暴雨的模拟最差;WDM5方案对暴雨模拟效果最好。结合TS评分和误差分析结果,整体效果最好的是WSM5方案,最差的是Lin方案。对于同一云微物理参数化方案,不同分辨率的降水模拟结果差异不大,但同一分辨率的不同云微物理参数化方案的降水结果差异较大,这说明云微物理过程比模式分辨率对暴雨模拟的影响更大。  相似文献   

6.
Partial control of climate by the biosphere may be possible through a chain of processes that ultimately links marine plankton production of dimethylsulfide (DMS) with changes in cloud albedo (Charlson et al., 1987). Changes in cloud optical properties can have profound impacts on atmospheric radiation transfer and, hence, the surface environment. In this study, we have developed a simple model that incorporates empirically based parameterizations to account for the biological control of cloud droplet concentration in a first attempt to estimate the strength of the DMS-cloud albedo feedback mechanism. We find that the feedback reduces the global climatic response to imposed perturbations in solar insolation by less than 7%. Likewise, it modifies the strength of other feedbacks affecting surface insolation over oceans by roughly the same amount. This suggests that the DMS-cloud albedo mechanism will be unable to substantially reduce climate sensitivity, although these results should be confirmed with less idealized models when more is known about the net production of DMS by the marine biosphere and its relation to aerosol/cloud microphysics and climate.  相似文献   

7.
Three models, MM5, COAMPS, and WRF, have been applied for the warm season in 2003 and the cool season in 2003?C2004 to evaluate their performances. All models run over the same domain area covering the north Gulf Mexico and southeastern United States (US) region with the same spatial resolution of 27?km. It was found that the temporal variations of the mean error distribution and strength at 24 and 36?h were rather weak for surface temperature, sea level pressure, and surface wind speed for all models. A warm bias in surface temperature forecasts dominated over land during the warm season, whereas a cool bias existed during the cool season. The MM5 and WRF produced negative biases of sea level pressure during the warm season and positive biases during the cool season while the COAMPS yielded a similar distribution of sea level pressure biases during both seasons. During both seasons, similar surface wind speed biases produced by each model included a high wind speed forecast over most areas by MM5 while the COAMPS and WRF yielded weak surface winds over the western Plains and stronger surface winds over the eastern Plains. Root-mean-squared errors revealed that the forecast of surface temperature, sea level pressure, and surface wind speed were degraded with the increase of forecast time. For rainfall evaluation, it was found that the MM5 underpredicted seasonal precipitation while the COAMPS and WRF overpredicted. The bias scores revealed that the MM5 yielded an underprediction of the coverage of precipitation areas, especially for heavier rainfall events. The MM5 presented the lower threat score at lighter rainfall events compared to the COAMPS and WRF. For moderate and heavier thresholds, all models lacked forecast accuracy. The WRF accuracy in predicting precipitation was heavily dependent upon the performance of the selected cumulus parameterization scheme. Use of the Grell?CDevenyi and Bette?CMiller?CJanjic schemes helps suppress precipitation overprediction.  相似文献   

8.
The problem of dynamically mapping high-frequency (HF) radar radial velocity observations is investigated using a three-dimensional hydrodynamic model of the San Diego coastal region and an adjoint-based assimilation method. The HF radar provides near-real-time radial velocities from three sites covering the region offshore of San Diego Bay. The hydrodynamical model is the Massachusetts Institute of Technology general circulation model (MITgcm) with 1 km horizontal resolution and 40 vertical layers. The domain is centered on Point Loma, extending 117 km offshore and 120 km alongshore. The reference run (before adjustment) is initialized from a single profile of T and S and is forced with wind data from a single shore station and with zero heat and fresh water fluxes. The adjoint of the model is used to adjust initial temperature, salinity, and velocity, hourly temperature, salinity and horizontal velocities at the open boundaries, and hourly surface fluxes of momentum, heat and freshwater so that the model reproduces hourly HF radar radial velocity observations. Results from a small number of experiments suggest that the adjoint method can be successfully used over 10-day windows at coastal model resolution. It produces a dynamically consistent model run that fits HF radar data with errors near the specified uncertainties. In a test of the forecasting capability of the San Diego model after adjustment, the forecast skill was shown to exceed persistence for up to 20 h.  相似文献   

9.
Uncertainties in simulating the seasonal mean atmospheric water cycle in Equatorial East Africa are quantified using 58 one-year-long experiments performed with the Weather Research and Forecasting model (WRF). Tested parameters include physical parameterizations of atmospheric convection, cloud microphysics, planetary boundary layer, land-surface model and radiation schemes, as well as land-use categories (USGS vs. MODIS), lateral forcings (ERA-Interim and ERA40 reanalyses), and domain geometry (size and vertical resolution). Results show that (1) uncertainties, defined as the differences between the experiments, are larger than the biases; (2) the parameters exerting the largest influence on simulated rainfall are, in order of decreasing importance, the shortwave radiation scheme, the land-surface model, the domain size, followed by convective schemes and land-use categories; (3) cloud microphysics, lateral forcing reanalysis, the number of vertical levels and planetary boundary layer schemes appear to be of lesser importance at the seasonal scale. Though persisting biases (consisting of conditions that are too wet over the Indian Ocean and the Congo Basin and too dry over eastern Kenya) prevail in most experiments, several configurations simulate the regional climate with reasonable accuracy.  相似文献   

10.
复杂地形对计算地表太阳短波辐射的影响   总被引:18,自引:2,他引:16  
首先利用数字高程数据(DEM)、大气辐射传输模式6S以及野外观测资料计算了复杂地形(青藏高原)上地表入射太阳辐射,然后计算不考虑地形产生的地表辐射的计算误差,对误差进行归一化后得到相对辐射误差.结果显示,相对辐射误差的标准差(即相对地表辐射计算误差绝对值的统计平均值) Se随太阳天顶角的增加呈指数增长,随高度标准差的增加几乎呈线性增长,随数字高程数据的分辨率(或卫星资料的分辨率)降低而降低.利用分步拟合方法拟合了Se随太阳天顶角、高度标准差和数字高程分辨率的变化.利用拟合方程可以计算任意地形条件下,不同分辨率的卫星(或数字高程)资料在不同太阳天顶角情况下,不考虑地形复杂性产生的平均地表入射太阳辐射的计算误差,结果表明,使用中分辨率的卫星(如MODIS)资料计算地表太阳净辐射时,需要考虑地形复杂性.  相似文献   

11.
A new scheme for the estimation of daily global solar radiation over sloped topography in China is developed based on the Iqbal model C and MODIS cloud fraction. The effects of topography are determined using a digital elevation model. The scheme is tested using observations of solar radiation at 98 stations in China, and the results show that the mean absolute bias error is 1.51 MJ m~(-2) d~(-1) and the mean relative absolute bias error is 10.57%. Based on calculations using this scheme,the distribution of daily global solar radiation over slopes in China on four days in the middle of each season(15 January,15 April, 15 July and 15 October 2003) at a spatial resolution of 1 km × 1 km are analyzed. To investigate the effects of topography on global solar radiation, the results determined in four mountains areas(Tianshan, Kunlun Mountains, Qinling,and Nanling) are discussed, and the typical characteristics of solar radiation over sloped surfaces revealed. In general, the new scheme can produce reasonable characteristics of solar radiation distribution at a high spatial resolution in mountain areas,which will be useful in analyses of mountain climate and planning for agricultural production.  相似文献   

12.
不同分辨率和微物理方案对飑线阵风锋模拟的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究不同分辨率和微物理方案对飑线阵风锋模拟的影响,利用WRF中尺度数值预报模式,对2009年6月5日发生在上海的一次飑线过程分别进行了3、1、0.5 km水平分辨率和一、二阶矩微物理方案的理想试验。结果表明,模式水平分辨率和微物理方案对模拟飑线阵风锋有明显的影响。随模式水平分辨率的提高,模式模拟的飑线弓状回波结构更精细。与3 km分辨率相比,1和0.5 km分辨率模式能很好模拟出飑线后部下沉气流和前部上升气流,模拟的冷池前沿最大风速相对更接近实况。二阶矩微物理方案更能模拟出飑线弓状回波前强后弱的结构特征和飑线过境地面降温幅度,模拟的飑线移动速度、冷池面积和强度、冷池前沿最大风速和雨水蒸发率等均小于一阶矩微物理方案的模拟值。采用1和0.5 km模式水平分辨率及二阶矩微物理方案模式模拟的飑线与WSR-88D多普勒天气雷达探测实况更接近。模式分辨率的提高有利于模拟飑线的维持。对业务数值预报模式模拟飑线阵风锋而言,在计算条件允许的情况下,模式水平分辨率达1 km并采用二阶矩微物理方案可能是需要的。结果还表明,冷池前沿最大风速、冷池强度、模式底层降温幅度、飑线移动速度与雨水蒸发率存在对应的变化趋势,飑线移动速度的变化对飑线阵风锋地面大风的预报有指示意义。改善数值模式对飑线阵风锋预报性能除需关注模式水平分辨率和微物理方案外,还需关注数值模式对雨水蒸发率的模拟能力。  相似文献   

13.
The effects of sea surface temperature (SST), radiation, cloud microphysics, and diurnal variations on the vertical structure of tropical tropospheric temperature are investigated by analyzing 10 two-dimensional equilibrium cloud-resolving model simulation data. The increase of SST, exclusion of diurnal variation of SST, and inclusion of diurnal variation of solar zenith angle, radiative effects of ice clouds, and ice microphysics could lead to tropical tropospheric warming and increase of tropopause height. The increase of SST and the suppression of its diurnal variation enhance the warming in the lower and upper troposphere, respectively, through increasing latent heat and decreasing IR cooling. The inclusion of diurnal variation of solar zenith angle increases the tropospheric warming through increasing solar heating. The inclusion of cloud radiative effects increases tropospheric warming through suppressing IR cooling in the mid and lower troposphere and enhancing solar heating in the upper troposphere. The inclusion of ice microphysics barely increases warming in the mid and lower troposphere because the warming from ice radiative effects is nearly offset by the cooling from ice microphysical effects, whereas it causes the large warming enhancement in the upper troposphere due to the dominance of ice radiative effects. The tropopause height is increased mainly through the large enhancement of IR cooling.  相似文献   

14.
15.
The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ~1.5 km [e.g.,at the UK Met Office and the Korea Meteorological Administration(KMA)]. As its microphysics scheme was originally designed and tuned for large-scale precipitation systems, we investigate the performance of UM microphysics to determine potential inherent biases or weaknesses. Two rainfall cases from the KMA forecasting system are considered in this study: a Changma(quasi-stationary) front, and Typhoon Sanba(2012). The UM output is compared to polarimetric radar observations in terms of simulated polarimetric radar variables. Results show that the UM generally underpredicts median reflectivity in stratiform rain, producing high reflectivity cores and precipitation gaps between them. This is partially due to the diagnostic rain intercept parameter formulation used in the one-moment microphysics scheme. Model drop size is generally both underand overpredicted compared to observations. UM frozen hydrometeors favor generic ice(crystals and snow) rather than graupel, which is reasonable for Changma and typhoon cases. The model performed best with the typhoon case in terms of simulated precipitation coverage.  相似文献   

16.
中国地表太阳辐射再分析数据与观测的比较   总被引:3,自引:1,他引:2       下载免费PDF全文
利用我国地表太阳辐射台站资料和海上观测资料与同期的NCEP/NCAR, NCEP/CFSR再分析资料进行比较,检验再分析资料是否能够反映中国地区的太阳辐射特征。结果表明:1979年之前NCEP/NCAR太阳辐射资料的可信度较低,存在虚假的明显上升趋势,1979年之后两套再分析资料的可信度均较高,在我国东部和低纬度地区的可信度好于西部和高纬度地区;由逐6 h再分析数据直接计算得到的逐日太阳辐射比实际观测偏低,剔除太阳辐射为零的情况计算逐日资料更合理。在大陆地区,NCEP/NCAR,NCEP/CFSR再分析资料与台站太阳辐射资料的1979—2009年共31年平均误差分别为10.37 W·m-2和-42.68 W·m-2,误差的标准差分别为12.31 W·m-2和4.19 W·m-2;在海洋区域,NCEP/NCAR,NCEP/CFSR再分析资料与海上观测太阳辐射资料的平均误差分别为-161.19 W·m-2和-179.66 W·m-2,误差的标准差分别为37.07 W·m-2和35.36 W·m-2。与大陆台站资料相比,海上观测与再分析资料的误差偏大,这可能与海上观测资料较少,限制了NCEP模式的评估和改进有关。  相似文献   

17.
Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO2 changes for the same change in global mean surface temperature. Thus, solar radiation management ??geoengineering?? proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO2, the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale.  相似文献   

18.
Realistic regional climate simulations are important in understanding the mechanisms of summer rainfall in the southeastern United States (SE US) and in making seasonal predictions. In this study, skills of SE US summer rainfall simulation at a 15-km resolution are evaluated using the weather research and forecasting (WRF) model driven by climate forecast system reanalysis data. Influences of parameterization schemes and model resolution on the rainfall are investigated. It is shown that the WRF simulations for SE US summer rainfall are most sensitive to cumulus schemes, moderately sensitive to planetary boundary layer schemes, and less sensitive to microphysics schemes. Among five WRF cumulus schemes analyzed in this study, the Zhang–McFarlane scheme outperforms the other four. Further analysis suggests that the superior performance of the Zhang–McFarlane scheme is attributable primarily to its capability of representing rainfall-triggering processes over the SE US, especially the positive relationship between convective available potential energy and rainfall. In addition, simulated rainfall using the Zhang–McFarlane scheme at the 15-km resolution is compared with that at a 3-km convection-permitting resolution without cumulus scheme to test whether the increased horizontal resolution can further improve the SE US rainfall simulation. Results indicate that the simulations at the 3-km resolution do not show obvious advantages over those at the 15-km resolution with the Zhang–McFarlane scheme. In conclusion, our study suggests that in order to obtain a satisfactory simulation of SE US summer rainfall, choosing a cumulus scheme that can realistically represent the convective rainfall triggering mechanism may be more effective than solely increasing model resolution.  相似文献   

19.
基于WRF(weather research and forecasting model)模式逐时输出结果,设计了逐时太阳总辐射的模式输出统计(model output statistics,MOS)预报流程。主要包括:对逐时观测序列进行低通滤波再除以天文辐射,对模式输出因子的筛选和降维,以及建立MOS预报方程,并对2009年1月、4月、8月和10月武汉站逐时太阳总辐射进行预报试验。结果表明,该方案在各月预报相对稳定,拟合和预报效果均较为理想,可使平均绝对百分比误差控制在20%~30%,相对均方根误差控制在30%~40%,相对模式直接预报辐射改进了50%左右。由此可见,通过对模式输出进行解释应用,可以有效提高辐射预报的准确率。此外,客观分析所得的气温、云量、露点、比湿、相对湿度、地面气压等13个模式输出因子可以作为各地区建立MOS辐射预报方程的参考因子。  相似文献   

20.
Modeling Marine Stratocumulus with a Detailed Microphysical Scheme   总被引:1,自引:0,他引:1  
A one-dimensional 3rd-order turbulence closure model with size-resolved microphysics and radiative transfer has been developed for investigating aerosol and cloud interactions of the stratocumulus-topped marine boundary layer. A new method is presented for coupling between the dynamical model and the mierophysical model. This scheme allows the liquid water related correlations to be directly calculated rather than parameterized. On 21 April 2001, a marine stratocumulus was observed by the Caesar aircraft over the west Pacific Rim south of Japan during the 2001 APEX/ACE-Asia field measurements. This cloud is simulated by the model we present here. The model results show that the general features of the stratocumulus-topped marine boundary layer predicted by the model are in agreement with the measurements. A new onboard cloud condensation nuclei (CCN) counter provides not only total CCN number concentration (as the traditional CCN counters do at a certain supersaturation) but also the CCN size distribution information. Using these CCN data, model responses to different CCN initial concentrations are examined. The model results are consistent with both observations and expectations.The numerical results show that the cloud microphysieal properties are changed fundamentally by different initial CCN concentrations but the cloud liquid water content does not differ significantly. Different initial CCN loadings have large impacts on the evolution of cloud microstructure and radiation transfer while they have a modest effect on thermodynamics. Increased CCN concentration leads to significant decrease of cloud effective radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号