首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》2005,20(9):1714-1736
The characteristics of ribbed moraines, with an emphasis on till geochemical prospecting, were studied in the area of Peräpohjola, southern Finnish Lapland. Percussion drilling, test pits and trenches were used for till sampling. The samples were partially extracted and then analysed using ICP-AES or GFAAS methods in the geolaboratory of the Geological Survey of Finland. The distribution of Au and Cu in fine fraction (<0.06 mm) of till in both horizontal and vertical dimensions showed that the uppermost part of the moraine ridges contained the highest metal contents. In the coarser fractions of till (0.06–0.5 and >2 mm), the anomalies were located on the distal side of the ribbed moraine ridges, down-ice from mineralized bedrock. Geochemical patterns together with fresh pyrite grains in till heavy mineral concentrates indicate a short glacial transport distance of the mineralized debris. This conclusion is also supported by the presence of a large proportion of local rock fragments and boulders in the uppermost till unit and at the surface, which is a result of glacial quarrying during the ribbed moraine formation.  相似文献   

2.
Approximately 35 parallel, discontinuous glacial ridges occur in an area of about 100 km2 in north‐central Wisconsin. The ridges are located between about 6 and 15 km north (formerly up‐ice) of the maximum extent of the Wisconsin Valley Lobe of the Laurentide Ice Sheet. The ridges are between 1 and 4 m high, up to 1 km long, and spaced between 30 and 80 m apart. They are typically asymmetrical with a steep proximal (ice‐contact) slope and gentle distal slope. The ridges are composed primarily of subglacial till on their proximal sides and glacial debris‐flow sediment on the distal sides. In some ridges the till and debris‐flow sediment are underlain by sorted sediment that was deformed in the former direction of ice flow. We interpret the ridges to be recessional moraines that formed as the Wisconsin Valley Lobe wasted back from its maximum extent, with each ridge having formed by a sequence of (1) pushing of sorted ice‐marginal sediment, (2) partial overriding by the glacier and deposition of subglacial till on the proximal side of the ridge, and (3) deposition of debris‐flow sediment on the distal side of the ridge after the frozen till at the crest of the ridge melted. The moraines are similar to annual recessional moraines described at several modern glaciers, especially the northern margin of Myrdalsjokull, Iceland. Thus, we believe the ridges probably formed as a result of minor winter advances of the ice margin during deglaciation. Based on this assumption, we calculate the net rate of ice‐surface lowering of the Wisconsin Valley Lobe during the period when the moraines formed. Various estimates of ice‐surface slope and rates of ice‐margin retreat yield a wide range of values for ice‐surface lowering (1.7–14.5 m/yr). Given that ablation rates must exceed those of ice‐surface lowering, this range of values suggests relatively high summer temperatures along the margin of the Wisconsin Valley Lobe when it began retreating from its maximum extent. In addition, the formation of annual moraines indicates that the glacier toe was thin, the ice surface was clean, and the ice margin experienced relatively cold winters.  相似文献   

3.
Transverse-to-iceflow ribbed moraine occurs in abundance in the coastal zone of northern Sweden, particularly in areas below the highest shoreline (200–230 m a.s.l.), but occasionally also slightly above. Based on detailed sedimentological and structural investigations of machine-dug sections across five ribbed moraine ridges, it is concluded that these vertically and distally prograding moraine ridges were formed as a result of subglacial folding/thrust stacking and lee-side cavity deposition. The proximal part of the moraines (Proximal Element) was formed by subglacial folding and thrust stacking of sequences of pre-existing sediments, whereas the distal part (Distal Element) was formed by glaciofluvial and gravity-flow deposition in lee-side cavities. The initial thrusting and folding is suggested to be a result of differences in bed rheology at the ice-marginal zone during the early or late melt season, and that generated a compressive zone transverse to ice flow as a result of a more mobile bed up-glacier compared to a less mobile bed down-glacier. It is considered that the lee-side cavities were formed as a result of ice-bed separation on the distal slope of the thrust/fold-created obstruction. The lee-side cavities formed an integral part of a subglacial linked-cavity drainage network regulated in their degree of interconnection, size and shape by fluctuations in basal meltwater pressure/discharge and basal iceflow velocity. The proximal and distal elements of the ribbed moraine ridges are erosively cut and/or draped with a consistently more homogeneous deforming bed till (Draping Element) marking the final phase of ribbed moraine formation considered to be contemporaneous with De Geer moraine formation further down-flow at the receding ice-sheet margin.  相似文献   

4.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents the first detailed sedimentological study of annual moraines formed by an alpine valley glacier. The moraines have been forming since at least AD 1980 by a subsidiary lobe of Gornergletscher, Switzerland that advances up a reverse bedrock slope. They reach heights of 0.5–1.5 m, widths of up to 6 m and lengths of up to several hundreds of metres. Sediments in these moraines are composed of proglacial outwash and debris flow units; subglacial traction till is absent entirely. Based on four representative sections, three genetic process combinations have been identified: (i) inefficient bulldozing of a gently sloping ice margin transfers proglacial sediments onto the ice, causing differential ablation and dead‐ice incorporation upon retreat; (ii) terrestrial ice‐contact fans are formed by the dumping of englacial and supraglacial material from point sources such as englacial conduit fills; debris flows and associated fluvial sediments are stacked against a temporarily stationary margin at the start, and deformed during glacier advance in the remainder, of the accumulation season; (iii) a steep ice margin without supraglacial input leads to efficient bulldozing and deformation of pre‐existing foreland sediments by wholesale folding. Ice‐surface slope appears to be a key control on the type of process responsible for moraine formation in any given place and year. The second and third modes result in stable and higher moraines that have a higher preservation potential than those containing dead ice. Analysis of the spacing and climatic records at Gornergletscher reveals that winter temperature controls marginal retreat and hence moraine formation. However, any climatic signal is complicated by other factors, most notably the presence of a reverse bedrock slope, so that the extraction of a clear climatic signal is not straightforward. This study highlights the complexity of annual moraine formation in high‐mountain environments and suggests avenues for further research.  相似文献   

6.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   

7.
Terminal-moraine ridges up to 6 m high have been forming at the snout of Styggedalsbreen for two decades. Based on intermittent observations during this period, combined with a detailed study of ridge morphology, sedimentary structures and composition during the 1993 field season, a model of terminal-moraine formation that involves the interaction of glacial and glacio-fluvial processes at a seasonally oscillating ice margin is presented. In winter, subglacial debris is frozen-on to the glacier sole; in summer, ice-marginal and supraglacial streams deposit sediments on the wasting ice tongue. The ice tongue overrides an embryonic moraine ridge during a late-winter advance and a double layer of sediment (diamicton overlain by sorted sands and gravels) is added to the moraine ridge during the subsequent ablation season. Particular ridges grow incrementally over many years and exert positive feedback by enhancing snout up-arching during the winter advance and constraining the course of summer meltwater streams close to the ice margin. The double-layer annual-meltout model is related to moraine formation by the stacking of subglacial frozen-on sediment slabs (Krüger 1993). Moraine ridges of this type have a complex origin. are not push moraines, and may be characteristic of dynamic high-latitude and high-altitude temperate glaciers.  相似文献   

8.
Understanding the processes that deposit till below modern glaciers provides fundamental information for interpreting ancient subglacial deposits. A process‐deposit‐landform model is developed for the till bed of Saskatchewan Glacier in the Canadian Rocky Mountains. The glacier is predominantly hard bedded in its upper reaches and flows through a deep valley carved into resistant Palaeozoic carbonates but the ice margin rests on a thick (<6 m) soft bed of silt‐rich deformation till that has been exposed as the glacier retreats from its Little Ice Age limit reached in 1854. In situ tree stumps rooted in a palaeosol under the till are dated between ca 2900 and 2700 yr bp and record initial glacier expansion during the Neoglacial. Sedimentological and stratigraphic observations underscore the importance of subglacial deformation of glaciofluvial outwash deposited in front of the advancing glacier and mixing with glaciolacustrine carbonate‐rich silt to form a soft bed. The exposed till plain has a rolling drumlinoid topography inherited from overridden end moraines and is corrugated by more than 400 longitudinal flute ridges which record deformation of the soft bed and fall into three genetically related types: those developed in propagating incipient cavities in the lee of large subglacial boulders embedded in deformation till, and those lacking any originating boulder and formed by pressing of wet till up into radial crevasses under stagnant ice. A third type consists of U‐shaped flutes akin to barchan dunes; these wrap around large boulders at the downglacier ends of longitudinal scours formed by the bulldozing of boulders by the ice front during brief winter readvances across soft till. Pervasive subglacial deformation during glacier expansion was probably facilitated by large boulders rotating within the soft bed (‘glacioturbation’).  相似文献   

9.
De Geer moraines are very common in the Møre area, western Norway. These moraines occur below the marine limit and outside the Younger Dryas ice limit and occupy tributaries that connect the main fjords through the mountain passes. During deglaciation, ice in these tributaries flowed to the major ice streams. Sections across three De Geer moraines show that the ridges are composed of diamictons and fine-grained sediment, partly in stacked sequences. The diamicton units are interpreted as being composed of water-lain tills, lodgements tills and subaqueous flow deposits. The fine-grained sediment is though to have formed in a proglacial marine environment. Clast fabric of diamictons and deformation structures in underlying sands show that depositional directions for diamicton units and the direction of deformation for the sands is perpendicular to the ridge crests. Mainly based on this evidence, the ridges are thought to have formed by push at the glacier grounding line. The formation of transverse ridges (relative to ice flow) do occur in basal crevasses on modern glaciers, as do swarms of ridges along the front of retreating glaciers. The first mechanism of deposition does not seem to explain the ridges studied in the present paper and hence the importance of this process in the formation of De Geer moraines is questioned. The De Geer moraines were deposited by ice lobes advancing from one main fjord into another; therefore by studying the drainage pattern of the tributary lobes and their sequence of deglaciation, many features of the style of deglaciation of the ice sheet across the area can be determined. The northwestern part of the area was deglaciated earliest. After that, deglaciation proceeded to the southwest parallel to the coast. Subsequently the outer and the central part of Romsdalsfjorden were deglaciated causing ice to drain towards this fjord from both the north and south. The last fjord to be deglaciated was Storfjorden in the south.  相似文献   

10.
The belated realisation that ribbed (Rogen) moraines form such an integral part of Irish geomorphology, and the piecemeal approach to previous drumlin mapping, is probably responsible for the highly contrasting views of palaeoflow patterns of the Irish Ice Sheet. Using a high resolution (25 m) digital elevation model we present morphological maps of a large part (100 × 100 km) of the so‐called ‘Drumlin Belt’ of north central Ireland. The landforms comprise mostly ribbed moraine much larger than found elsewhere (up to 16 km in length), which in places are superimposed on each other. Contrary to most prior assessments we find the bedform record to contain numerous and overlapping episodes of bed formation (ribbed moraine, drumlins and crag‐and‐tails) that provide a palimpsest record of changing flow geometries. These demonstrate an ice sheet with a centre of mass and flow geometry that changed during growth and decay. Using distinctive flow patterns and relative age relationships between them we reconstruct ice sheet evolution into four phases during a single glacial cycle. In phase 1 (early in the glacial cycle), Scottish and local ice coalesced to form a northeast‐centred Irish Ice Sheet. As it grew its centre of mass migrated southwards, culminating in a major N–S divide positioned down the east of Ireland (phase 2, ca. Last Glacial Maximum). During retreat, the centre of mass migrated at least 120 km northwards and became established in northwest Ireland and at this point a dramatic bedforming event produced one of the world's largest and most contiguous ribbed moraine fields (phase 3). Final deglaciation is thought to be by fragmentation into many topographically controlled minor ice‐caps (phase 4). Rather than any dramatic or unexpected behaviour, the reconstructed phases indicate a relatively predictable pattern of ice sheet growth and decay with changes in centres of mass, and does not require major readvances or ice‐stream events. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
During the Younger Dryas cold event, the Scandinavian ice sheet readvanced in southwest Sweden and formed the Middle Swedish end-moraine zone (MSEMZ). Recent highway construction near Skara has created an exposure through the prominent ridge at Ledsjö. Through sketching and measurement of structural information, we have documented the internal character of the Ledsjö moraine. The moraine consists predominantly of clay with numerous sand pods and lenses, which show undeformed, brittle deformed, or fluidized structures. Based on geomorphology and structural geology, it is clear the moraine was made during two advances. As ice advanced, proglacial marine clay was subglacially mobilized by the ice and extruded at the ice margin forming a ramp of debris-flow sediment. Contemporaneously, subglacial meltwater transported sand to the margin, where the meltwater became a buoyant plume, and sand was deposited near the ice margin by currents moving away from as well as toward the ice margin. These processes resulted in interbedded sand and clay. Continued advance of the ice margin deformed this package and further pushed the assemblage into a ridge form with gravity sliding of portions of the ridge. Prior to the second advance, sand was deposited on the proximal side of the initial ridge. During readvance, this sand was thrust faulted and intruded by mobilized clay. Up ice of the intruded sands, subglacial, extensional deformation created a complex shear zone of faulted sand and clay. The Ledsjö moraine represents a subaerial example of submarine push moraines like the submerged moraines recently documented in Svalbard.  相似文献   

12.
De Geer moraine ridges occur in abundance in the coastal zone of northern Sweden, preferentially in areas with proglacial water depths in excess of 150 m at deglaciation. From detailed sedimentological and structural investigations in machine‐dug trenches across De Geer ridges it is concluded that the moraines formed due to subglacial sediment advection to the ice margin during temporary halts in grounding‐line retreat, forming gradually thickening sediment wedges. The proximal part of the moraines were built up in submarginal position as stacked sequences of deforming bed diamictons, intercalated with glaciofluvial canal‐infill sediments, whereas the distal parts were built up from the grounding line by prograding sediment gravity‐flow deposits, distally interfingering with glaciolacustrine sediments. The rapid grounding‐line retreat (ca. 400 m yr?1) was driven by rapid calving, in turn enhanced by fast iceflow and marginal thinning of ice due to deforming bed conditions. The spatial distribution of the moraine ridges indicates stepwise retreat of the grounding line. It is suggested that this is due to slab and flake calving of the ice cliff above the waterline, forming a gradually widening subaqueous ice ledge which eventually breaks off to a new grounding line, followed by regained sediment delivery and ridge build‐up. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The Alps play a pivotal role for glacier and climate reconstructions within Europe. Detailed glacial chronologies provide important insights into mechanisms of glaciation and climate change. We present 26 10Be exposure dates of glacially transported boulders situated on moraines and ice‐moulded bedrock samples at the Belalp cirque and the Great Aletsch valley, Switzerland. Weighted mean ages of ~10.9, 11.1, 11.0 and 9.6 ka for the Belalp, on up to six individual moraine ridges, constrain these moraines to the Egesen, Kartell and Schams stadials during Lateglacial to early Holocene times. The weighted mean age of ~12.5 ka for the right‐lateral moraine of the Great Aletsch correlates with the Egesen stadial related to the Younger Dryas cooling. These data indicate that during the early Holocene between ~11.7 and ~9.2 ka, glaciers in the Swiss Alps seem to have been significantly affected by cold climatic conditions initiated during the Younger Dryas and the Preboreal Oscillation. These conditions resulted in glacier margin oscillations relating to climatic fluctuations during the second phase of the Younger Dryas – and continuing into Boreal times – as supported by correlation of the innermost moraine of the Belalp Cirque to the Schams (early) Holocene stage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Controlled moraines are supraglacial debris concentrations that become hummocky moraine upon de-icing and possess clear linearity due to the inheritance of the former pattern of debris-rich folia in the parent ice. Linearity is most striking wherever glacier ice cores still exist but it increasingly deteriorates with progressive melt-out. As a result, moraine linearity has a low preservation potential in deglaciated terrains but hummocky moraine tracts previously interpreted as evidence of areal stagnation may instead record receding polythermal glacier margins in which debris-rich ice was concentrated in frozen toe zones. Recent applications of modern glaciological analogues to palaeoglaciological reconstructions have implied that: (a) controlled moraine development can be ascribed to a specific process (e.g. englacial thrusting or supercooling); and (b) controlled moraine preservation potential is good enough to imply the occurrence of the specific process in former glacier snouts (e.g. ancient polythermal or supercooled snouts). These assumptions are tested using case studies of controlled moraine construction in which a wide range of debris entrainment and debris-rich ice thickening mechanisms are seen to produce the same geomorphic features. Polythermal conditions are crucial to the concentration of supraglacial debris and controlled moraines in glacier snouts via processes that are most effective at the glacier–permafrost interface. End moraines lie on a process–form continuum constrained by basal thermal regime. The morphological expression of englacial structures in controlled moraine ridges is most striking while the moraines retain ice cores, but the final deposits/landforms tend to consist of discontinuous transverse ridges with intervening hummocks, preserving only a weak impression of the former englacial structure. These are arranged in arcuate zones of hummocky moraine up to 2 km wide containing ice-walled lake plains and lying down flow of streamlined landforms produced by warm-based ice. A variety of debris entrainment mechanisms can produce the same geomorphic signature. Spatial and temporal variability in process–form relationships will lead to the sequential development of different types of end moraines during the recession of a glacier or ice sheet margin.  相似文献   

15.
This paper focuses on the structural glaciology, dynamics, debris transport paths and sedimentology of the forefield of Soler Glacier, a temperate outlet glacier of the North Patagonian Icefield in southern Chile. The glacier is fed by an icefall from the icefield and by snow and ice avalanches from surrounding mountain slopes. The dominant structures in the glacier are ogives, crevasses and crevasse traces. Thrusts and recumbent folds are developed where the glacier encounters a reverse slope, elevating basal and englacial material to the ice surface. Other debris sources for the glacier include avalanche and rockfall material, some of which is ingested in marginal crevasses. Debris incorporated in the ice and on its surface controls both the distribution of sedimentary facies on the forefield and moraine ridge morphology. Lithofacies in moraine ridges on the glacier forefield include large isolated boulders, diamictons, gravel, sand and fine-grained facies. In relative abundance terms, the dominant lithofacies and their interpretation are sandy boulder gravel (ice-marginal), sandy gravel (glaciofluvial), angular gravel (supraglacial) and diamicton (basal glacial). Proglacial water bodies are currently developing between the receding glacier and its frontal and lateral moraines. The presence of folded sand and laminites in moraine ridges in front of the glacier suggests that, during a previous advance, Soler Glacier over-rode a former proglacial lake, reworking lacustrine deposits. Post-depositional modification of the landform/sediment assemblage includes melting of the ice-core beneath the sediment cover, redistribution of finer material across the proglacial area by aeolian processes and fluvial reworking. Overall, the preservation potential of this landform/sediment assemblage is high on the centennial to millennial timescale.  相似文献   

16.
Regional‐scale, high‐resolution terrain data permit the study of landforms across south‐central Ontario, where the bed of the former Laurentide Ice Sheet is well exposed and passes downflow from irregular topography on Precambrian Shield highlands to flat‐lying Palaeozoic carbonate bedrock, and thick (50 to >200 m) unconsolidated sediment substrates. Rock drumlins and megagrooves are eroded into bedrock and mega‐scale glacial lineations (MSGL) occur on patchy streamlined till residuals in the Algonquin Highlands. Downflow, MSGL pass into juxtaposed rock and drift drumlins on Palaeozoic bedrock and predominantly till‐cored drumlins in areas of thick drift. The Lake Simcoe Moraines, now traceable for more than 80 km across the Peterborough drumlin field (PDF), form a distinct morphological boundary: downflow of the moraine system, drumlins are larger, broader and show no indication of subsequent reworking by the ice, whereas upflow of the moraines, a higher degree of complexity in bedform pattern and morphology is distinguished. Discrete radial and/or cross‐cutting flowset terminate at subtle till‐cored moraine ridges downflow of local topographic lows, indicating multiple phases of late‐stage ice flow with strong local topographic steering. More regional‐scale flow switching is evident as NW‐orientated bedforms modify drumlins south of the Oak Ridges Moraine, and radial flowset emanate from areas within the St. Lawrence and Ottawa River valleys. Most of the drumlins in the PDF formed during an early, regional drumlinization phase of NE–SW flow that followed the deposition of a thick regional till sheet. These were subsequently modified by local‐scale, topographically controlled flows that terminate at till‐cored moraines, providing evidence that the superimposed bedforms record dynamic ice (re)advances throughout the deglaciation of south‐central Ontario. The patterns and relationships of glacial landform distribution and characteristics in south‐central Ontario hold significance for many modern and palaeo‐ice sheets, where similar downflow changes in bed topography and substrate lithology are observed.  相似文献   

17.
Moraine-ridge formation along a stationary ice front in Iceland   总被引:1,自引:0,他引:1  
At present the north margin of the temperate ice-cap Myrdalsjökull is stationary: the ice edge retreats slowly during summer and readvances during winter to much the same position as the previous winter. Although the ice margin in this way has been stationary since around 1984. a frontal moraine ridge. 1.5-2.5 m high. was under formation in 1986. and in 1989 it was 3–4 m high. The interior of the ridge appeared as imbricately stacked slabs of frozen, clast-paved lodgement till dipping up-glacier. At least five to seven slabs were identified in the 1989 ridge. The most proximal one was frozen to the up-arched glacier sole and dipped beneath the glacier at about 30. In 1989 the volume of lodgement till sediments within the ridge represented a horizontal shortening of the ground moraine of roughly 60–90 m. On the other hand. between 1984 and 1989 the lateral displacement of the ridge toe amounted to only 10 m. It is concluded that the frontal ridge is formed progressively. not like conventional push moraines by thrusting of contemporaneous proglacial or ice-contact sediments. but chiefly by a combination of basal freezing beneath the thin. clast-loaded glacier toe each winter and recurrent superposition of frozen lodgement till slabs during small winter readvances.  相似文献   

18.
The morphology, sedimentology and architecture of an end moraine formed by a ~9 km surge of Brúarjökull in 1963–64 are described and related to ice‐marginal conditions at surge termination. Field observations and accurate mapping using digital elevation models and high‐resolution aerial photographs recorded at surge termination and after the surge show that commonly the surge end moraine was positioned underneath the glacier snout by the termination of the surge. Ground‐penetrating radar profiles and sedimentological data reveal 4–5 m thick deformed sediments consisting of a top layer of till overlying gravel and fine‐grained sediments, and structural geological investigations show that the end moraine is dominated by thrust sheets. A sequential model explaining the formation of submarginal end moraines is proposed. The hydraulic conductivity of the bed had a major influence on the subglacial drainage efficiency and associated porewater pressure at the end of the surge, thereby affecting the rates of subglacial deformation. High porewater pressure in the till decreased its shear strength and raised its strain rate, while low porewater pressure in the underlying gravel had the opposite effect, such that the gravel deformed more slowly than the till. The principal velocity component was therefore located within the till, allowing the glacier to override the gravel thrust sheets that constitute the end moraine. The model suggests that the processes responsible for the formation of submarginal end moraines are different from those operating during the formation of proglacial end moraines.  相似文献   

19.
The study of De Geer moraines in Raudvassdalen shows that most De Geer moraines are likely to have a common origin at the grounding line of glaciers despite variability in composition of the ridges. Pebble fabric, grain‐size analysis and structures within exposures of De Geer moraines in the Raudvassdalen area, with compositions ranging from mostly till to mostly sorted sediment, indicate that the ridges all formed at the grounding line of a tidewater glacier by common processes: deposition of sorted sediments beyond the grounding line followed by deformation of pre‐existing sediments and deposition of till as the glacier overrode the ridges. The compositional variation of the ridges is probably related to the position of the section studied relative to the location of the outlet of subglacial streams. Ridges composed entirely of till form at locations remote from the outlet of subglacial streams, and ridges with a component of sorted sediments form in closer proximity to these streams. This unifying theory of De Geer moraine formation, along with theoretical and geological evidence showing that there are limited physical conditions where basal crevasses can form, suggests that the number of De Geer moraines interpreted to have formed in basal crevasses is probably unrealistic. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号