首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
Marine stratocumulus observations show a large variability in cloud droplet number concentration (CDNC) related to variability in aerosol concentration. Changes in CDNC modify the cloud reflectivity, but also affect cloud water content, cloud lifetime, and cloudiness, through changes in precipitation. In mesoscale models and general circulation models (GCMs), precipitation mechanisms are parameterized. Here we examine how the precipitation parameterization can affect the simulated cloud. Simulations are carried out with the one-dimensional version of the hydrostatic primitive equation model MAR (Modéle Atmosphérique Régional) developed at the Université catholique de Louvain. It includes a E- turbulence closure, a wide-band formulation of the radiative transfer, and a parameterized microphysics including prognostic equations for water vapour, cloud droplets and rain drops concentrations. In a first step, the model is used to simulate a horizontally homogeneous stratocumulus deck observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) on the night of 12–13 June 1992. The observations show that the model is able to realistically reproduce the vertical structure of the cloud-topped boundary layer. In a second step, several precipitation parameterizations commonly used in mesoscale models and GCMs are tested. It is found that most parameterizations tend to overestimate the precipitation, which results in an underestimation of the vertically integrated liquid water content. Afterwards, using those parameterizations that are sensitive to CDNC, several simulations are performed to estimate the effect of CDNC variations on the simulated cloud. Based upon the simulation results, we argue that currently used parameterizations do not enable assessment of such a sensitivity.  相似文献   

2.
Simultaneous wind and droplet measurements have been made in three cloudy boundary layers using tethered balloon-borne instrumentation. The types of clouds studied ranged from small thin cumulus to medium cumulus (non precipitating) and stratocumulus formed by the spreading out (shelving) of cumulus. Available synoptic data have been analysed in order to investigate the relative importance of advection and subsidence over scales of order 100 km in the local boundary-layer development. The factors which influenced the extent of cloud cover are also discussed together with the effect of condensation on vertical air motions in the upper half of the boundary layer. Within individual clouds, horizontal variations in droplet spectra were observed to occur over distances of a few metres being related to both position within cloud and height above local cloud base. These results highlight difficulties which may arise in the interpretation of droplet data of horizontal resolution greater than a few metres. Different clouds sampled on the same day showed different amounts of variability in the droplet parameters but no systematic differences between the various case studies were detected.  相似文献   

3.
Analyses of aircraft observations of the stratocumulus-topped boundary layer during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE I) show the frequent presence of clear, but relatively moist, air patches near the stratocumulus cloud-top interface. A conditional sampling of measurements in these clear air patches shows that their thermodynamic properties do more resemble boundary-layer air characteristics than those of free troposphere air. From an aircraft leg through cloud tops it is demonstrated that turbulent mixing across the cloud-top interface can lead to the local dissipation of the cloud top. Analogous to the terminology used for shallow cumulus parameterizations this process can be considered as detrainment, with which we mean that after a mixing event across the cloud-top boundaries, mixed unsaturated parcels become part of the clear environment of the cloud.  相似文献   

4.
We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere–ocean models: the National Center for Atmospheric Research community earth system model version 1 (CESM1) and the National Center for Environmental Predictions global forecasting system-modular ocean model version 4 (GFS-MOM4) coupled model. In the CESM1, the coastal stratocumulus (Sc)-topped planetary boundary layers (PBLs) in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow cumulus (Cu) is too abrupt and occurs too close to the coast. By contrast, in the GFS-MOM4 the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is “delayed” and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between these differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.  相似文献   

5.
In this study, we evaluate the ability of the Weather Research and Forecasting model to simulate surface energy fluxes in the southeast Pacific stratocumulus region. A total of 18 simulations is performed for the period of October to November 2008, with various combinations of boundary layer, microphysics, and cumulus schemes. Simulated surface energy fluxes are compared to those measured during VOCALS-REx. Using a process-based model evaluation, errors in surface fluxes are attributed to errors in cloud properties. Net surface flux errors are mostly traceable to errors in cloud liquid water path (LWPcld), which produce biases in downward shortwave radiation. Two mechanisms controlling LWPcld are diagnosed. One involves microphysics schemes, which control LWPcld through the production of raindrops. The second mechanism involves boundary layer and cumulus schemes, which control moisture available for cloud by regulating boundary layer height. In this study, we demonstrate that when parameterizations are appropriately chosen, the stratocumulus deck and the related surface energy fluxes are reasonably well represented. In the most realistic experiments, the net surface flux is underestimated by about 10 W m?2. This remaining low bias is due to a systematic overestimation of the total surface cooling due to sensible and latent heat fluxes in our simulations. There does not appear to be a single physical reason for this bias. Finally, our results also suggest that inaccurate representation of boundary layer height is an important factor limiting further gains in model realism.  相似文献   

6.
Based on a decade of research on cloud processes, a new version of the LMDZ atmospheric general circulation model has been developed that corresponds to a complete recasting of the parameterization of turbulence, convection and clouds. This LMDZ5B version includes a mass-flux representation of the thermal plumes or rolls of the convective boundary layer, coupled to a bi-Gaussian statistical cloud scheme, as well as a parameterization of the cold pools generated below cumulonimbus by re-evaporation of convective precipitation. The triggering and closure of deep convection are now controlled by lifting processes in the sub-cloud layer. An available lifting energy and lifting power are provided both by the thermal plumes and by the spread of cold pools. The individual parameterizations were carefully validated against the results of explicit high resolution simulations. Here we present the work done to go from those new concepts and developments to a full 3D atmospheric model, used in particular for climate change projections with the IPSL-CM5B coupled model. Based on a series of sensitivity experiments, we document the differences with the previous LMDZ5A version distinguishing the role of parameterization changes from that of model tuning. Improvements found previously in single-column simulations of case studies are confirmed in the 3D model: (1) the convective boundary layer and cumulus clouds are better represented and (2) the diurnal cycle of convective rainfall over continents is delayed by several hours, solving a longstanding problem in climate modeling. The variability of tropical rainfall is also larger in LMDZ5B at intraseasonal time-scales. Significant biases of the LMDZ5A model however remain, or are even sometimes amplified. The paper emphasizes the importance of parameterization improvements and model tuning in the frame of climate change studies as well as the new paradigm that represents the improvement of 3D climate models under the control of single-column case studies simulations.  相似文献   

7.
The Naval Research Laboratory Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) has been extended to perform as a large-eddy simulation (LES) model. It has been validated with a series of boundary-layer experiments spanning a range of cloud nighttime, and includes a nighttime stratocumulus case, a trade wind cumulus layer, shallow cumulus convection over land, and a mixed regime consisting of cumulus clouds under broken stratocumulus. COAMPS-LES results are in good agreement with other models for all the cases simulated. Exact numerical budgets for the vertical velocity second\((\overline{w^{'2}})\) and third moment\((\overline{w^{'3}})\) have been derived for the stratocumulus and trade wind cumulus cases. For the\(\overline{w^{'3}}\) budget in the stratocumulus, the buoyancy contribution from the updraughts and downdraughts largely cancel each other due to their similar magnitudes but opposite signs. In contrast, for the cumulus layer, the negative buoyancy contribution from the environmental downdraughts is negligible and the positive contribution from the updraughts completely dominates due to the conditional instability in the environment. As a result,\(\overline{w^{'3}}\) is significantly larger in the cumulus than in the stratocumulus layer.  相似文献   

8.
Numerical models of climate have great difficulties with the simulation of marine low clouds in the subtropical Pacific and Atlantic Oceans. It has been especially difficult to reproduce the observed geographical distributions of the different cloud regimes in those regions. The present study discusses mechanisms proposed in previous works for changing one regime into another. One criterion is based on the theory of stratocumulus destruction through cloud top entrainment instability due to buoyancy reversal—situations in which the mixture of two air parcels becomes denser than either of the original parcels due to evaporation of cloud water. Another criterion is based on the existence of decoupling in the boundary layer. When decoupled, the stratocumulus regime changes to another in which these clouds can still exist together with cumulus. In a LES study, the authors have suggested that a combination of those two criteria can be used to diagnose whether, at a location, the cloud regime corresponds to a well-mixed stratocumulus regime, a shallow cumulus regime, or to a transitional regime where the boundary layer is decoupled. The concept is tested in the framework of an atmospheric general circulation model (GCM). It is found that several outstanding features of disagreement between simulation and observation can be interpreted as misrepresentations of the cloud regimes by the GCM. A novel criterion for switching among regimes is proposed to alleviate the effects of these misrepresentations.  相似文献   

9.
A new approach to the parametrization of the cumulus-capped boundary layer is described. It combines a traditional higher-order turbulence closure, appropriate for boundary layers where the skewness of thermodynamic variable probability distributions is low (typically stratocumulus-capped), with non-local scaled similarity functions. These are introduced in order to represent explicitly that part of the distribution arising from skewed cumulus elements and the scalings are found to work very well against equilibrium shallow cumulus large-eddy simulations. Results from a wide range of single column model simulations, from stratocumulus to shallow cumulus to cumulus rising into stratocumulus, are presented that demonstrate the validity of the approach as a means of parametrizing the cloudy boundary layer. Sensitivity tests show that enhancement of the turbulence length scales and the buoyancy production of TKE are especially important.  相似文献   

10.
For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy Diffusivity\Mass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCS\ARM) and conserve a realistic evolution of stratocumulus (EUROCS\FIRE).  相似文献   

11.
The response of low-level clouds to climate change has been identified as a major contributor to the uncertainty in climate sensitivity estimates among climate models. By analyzing the behaviour of low-level clouds in a hierarchy of models (coupled ocean-atmosphere model, atmospheric general circulation model, aqua-planet model, single-column model) using the same physical parameterizations, this study proposes an interpretation of the strong positive low-cloud feedback predicted by the IPSL-CM5A climate model under climate change. In a warmer climate, the model predicts an enhanced clear-sky radiative cooling, stronger surface turbulent fluxes, a deepening and a drying of the planetary boundary layer, and a decrease of tropical low-clouds in regimes of weak subsidence. We show that the decrease of low-level clouds critically depends on the change in the vertical advection of moist static energy from the free troposphere to the boundary-layer. This change is dominated by variations in the vertical gradient of moist static energy between the surface and the free troposphere just above the boundary-layer. In a warmer climate, the thermodynamical relationship of Clausius-Clapeyron increases this vertical gradient, and then the import by large-scale subsidence of low moist static energy and dry air into the boundary layer. This results in a decrease of the low-level cloudiness and in a weakening of the radiative cooling of the boundary layer by low-level clouds. The energetic framework proposed in this study might help to interpret inter-model differences in low-cloud feedbacks under climate change.  相似文献   

12.
Based on the simulations with a 3-D large-eddy simulation model of marine cloud-topped boundary layer that includes explicit cloud physics formulation, we have evaluated the effect of spatial inhomogeneities in cloud macro- and microstructure on the performance of parameterizations of optical depth commonly used in large-scale models. We have shown that an accurate parameterization of the grid average optical depth alone is not sufficient for correct determination of cloud transmittance to solar radiation due to the non-linear dependence between these two variables.The problem can be solved by introducing the “equivalent” value of optical depth that differs from the ordinarily defined mean optical depth by a factor αt, that depends on the degree of cloud inhomogeneity and ranges from about 2 in the cumulus case to about 1.3 in the stratiform case.The accuracy of cloud optical depth parameterizations commonly employed in largescale models has been evaluated using the data from the explicit microphysical model as a benchmark for comparison. It has been shown that in the cumulus cloud case the parameterized expressions can err by as much as 100%. The error is smaller for more uniform stratiform clouds, where the error for some parameterizations varied in the 10–40% range. The best results are given by parameterizations that account for vertical stratification of parameters on which they are based. However, the error given by a particular parameterization varies and is different at cloud and surface levels. The results show the limitations of the existing simplified parameterizations and illustrate the scope and complexity of the cloud radiation parameterization problem.  相似文献   

13.
 The impact of increased vertical resolution in the Hadley Centre Climate Model upon the simulation of stratocumulus is investigated in experiments using single column (SCM) and general circulation (GCM) model configurations. A threefold enhancement of vertical resolution in the boundary layer leads to improvements in the vertical structure of the cloud-topped boundary layer produced by the SCM and GCM in both well-mixed and decoupled situations. However, single and decoupled mixed layers in the marine stratocumulus subsidence regions are still too shallow and, despite increasing, layer cloud amounts remain generally too low. Moreover, closer examination of GCM data and SCM timeseries reveals an underlying sensitivity to vertical resolution in model interactions between boundary layer and convection processes which appears unrealistic. Stratocumulus simulation is thus unlikely to improve significantly as a result of enhanced resolution alone and further work is being undertaken to improve the Hadley Centre model’s boundary layer scheme and, in particular, its interaction with the convection scheme. Nevertheless, this study shows that the full benefit of an improved boundary layer scheme will not be realized if the boundary layer structure is constrained by the rather poor lower troposphere resolution of the standard 19-level climate model. Future Hadley Centre model versions will seek to combine the added flexibility of a better resolved structure with improvements to the subgrid boundary layer parametrizations. Received: 14 April 1998 / Accepted: 5 November 1998  相似文献   

14.
In this study, a one-dimensional ensemble-average model is used to simulatethe Atlantic Stratocumulus Transition Experiment firstLagrangian, where the same airmass was followed from the subtropical high pressure region en route towards the trade wind region. The airmass experiences increasing sea-surface temperature and achange from subsidence to weak ascent on its way south. Thiscauses the marine boundary layer (MBL)to grow and the cloud deck to change from a solid stratocumulus deck tomore broken stratocumulus clouds with cumulus cloudsdeveloping beneath, and reaching up into the stratocumulus clouds.A control run is analyzed and compared in detail with theobservations. Both a statistical evaluation and a more subjective evaluation are performed, where both establish confidencein the model performance. The model captures the MBL growth and the cloudliquid water, as well as the drizzle flux, is well predicted by the model.A sensitivity study was performed with the objective of examining theMBL and the cloud response to external and internal 'forces'.The results show that, if drizzle formation is not allowed,unrealistically high cloud liquid water mixing ratios are predicted. Even though the drizzle flux is very small, it is still important for the water budget of the MBL and for the boundary-layer dynamics.We also found that the sea-surface temperature increase is more important for the increasing cloud top height than the synoptic-scale divergence fields. However, the synoptic-scale subsidence is crucial during the first day, when the sea-surface temperature was constant, in keepingthe cloud top at a constant height. Drizzle evaporation below the cloud base seems to be important for below-cloud condensation. The drizzle predictions are significantly altered when the prescribed cloud droplet and/or drizzle drop numbers are altered.  相似文献   

15.
A simple closure scheme for nocturnal stratocumulus is proposed. The scheme is formulated in conserved variables. Cloud fraction and cloud water amount are diagnosed assuming a top-hat distribution for total water. Conversion of cloud water into rain water is parameterized in terms of cloud water and the incoming rain flux. Turbulence transport in the cloud layer is accounted for by a first-order vertical diffusion scheme with a profile-type diffusivity. The length scale corresponds to the thickness of the cloud layer. The turbulent velocity scale is directly related to the long wave radiative flux divergence in the cloud. Entrainment at cloud top is implicitly treated by extending the in-cloud mixing profile slightly beyond cloud top. The excess height is derived from the buoyancy frequency at cloud top and a radiative–convective velocity scale. The scheme is capable of simulating realistic profiles of the conserved variables and cloud parameters for a case of nocturnal stratocumulus prepared on the basis of ASTEX data.  相似文献   

16.
We describe and analyze the results of the third global energy and water cycle experiment atmospheric boundary layer Study intercomparison and evaluation study for single-column models. Each of the nineteen participating models was operated with its own physics package, including land-surface, radiation and turbulent mixing schemes, for a full diurnal cycle selected from the Cabauw observatory archive. By carefully prescribing the temporal evolution of the forcings on the vertical column, the models could be evaluated against observations. We focus on the gross features of the stable boundary layer (SBL), such as the onset of evening momentum decoupling, the 2-m minimum temperature, the evolution of the inertial oscillation and the morning transition. New process diagrams are introduced to interpret the variety of model results and the relative importance of processes in the SBL; the diagrams include the results of a number of sensitivity runs performed with one of the models. The models are characterized in terms of thermal coupling to the soil, longwave radiation and turbulent mixing. It is shown that differences in longwave radiation schemes among the models have only a small effect on the simulations; however, there are significant variations in downward radiation due to different boundary-layer profiles of temperature and humidity. The differences in modelled thermal coupling to the land surface are large and explain most of the variations in 2-m air temperature and longwave incoming radiation among models. Models with strong turbulent mixing overestimate the boundary-layer height, underestimate the wind speed at 200 m, and give a relatively large downward sensible heat flux. The result is that 2-m air temperature is relatively insensitive to turbulent mixing intensity. Evening transition times spread 1.5 h around the observed time of transition, with later transitions for models with coarse resolution. Time of onset in the morning transition spreads 2 h around the observed transition time. With this case, the morning transition appeared to be difficult to study, no relation could be found between the studied processes, and the variation in the time of the morning transition among the models.  相似文献   

17.
We analyze the effects of flat and bumpy top, fractional and internally inhomogeneous cloud layers on large area-averaged thermal radiative fluxes. Inhomogeneous clouds are generated by a new stochastic model: the tree-driven mass accumulation process (tdMAP). This model is able to provide stratocumulus and cumulus cloud fields with properties close to those observed in real clouds. A sensitivity study of cloud parameters is done by analyzing differences between 3D fluxes simulated by the spherical harmonic discrete ordinate method and three “standard” models likely to be used in general circulation models: plane-parallel homogeneous cloud model (PPH), PPH with fractional cloud coverage model (FCPPH) and independent pixel approximation model (IPA). We show that thermal fluxes are strong functions of fractional cloud coverage, mean optical depth, mean geometrical thickness and cloud base altitude. Fluctuations of “in-cloud” horizontal variability in optical depth and cloud-top bumps have negligible effects in the whole. We also showed that PPH, FCPPH and IPA models are not suitable to compute thermal fluxes of flat top fractional inhomogeneous cloud layer, except for completely overcast cloud. This implies that horizontal transport of photon at thermal wavelengths is important when cloudy cells are separated by optically thin regions.  相似文献   

18.
As part of the EUropean Cloud REsolving Modelling (EUCREM) model intercomparison project we compared the properties and development of stratocumulus as revealed by actual observations and as derived from two types of models, namely three-dimensional Large Eddy Simulations (LES) and one-dimensional Single Column Models (SCMs). The turbulence, microphysical and radiation properties were obtained from observations made in solid stratocumulus during the third flight of the first 'Lagrangian' experiment of the Atlantic Stratocumulus Transition Experiment (ASTEX). The goal of the intercomparison was to study the turbulence and microphysical properties of a stratocumulus layer with specified initial and boundary conditions.The LES models predict an entrainment velocity which is significantly larger than estimated from observations. Because the observed value contains a large experimental uncertainty no definitive conclusions can be drawn from this. The LES modelled buoyancy flux agrees rather well with the observed values, which indicates that the intensity of the convection is modelled correctly. From LES it was concluded that the inclusion of drizzle had a small influence (about 10%) on the buoyancy flux. All SCMs predict a solid stratocumulus layer with the correct liquid water profile. However, the buoyancy flux profile is poorly represented in these models. From the comparison with observations it is clear that there is considerable uncertainty in the parametrization of drizzle in both SCM and LES.  相似文献   

19.
A large-eddy simulation (LES) model has been used to study a nocturnalstratocumulus-topped marine atmospheric boundary layer. The main objectivesof our study have been first to investigate the statistical significance of LES-derived data products. Second, to test the sensitivity of our LES results with respect to the representation of subgrid-scale mixing and microphysical processes, and third to evaluate and to quantify the parametric uncertainty arising from the incomplete knowledge of the environmental parameters that are required to specify the initial and boundary conditions of a particular case study. Model simulations were compared with observations obtained in solid stratocumulus during the third flight of the first 'Lagrangian' experiment of the Atlantic Stratocumulus Transition Experiment (ASTEX). Based on these simulations the following conclusions could be drawn. Resolution(50 × 50 × 25 m3) and domain size (3.2 × 3.2 × 1.5 km3) of the LES calculations were adequate from a numerical point of view to represent the essential features of the stratocumulus-topped boundary layer. However, the ensemble runs performed in our study to investigate the statistical significance of LES-derived data products demonstrate that the area-time averaging procedure for the second-order moments produces only a low degree of statistical reliability in the model results. This illustratesthe necessity of having LES model results that are not only of adequate resolution but also of sufficiently large domain. The impact of different subgrid schemes was small, but the primary effects of drizzle were found to influence the boundary-layer structure in a climatologically significant way. The parametric uncertainty analysis revealed that the largest contribution to the variance of the LES-derived data products is due to theuncertainties in the cloud-top jump of total water mixing ratio and the net radiative forcing. The differences between the model and measurements for most of the simulated quantities were within the modelling uncertainties, but the calculated precipitation rate was found to differ significantly from that derived in the observations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号