首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solar extreme ultraviolet (EUV) irradiance, the dominant global energy source for Earth's atmosphere above 100 km, is not known accurately enough for many studies of the upper atmosphere. During the absence of direct solar EUV irradiance measurements from satellites, the solar EUV irradiance is often estimated at the 30–50% uncertainty level using both proxies of the solar irradiance and earlier solar EUV irradiance measurements, primarily from the Air Force Geophysics Laboratory (now Phillips Laboratory) rockets and Atmospheric Explorer (AE) instruments. Our sounding rocket measurements during solar cycle 22 include solar EUV irradiances below 120 nm with 0.2 nm spectral resolution, far ultraviolet (FUV) airglow spectra below 160 nm, and solar soft X-ray (XUV) images at 17.5 nm. Compared to the earlier observations, these rocket experiments provide a more accurate absolute measurement of the solar EUV irradiance, because these instruments are calibrated at the National Institute of Standards and Technology (NIST) with a radiometric uncertainty of about 8%. These more accurate sounding-rocket measurements suggest revisions of the previous reference AE–E spectra by as much as a factor of 2 at some wavelengths. Our sounding-rocket flights during the past several years (1988–1994) also provide information about solar EUV variability during solar cycle 22.  相似文献   

2.
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth’s upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105?nm with unprecedented spectral resolution (0.1?nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37?nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105?nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39?nm, and a MEGS-Photometer measures the Sun’s bright hydrogen emission at 121.6?nm. The EVE data products include a near real-time space-weather product (Level?0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15?minutes. The EVE higher-level products are Level?2 with the solar EUV irradiance at higher time cadence (0.25?seconds for photometers and ten seconds for spectrographs) and Level?3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth’s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.  相似文献   

3.
EUV97 is a solar EUV empirical model that incorporates revised soft X-ray fluxes from the SOLRAD-11 satellite (1976–1979) and uses Lα recently recalibrated to the UARS satellite (1991–present) SOLSTICE Lα. The soft X-ray data have been revised from the original flux values using Mewe's spectral fits to the data. The recalibrated AE-E and SME Lα datasets use UARS Lα for absolute flux values to provide two solar cycles of Lα irradiance extending back to 1977. Lα is used by EUV97 as a proxy for chromospheric EUV irradiances. The EUV97 empirical solar model takes its heritage from the EUV91 model based on a multiple linear regression technique that fits soft X-ray and EUV irradiances to 10.7 cm flux for transition region and coronal emissions or to Lα and Hei 10830 Ú EW for chromospheric emissions.  相似文献   

4.
Tsap  Y. T.  Filippov  B. P.  Kopylova  Y. G. 《Solar physics》2019,294(3):1-14

We investigate the coronal imaging capabilities of the Solar UltraViolet Imager (SUVI) on board the Geostationary Operational Environmental Satellite-R series spacecraft. Nominally Sun-pointed, SUVI provides solar images in six extreme ultraviolet (EUV) wavelengths. On-orbit data indicated that SUVI had sufficient dynamic range and sensitivity to image the corona to the largest heights above the Sun to date while simultaneously imaging the Sun. We undertook a campaign to investigate the existence of the EUV signal well beyond the nominal Sun-centered imaging area of the solar EUV imagers. We off-pointed the SUVI line of sight by almost one imaging area around the Sun. We present the details of the campaign we conducted when the solar cycle was at near the minimum and some results that confirm that EUV emission is present to beyond three solar radii.

  相似文献   

5.
The solar irradiance in the Extreme Ultraviolet (EUV) spectral bands has been observed with a 15 s cadence by the SOHO Solar EUV Monitor (SEM) since 1995. During remarkably intense solar flares the SEM EUV measurements are saturated in the central (zero) order channel (0.1–50.0 nm) by the flare soft X‐ray and EUV flux. The first order EUV channel (26–34 nm) is not saturated by the flare flux because of its limited bandwidth, but it is sensitive to the arrival of Solar Energetic Particles (SEP). While both channels detect nearly equal SEP fluxes, their contributions to the count rate is sensibly negligible in the zero order channel but must be accounted for and removed from the first channel count rate. SEP contribution to the measured SEM signals usually follows the EUV peak for the gradual solar flare events. Correcting the extreme solar flare SEMEUV measurements may reveal currently unclear relations between the flare magnitude, dynamics observed in different EUV spectral bands, and the measured Earth atmosphere response. A simple and effective correction technique based on analysis of SEM count‐rate profiles, GOES X‐ray, and GOES proton data has been developed and used for correcting EUV measurements for the five extreme solar flare events of July 14, 2000, October 28, November 2, November 4, 2003, and January 20, 2005. Although none of the 2000 and 2003 flare peaks were contaminated by the presence of SEPs, the January 20, 2005 SEPs were unusually prompt and contaminated the peak. The estimated accuracy of the correction is about ±7.5% for large X‐class events. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Werner M. Neupert 《Solar physics》1998,177(1-2):181-190
Using extreme ultraviolet (EUV) images of the solar corona, we have carried out a region-by-region study of the association of coronal emission of Feix–Fexvi with Caii K plage areas and intensities reported in Solar-Geophysical Data. We find that emission is dependent on the area and brightness of the plage, with specific correlations varying with the temperature of formation of the emitting coronal ion. If confirmed and extended, this approach may provide a means of estimating coronal EUV levels associated with solar activity and ultimately a proxy method that is more accurate than the sole use of the centimetric radio flux for estimating the coronal component of solar EUV emission.  相似文献   

7.
Solar Extreme Ultraviolet (EUV) imaging observation is an important measure for the researches of solar activities and coronal plasma physics. But the traditional EUV imager and spectrograph can hardly achieve simultaneously the high spectral resolution and wide field-of-view of solar imaging. This paper has designed a new type of solar EUV multi-band imager, by adopting a kind of slitless grating and grazing incidence structure, it can realize the solar full-disk imaging of high spectral and spatial resolution. The field-of-view of the imager can be as broad as 47′. The spectral resolution is 2×10?3nm per pixel, and the spatial resolution is 1.4′ per pixel. The temporal resolution of the solar full-disk is better than 60 s. The analysis of the solar full-disk spectral image and system response shows that the imager can observe the morphological evolutions of various solar activities, and can provide more comprehensive data for the researches of solar physics and space weather forecast.  相似文献   

8.
This article describes an update of the physical models that we use to reconstruct the FUV and EUV irradiance spectra and the radiance spectra of the features that at any given point in time may cover the solar disk depending on the state of solar activity. The present update introduces important modifications to the chromosphere–corona transition region of all models. Also, the update introduces improved and extended atomic data. By these changes, the agreement of the computed and observed spectra is largely improved in many EUV lines important for the modeling of the Earth’s upper atmosphere. This article describes the improvements and shows detailed comparisons with EUV/FUV radiance and irradiance measurements. The solar spectral irradiance from these models at wavelengths longer than ≈?200 nm is discussed in a separate article.  相似文献   

9.
The solar irradiance below 120 nm was first predicted by astronomers. Since its accurate measurement required the solution of a variety of technological problems, little is known about the variability before 1972, though for more than two decades data have been collected. Therefore, on a quantitative basis only a very rough picture can be given for the solar cycle 19. Also, not enough data with sufficient absolute accuracy are available to describe the solar EUV flux variations of the solar cycle 20, especially during the period of solar maximum. However, due to technological improvements of space and laboratory instrumentations, an almost complete set of data has been obtained from 1972 to date. These observations exhibit strong differences of the flux variations from solar cycle 20 to 21. - For the theoretical and for semi-empirical treatments of many aeronomic processes controlled by the solar EUV radiation, its adequate representation e.g. as indices is required. The problems involved and possible solutions are discussed. Results from some relevant aeronomically oriented computations based on variable solar EUV fluxes are presented.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

10.
Broadband sensors aboard the Naval Research Laboratory's SOLRAD 11 satellites measured solar emission in the 0.5 to 3 Å, 1 to 8 Å, 8 to 20 Å, 100 to 500 Å, 500 to 800 Å, and 700 to 1030 Å bands between March 1976 and October 1979. Measurements of EUV and soft X-ray emission from a large number of solar flares were obtained. Although solar flare measurements in the soft X-ray bands are continuously made and used as a standard of a flare's geophysical significance, direct measurements of flare EUV emission are quite rare. We present measurements of the X-ray and EUV emission from several flares with special emphasis on the relative EUV response associated with flares in different categories determined by 1 to 8 Å soft X-ray flux. An example of a flare exhibiting an impulsive (nonthermal) phase is included.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 Semptember 1980, Scheveningen, The Netherlands.  相似文献   

11.
M. Haberreiter 《Solar physics》2011,274(1-2):473-479
We present spectral synthesis calculations of the solar extreme UV (EUV) in spherical symmetry carried out with the ‘Solar Modeling in 3D’ code. The calculations are based on one-dimensional atmospheric structures that represent a temporal and spatial mean of the chromosphere, transition region, and corona. The synthetic irradiance spectra are compared with the recent calibration spectrum taken with the EUV Variability Experiment during the Whole Heliospheric Interval. The good agreement between the synthetic and observed quiet Sun spectrum shows that the employed atmospheric structures are suitable for irradiance calculations. The validation of the quiet Sun spectrum for the present solar minimum is the first step toward the modeling of the EUV variations.  相似文献   

12.
Correlated sixteen-second periodic bursts were observed during the flash phase of a class 2b solar flare in energetic X-rays, microwaves, and EUV ionizing radiation. The observations of the periodic structures in the various X-ray energy channels indicate that the structures are predominantly a phenomenon of high energy electrons, E>80 keV. In view of the fact that the periodic X-ray structures were correlated extensively in microwave and EUV frequencies, a plausible conclusion is that these three types of radiation have a common energy source. The acceleration of the energetic electrons must occur deep in the chromosphere where there are sufficient solar constituents that can be ionized to produce the correlated periodic EUV radiation.  相似文献   

13.
The influence of solar EUV and solar wind conditions on ion escape at Mars is investigated using ion data from the Aspera-3 instrument on Mars Express, combined with solar wind proxy data obtained from the Mars Global Surveyor (MGS) spacecraft. A solar EUV flux proxy based on data from the Earth position, scaled and shifted in time for Mars, is used to study relatively long time scale changes related to solar EUV variability. Data from May 2004 until November 2005 has been used. A clear dependence on the strength of the subsolar magnetic field as inferred from MGS measurements is seen in the ion data. The region of significant heavy ion flows is compressed and the heavy ion flux density is higher for high subsolar magnetic field strength. Because of the difference in outflow area, the difference in estimated total outflow is somewhat less than the difference in average flux density. We confirm previous findings that escaping planetary ions are mainly seen in the hemisphere into which the solar wind electric field is pointed. The effect is more pronounced for the high subsolar magnetic field case.The average ion motion has a consistent bias towards the direction of the solar wind electric field, but the main motion is in the antisunward direction. The antisunward flow velocity increases with tailward distance, reaching above at 2 to 3 martian radii downtail from Mars for O+ ions. Different ion species reach approximately the same bulk flow energy. We did not find any clear correlation between the solar EUV flux and the ion escape distribution or rate, probably because the variation of the solar EUV flux over our study interval was too small. The results indicate that the solar wind and its magnetic field directly interacts with the ionosphere of Mars, removing more ions for high subsolar magnetic field strength. The interaction region and the tail heavy ion flow region are not perfectly shielded from the solar wind electric field, which accelerates particles over relatively large tail distances.  相似文献   

14.
Comparison of the observed solar far ultraviolet irradiance and the observed solar sector structure during 1969 through 1972 shows a tendency for EUV maxima to be located near sector boundaries.  相似文献   

15.
Several progressions in the temporal characteristics of full-disk solar UV and EUV fluxes have been identified that raise many questions about the solar physics involved. The collective effect of numerous enhancements smaller than scaled plages contribute significantly to the solar cycle variations, especially for emissions from the cooler portions of the corona and the chromosphere. Active-region remnants are suggested to have a strong role even in solar-rotation induced variations late in an episode of major activity. Although cool coronal EUV emissions are long lasting, the persistence of the solar-rotation induced variations is even greater at photospheric UV wavelengths. Gyroresonance and possibly nonthermal radio emission at centimeter wavelengths are suggested to be particularly important during the first solar rotation of an episode of major activity.  相似文献   

16.
The broad-band EUV and microwave fluxes correlate strongly with hard X-ray fluxes in the impulsive phase of a solar flare. This note presents numerical aids for the estimation of the non-thermal electron fluxes from these correlations, using the SFD (sudden frequency deviation) ionospheric data to measure the EUV flux.  相似文献   

17.
Several progressions in the temporal characteristics of full-disk solar UV and EUV fluxes have been identified that raise many questions about the solar physics involved. The collective effect of numerous enhancements smaller than scaled plages contribute significantly to the solar cycle variations, especially for emissions from the cooler portions of the corona and the chromosphere. Active-region remnants are suggested to have a strong role even in solar-rotation induced variations late in an episode of major activity. Although cool coronal EUV emissions are long lasting, the persistence of the solar-rotation induced variations is even greater at photospheric UV wavelengths. Gyroresonance and possibly nonthermal radio emission at centimeter wavelengths are suggested to be particularly important during the first solar rotation of an episode of major activity.  相似文献   

18.
This paper is a result of the evolution of researches on the prediction and identification of the solar EUV spectrum by Ivanov-Holodny and the author.An absolute calibration of the solar EUV spectrum is given. The corresponding energy distribution is shown in Figure 2. During the minimum solar activity the radiation flux in the range below 1027 Å near the earth is 2.6 erg/cm2 sec, in the maximum it is 8 erg/cm2 sec.Abundances of fifteen elements in the solar atmosphere were deduced (Table III) from a comparison of predicted and observed intensities of more than 300 lines in the spectral region below 1215 Å.  相似文献   

19.
The fluxes of extreme ultraviolet (EUV) and soft X-ray emission are key parameters for modelling the ionosphere and upper atmosphere. A new aspect is considered in using these fluxes for diagnostics and short-term prediction of proton radiation danger from the flare. The EUV (λ < 105 nm) and soft X-ray (0.1–0.8 nm) fluxes were compared for two types of solar flares. The first type is followed by a strong enhancement in solar energetic (E >10 MeV) proton flux, the second is not followed by any enhancement in proton flux. It was discovered that the flare UV flux was considerably higher for flares with protons than for those without protons. Soft X-ray fluxes were approximately equal in both cases. An excess of EUV emission in proton flares grows with increasing proton flux. An analytic expression was found for the growth in proton flux as a function of the excess of EUV radiation at a given X-ray flux. These results can be used in predicting flare radiation danger.  相似文献   

20.
The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号