首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
On the basis of data collected in the summer of 2006 from 27 sampling stations in the Changjiang Estuary and its adjacent waters, the ecological characteristics of macrobenthos and the relationship between the macrobenthos and the environmental factors were studied using hierarchical cluster and non-metric multidimensional scaling (MDS).The biomass, abundance, Shannon-Wiener's and Margalef's indices of the macrobenthos were presented. The results showed that a total of 253 macrobenthic species were found in the research region, and most of them belong to mollusks and polychaetes. The dominant species were Cossurella dimorpha, Eocylichna cylindrella, Episiphon kiaochowwanense, Nassarius semiplicatus, Ocstergrenia variabilis and Sternaspis scutata. The average abundance of the macrobenthos was (313.15±233.4) ind./m2, and the average biomass was (15.2±11.2)g/m2.The distribution patterns of the abundance and biomass of the macrobenthos were similar. The abundance and biomass in the area close to the estuary were lower than those from the area more distant to the estuary; the central part of the research region had higher abundance and biomass than other parts of the research region. In accordance with the results, four macrobenthic communities with distinct spatial differences were identified. The low abundance and biomass in the area close to the estuary should be caused by the high sedimentation rate. The statistical analysis indicated that the depth is the most important factor affecting the distribution of macrobenthos.  相似文献   

2.
Field investigations of marine macrobenthos were conducted at ten sites in the Bering Sea in July 2010. Altogether 90 species of macrobenthos belonging to 59 families and 78 genera were identified. Among them, 41 polychaetes, 16 mollusks, 23 crustaceans, three echinoderms, two cnidarians, one nemertean, one priapulid, two sipunculids, and one echiuran were identified. The average density and biomass of total macrobenthos were 984 ind./m2 and 1 207.1 g/m2 of wet weight, respectively. The predominant species in the study area were Scoloplos armiger, Eudorella pacifica, Ophiura sarsii, Heteromastus filiformis, Ennucula tenuis, and Harpiniopsis vadiculus by abundance, while the predominant species in this area was Echinarachnius parma by biomass. Hierarchical cluster analysis(Bray–Curtis similarity measure) revealed that two important benthic assemblages in the study area were Community A and Community B. Community A was stable and Community B was unstable, as shown by the Abundance/Biomass Comparisons(ABC) approach. The macrobenthic community structure in the shelf of the Bering Sea was characterized by its high abundance and biomass, high productivity but great heterogeneity.  相似文献   

3.
Sediment samples were collected in the intertidal zone of the Dagu River Estuary, Jiaozhou Bay, China in April,July and October 2010 and February 2011 for examining seasonal dynamics of meiofaunal distribution and their relationship with environmental variables. A total of ten meiofaunal taxa were identified, including free-living marine nematodes, benthic copepods, polychaetes, oligochaetes, bivalves, ostracods, cnidarians, turbellarians,tardigrades and other animals. Free-living marine nematodes were the most dominant group in both abundance and biomass. The abundances of marine nematodes were higher in winter and spring than those in summer and autumn. Most of the meiofauna distributed in the 0–2 cm sediment layer. The abundance of meiofauna in hightidal zone was lower than those in low-tidal and mid-tidal zones. Results of correlation analysis showed that Chlorophyll a was the most important factor to influence the seasonal dynamics of the abundance, biomass of meiofauna and abundances of nematodes and copepods. CLUSTER analysis divided the meiofaunal assemblages into three groups and BIOENV results indicated that salinity, concentration of organic matter, sediment sorting coefficient and sediment median diameter were the main environmental factors influencing the meiofaunal assemblages.  相似文献   

4.
This study conducted four cruises during 2014–2017 to investigate relationships between macrobenthic communities and sediment contaminations in sea area around the Zhoushan Archipelago. Fourteen sites were categorized into three groups: high total heavy metal contamination content(HHMC), high total petroleum hydrocarbon content(HTPH), and low content ratio of heavy metal contamination content to total petroleum hydrocarbon content(HMC/TPH) areas. Four main taxa of macrofauna(polychaetes, bivalves, gastropods, and crustaceans) were determined to respond to environmental factors differently. While tolerant polychaetes being the minimal impact by environmental factors, bivalves were threated by heavy metal pollutions in sediment.Additionally, body size distribution frequency demonstrated that macrofauna in the low HMC/TPH areas were less disturbed by contamination than those in the HHMC and HTPH areas. The result represented the presentation of sensitive species while tolerant species are usually considered as small size organisms. Overall,this study confirmed the hypothesis that the contamination levels of small-scale patches is indicated by the condition of macrobenthic communities.  相似文献   

5.
Seasonal variations in zooplankton abundance,biomass,species diversity and community structure were investigated in the Sanmen Bay,China.Samples were collected from 15 stations,on the seasonal basis,in April(spring),July(summer) and October 2005(autumn) and January 2006(winter),respectively.The results show that zooplankton species number,abundance and biomass varied widely and had distinct spatial heterogeneity in the Sanmen Bay.A total of 72 species of zooplankton belonging to 56 genera and 17 groups of pelagic larvae were identified.The zooplankton species richness was strongly related to salinity.Based on hierarchical cluster analysis,zooplankton in this study area were classified into three groups:coastal,neritic and pelagic groups,which corresponded to the upper,middle and lower portion of the Sanmen Bay,respectively.The coastal low-saline species were dominant in the study area.The zooplankton abundance and biomass reached a peak in summer,moderate in spring and autumn,and the lowest in winter.Zooplankton abundance decreased from the upper to lower portion of the bay in April,when the highest biomass occurred in the middle portion of the bay.There were the same spatial distribution patterns for the biomass and abundance in July,with the maximum in the middle of the bay.However,zooplankton abundance was the highest in the middle of the bay in October,when maximum biomass occurred near the lower of the bay.Zooplankton abundance and biomass were evenly distributed in the Sanmen Bay in January.Spatial and temporal variations in zooplankton and their relationship with environmental factors were also analyzed.The BIOENV results indicate that the combination of chlorophyll a(Chl-a),salinity,dissolved inorganic nitrogen(DIN),dissolved oxygen(DO) and silicate(SiO3) was responsible for the variations in zooplankton community structure in the Sanmen Bay.The environmental changes played an important role in changes in the zooplankton community structure in the Sanmen Bay.  相似文献   

6.
It is widely acknowledged that the distribution of macrobenthos is affected by salinity, but the degree of influence varies in different areas. To explore the distribution pattern of macrobenthic assemblages in the Hangzhou Bay,12 stations were sampled to collect macrobenthos and the corresponding bottom water. Changes in the general characteristics of macrobenthos along the salinity gradient in the Hangzhou Bay and its adjacent waters were considered. Three dominant species were identified, inc...  相似文献   

7.
Due to its unique geological location, the Bering Sea is an ideal place to investigate the water exchange and ecosystem connectivity of the Pacific Ocean–Arctic Ocean and subarctic–Arctic region. Based on a number of summer surveys(July to September, 2010, 2012 and 2014), macrobenthic communities and their spatial-temporal patterns are exhibited for the majority of the Bering Sea(53°59′–64°36′N). The results show that the macrobenthic communities were dominated by northern cold-water species and immigrant eurythermic species, and the communities assumed a dispersed and patchy distribution pattern. Polychaetes(Scoloplos armiger), crustaceans(Ceradocus capensis) and sea urchins(Echinarachnius parma) were the main dominant groups in the shallow shelves; the sea star(Ctenodiscus crispatus) and the brittle star(Ophiura sarsii) were the main dominant groups in the continental slope; whereas small polychaetes(Prionospio malmgreni) dominated the basin area. Sediment type, water depth, and currents were the major factors affecting the structure and spatial distribution of the macrobenthic communities. Compared with other seas, the shallow areas of the Bering Sea showed an extremely high-standing biomass. In particular, the northern shelf area(north of St. Lawrence Islands and west of 170°W),which is primarily controlled by Anadyr Water, is an undersea oasis. In contrast, a deficiency in the downward transport of particulate organic carbon has resulted in a desert-like seabed in the basin area. By comparing our results to previous studies, we found that macrobenthic communities of the Bering Sea have undergone significant structural changes in recent decades, resulting in a decrease in abundance and an increase in biomass.In addition, populations of amphipods and bivalves in the northern shelves have decreased significantly and have been gradually replaced by other species. These changes might be associated with advanced seasonal ice melting,changes in organic carbon input, and global warming, indicating that large-scale ecosystem changes have been occurring in the Bering Sea.  相似文献   

8.
From a dataset of macrobenthos obtained from 18 cruises from 2004 to 2013 in the Huanghe(Yellow River)Estuary and its adjacent areas,the composition and characteristics of macrobenthos were analyzed,and the applicability of the Shannon-Wiener Index(H′),AZTI's Marine Biotic Index(AMBI) and multivariate AMBI(MAMBI) for assessing benthic habitat quality was compared.The results showed a total of 203 macrobenthos in the study area.The macrobenthos were dominated by polychaetes,followed by mollusks and crustaceans.The macrobenthic ecological groups were dominated by EGI,EGII and EGIII,which respectively accounted for 31.5%,36.0% and 21.2% of the total.There were significant differences between the evaluation results of the three indices.The ecological quality status(EQS) levels given by the AMBI were greater than those given by the H′ and M-AMBI.The AMBI could not reflect the differences between 11 sites but the H′ and M-AMBI could do.Moreover,the three indices responded well to the variations in salinity(S) and dissolved oxygen(DO) in the waters.The H′ and MAMBI also responded sensitively to the differences in physical parameters,such as water depth and sediment texture.The correlation between M-AMBI and environmental pressure gradient data was the strongest.The MAMBI could effectively distinguish degraded conditions from undegraded but the H′ and AMBI could not.Therefore,the M-AMBI reflected benthic habitat health well in the study areas.However,the objectivity of evaluation results of M-AMBI needs further verification by physical,chemical and biological methods.The thresholds also need further discussion.  相似文献   

9.
To understand the ecological status and macrobenthic assemblages of the Xin'an River Estuary and its adjacent waters, a survey was conducted for environmental variables and macrobenthic assemblage structure in September 2012(Yantai, China). Several methods are adopted in the data analysis process: dominance index,diversity indices, cluster analysis, non-metric multi-dimentional scaling ordination, AMBI and M-AMBI. The dissolved inorganic nitrogen and soluble reactive phosphorus of six out of eight sampling stations were in a good condition with low concentration. The average value of DO((2.89±0.60) mg/L) and p H(4.28±0.43) indicated that the research area faced with the risk of ocean acidification and underlying hypoxia. A total of 62 species were identified, of which the dominant species group was polychaetes. The average abundance and biomass was577.50 ind./m2 and 6.01 g/m2, respectively. Compared with historical data, the macrobenthic assemblage structure at waters around the Xin'an River Estuary was in a relatively stable status from 2009 to 2012.Contaminant indicator species Capitella capitata appeared at Sta. Y1, indicating the animals here suffered from hypoxia and acidification. AMBI and M-AMBI results showed that most sampling stations were slightly disturbed,which were coincided with the abiotic measurement on evaluating the health conditions. Macrobenthic communities suffered pressures from ocean acidification and hypoxia at the research waters, particularly those at Stas Y1, Y2 and Y5, which displays negative results in benthic health evaluation.  相似文献   

10.
In order to realize the spatiotemporal variations of benthic macrofaunal communities at the "Amphioxus Sand"habitat, six surveys including four seasons and three consecutive summers(i.e., 2014, 2015 and 2016) were conducted in two core sites, i.e., Huangcuo(HC) and Nanxian-Shibaxian(NX), in the Xiamen Amphioxus Nature Reserve in China. A total of 155 species of macrofauna were recorded, therein, polychaetes were dominant in terms of species number and density. Significant spatiotemporal variations of macrofaunal communities were observed. The density of polychaetes and the biomass of molluscs in the HC site were higher than those in the NX site. Macrofauna were more diverse and abundant in the cold seasons(winter and spring) than that in the warm seasons(summer and autumn). The annual variations of macrofaunal communities may be attributed to the changes in sediment texture among the three years of the survey. The variations in macrofaunal communities were mainly related to the proportion of polychaetes within the community. In addition, the density of amphioxus(include Branchiostoma japonicum and B. belcheri) was negatively correlated to that of polychaetes, bivalves, and crustaceans. Amphioxus was less likely to be found in the sediments with higher silt and clay content. Five biotic indices including Margaref's richness index(d), Peilou's evenness index(J′), Shannon-Wiener diversity index(H′),AMBI and M-AMBI were calculated in the present study. AMBI seems suitable in assessing benthic health at the"Amphioxus Sand" habitat, and a potential risk of ecological health in Xiamen Amphioxus Nature Reserve should be aware.  相似文献   

11.
基于2018年5月胶州湾海域共计20个站位所获取的生物及环境数据,研究胶州湾大型底栖生物多样性以及群落结构特征。调查海域共发现大型底栖生物208种,大型底栖生物总平均丰度和生物量分别为2 654.38 ind./m2和1 024.512 2 g/m2,大型底栖生物物种数、丰度和生物量均呈现北部高、南部低的分布趋势;调查海域优势种以多毛类为主,IRI值最高的物种为菲律宾蛤仔Ruditapes philippinarum;香农维纳指数与ABC曲线均表明调查海域底栖生态环境整体清洁;在40%相似性水平上,可将调查海域大型底栖生物划分为4个群落;底温和底盐影响调查海域大型底栖生物丰度分布。  相似文献   

12.
胶州湾大型底栖动物的丰度、生物量和生产量研究   总被引:3,自引:1,他引:2  
为了研究胶州湾大型底栖动物的丰度、生物量和生产量,于2002年3月、6月、8月和12月,在胶州湾北部软底区、大沽河口、黄岛养殖区及养殖区邻域选取4个站位进行采样,对大型底栖动物进行了定量研究。共采到大型底栖动物138种,总平均丰度、平均生物量(湿质量)和年生产量(有机碳)分别为1 719个/m2,27 g/m2,2.2 g/(m2.a),初步估算,胶州湾大型底栖动物的总次级生产量为2.8万t/a。与渤海和南黄海大型底栖动物的丰度和生物量比较,丰度和生物量均低于这两个海域,但是胶州湾大型底栖动物的总次级生产量高于渤海。本研究对于了解胶州湾大型底栖动物现状及湾内养殖对大型底栖动物的影响具有重要的意义。  相似文献   

13.
孟翔  袁秀堂  张安国  齐玥  吴楠  袁蕾  康婧  宋钢 《海洋科学》2023,47(7):111-121
2020年对辽河口潮间带7条断面46个站位开展了春、秋两季大型底栖动物调查,并进行摄食功能群划分,研究了其潮间带大型底栖动物摄食功能群的组成及特征。共发现46种大型底栖动物,以软体动物、环节动物和节肢动物为主。肉食者功能群种类数最多,且主要为环节动物类群;浮游生物食者功能群则在丰度及生物量方面占优势地位,且主要为软体动物类群。大型底栖动物各摄食功能群丰度及生物量(除肉食者外)均表现出春季高于秋季,且在断面间无显著性差异,但浮游生物食者在靠近辽河入海口的断面(B和C断面)占据绝对优势。双因素方差分析显示,各摄食功能群的种类数、丰度和生物量在季节变化上均无显著差异。本研究结果有助于揭示辽河口潮间带大型底栖动物摄食功能群的变化规律,并为生物资源保护和修复提供基础数据。  相似文献   

14.
为探究华南沿海海草床大型底栖动物群落特征、地区差异及其与海草群落间的关系,2020年在华南沿海12个海草床区域开展了大型底栖动物调查。共布设33个调查断面99个站位,在主要群落参数的基础上,运用相关性分析和聚类分析、nMDS排序、相似性百分比分析等群落生态学统计方法分析了底栖动物群落特征及其与海草群落的关系。共鉴定出大型底栖动物9大门类199种,其中,软体动物种类最多,占总种类数的39.7%。各区域底栖动物的平均栖息密度为155.7 ind/m2,青葛—龙湾(琼海)的平均栖息密度最低,珍珠湾(防城港)的平均栖息密度最高;平均生物量为118.36 g/m2,最低值出现在义丰溪(汕头),最高值出现在珍珠湾。各区域底栖动物的优势种以潮间带泥沙滩常见腹足类、双壳类和多毛类为主;底栖动物的种类多样性指数(H′)平均值为1.12,最低值出现在唐家湾(珠海),最高值出现在铁山港(北海);各调查区域底栖动物主要群落参数大致呈现“北部湾>海南沿岸>珠江口及粤东”的规律。华南沿海海草床分布区大型底栖动物群落的区域性特征较为明显,地理位置相近的海草床底栖动物群落特征相似性程度较高。海草密度越大,总生物量越高,越有利于底栖动物的种类多样性指数维持在更高水平。以大、中型海草为主的海草床,相较于面积小,以小型海草为主的海草床,其区域内的大型底栖动物群落结构更为复杂。  相似文献   

15.
本研究基于2012年、2018年和2019年春秋季对兴化湾调查数据并结合历史资料,分析兴化湾海域海上风电建设前后,大型底栖动物多样性及优势种变化,探讨可能造成变化的原因。结果表明,从1985年至2019年,在海上风电工程建设后短时间内,大型底栖动物的生存环境受到一定程度的扰动,优势种主要以环节动物多毛类为主,其他类别例如软体动物小海螂(Leptomya sp.)、棱角贝(Gadila dominguensis)、节肢动物模糊新短眼蟹(Neoxenophthalmus obscurus)、棘皮动物棘刺锚参(Protankyra bidentata)、洼颚倍棘蛇尾[Amphioplus (Lymanella) depressus]等交替出现。随着时间的变化,兴化湾大型底栖动物优势种整体趋于小型化,以抗干扰能力强的多毛类为主,其优势地位恢复较快,大型底栖动物在应对环境变化后具有自我恢复的能力。  相似文献   

16.
为了解舟山附近海域大型底栖动物群落组成特点及其与环境因子的内在关联,在2019~2020年对舟山附近海域12个站位的大型底栖动物及环境因子进行了调查研究。采用丰度、生物量、相对重要性指数(IRI)、Cluster聚类以及PCoA分析和Pearson相关性分析等方法对该海域的大型底栖动物群落组成、主要影响环境因子进行了分析。结果表明,两个航次共在舟山海域采集到大型底栖动物56种,其中多毛类动物28种,甲壳动物8种,软体动物7种,棘皮动物6种,刺胞动物3种、纽形动物2种,星虫动物和脊索动物各1种;两年平均丰度和生物量分别为36.32ind./m2和5.59g/m2,纽虫(Nemertea)是丰度的最大贡献者,而星虫爱氏海葵(Edwardsia sipunculoides)和棘刺锚参(Protankyra bidentata)则是生物量的最大贡献者;2020年大型底栖动物的总物种数、丰富度指数和多样性指数高于2019年,且两年舟山海域大型底栖动物的总物种数、丰富度指数和多样性指数均高于舟山邻近海域。与舟山海域大型底栖动物群落最相关的环境因子是水深、底层水盐度和硝态氮(NO3),这三个环境因子彼此相关性显著,随着盐度的增加,水深逐渐增加而硝酸氮含量则显著降低,群落物种数、丰度和丰富度则显著增加。通过对舟山附近海域大型底栖动物群落组成特点及其与环境因子的内在关联的研究,有望为东海近岸海域大型底栖动物群落的演替规律研究提供基础数据和科学依据。  相似文献   

17.
张晓举  丁龙  冯春晖 《海洋科学》2016,40(10):43-48
2013年5月对辽东湾中部的大型底栖生物进行了调查,分析了该海域底栖生物的种类组成、丰度、生物量、群落结构及其与环境因子的关系。调查海域共发现大型底栖生物70种,包括多毛类24种,甲壳类18种,软体动物20种,棘皮动物7种,纽虫1种。相对重要性指数大于100的种类有14种,排名前3位的分别是日本游泳水虱、毛蚶、日本长尾虫。底栖动物丰度平均值为244.2个/m~2,生物量为52.52 g/m~2,棘皮动物是生物量的重要贡献者。多样性指数平均值为3.24,丰度生物量比较曲线分析结果认为调查海域大型底栖动物群落未受到干扰,底栖生物群落的结构相似性较低,在20%的相似程度上可分为5个组。底层水中溶解氧含量是影响底栖生物的主要因素,不同底质条件是影响底栖生物生物量和群落结构的重要因素。  相似文献   

18.
粤西海陵湾养殖区邻近海域大型底栖动物生态学特征   总被引:6,自引:5,他引:1  
根据2014—2016年粤西海陵湾养殖区湾内和湾外邻近海域21°27′—21°38′N、111°42′—111°57′E 4个航次调查资料,对其大型底栖动物生态学特征进行了研究。结果表明,共鉴定大型底栖动物64种,春季种类最多为39种,秋季最低为17种。4季均以环节动物种类数最多,软体动物次之。不同季节间优势种有所差异,仅倍棘蛇尾Amphioplus sp.为周年优势种。春、夏、秋和冬季第一优势种分别为倍棘蛇尾、菲律宾蛤仔Ruditapes philippinarum、短吻铲荚螠Listriolobus brevirostris和平蛤蜊Mactra mera。平均丰度和生物量分别为213ind./m~2和15.4g/m~2,其中丰度以春季最高为248ind./m~2,夏季最低为167ind./m~2,而生物量则以秋季最高为28.0g/m~2,春季最低为2.4g/m~2;平面分布总体呈现湾外高于湾内的趋势。底栖动物Pielou均匀度和Shannon-Wiener多样性指数分别为0.95—1.00和1.56—4.07,其中时间分布规律明显,春季最高,秋季最低;空间上,两者无明显分布差异。群落结构时空差异显著,为沉积物类型、水深、底层无机氮和悬浮物以及捕食压力等因素共同影响的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号