首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Controlled moraines are supraglacial debris concentrations that become hummocky moraine upon de-icing and possess clear linearity due to the inheritance of the former pattern of debris-rich folia in the parent ice. Linearity is most striking wherever glacier ice cores still exist but it increasingly deteriorates with progressive melt-out. As a result, moraine linearity has a low preservation potential in deglaciated terrains but hummocky moraine tracts previously interpreted as evidence of areal stagnation may instead record receding polythermal glacier margins in which debris-rich ice was concentrated in frozen toe zones. Recent applications of modern glaciological analogues to palaeoglaciological reconstructions have implied that: (a) controlled moraine development can be ascribed to a specific process (e.g. englacial thrusting or supercooling); and (b) controlled moraine preservation potential is good enough to imply the occurrence of the specific process in former glacier snouts (e.g. ancient polythermal or supercooled snouts). These assumptions are tested using case studies of controlled moraine construction in which a wide range of debris entrainment and debris-rich ice thickening mechanisms are seen to produce the same geomorphic features. Polythermal conditions are crucial to the concentration of supraglacial debris and controlled moraines in glacier snouts via processes that are most effective at the glacier–permafrost interface. End moraines lie on a process–form continuum constrained by basal thermal regime. The morphological expression of englacial structures in controlled moraine ridges is most striking while the moraines retain ice cores, but the final deposits/landforms tend to consist of discontinuous transverse ridges with intervening hummocks, preserving only a weak impression of the former englacial structure. These are arranged in arcuate zones of hummocky moraine up to 2 km wide containing ice-walled lake plains and lying down flow of streamlined landforms produced by warm-based ice. A variety of debris entrainment mechanisms can produce the same geomorphic signature. Spatial and temporal variability in process–form relationships will lead to the sequential development of different types of end moraines during the recession of a glacier or ice sheet margin.  相似文献   

2.
This paper focuses on the structural glaciology, dynamics, debris transport paths and sedimentology of the forefield of Soler Glacier, a temperate outlet glacier of the North Patagonian Icefield in southern Chile. The glacier is fed by an icefall from the icefield and by snow and ice avalanches from surrounding mountain slopes. The dominant structures in the glacier are ogives, crevasses and crevasse traces. Thrusts and recumbent folds are developed where the glacier encounters a reverse slope, elevating basal and englacial material to the ice surface. Other debris sources for the glacier include avalanche and rockfall material, some of which is ingested in marginal crevasses. Debris incorporated in the ice and on its surface controls both the distribution of sedimentary facies on the forefield and moraine ridge morphology. Lithofacies in moraine ridges on the glacier forefield include large isolated boulders, diamictons, gravel, sand and fine-grained facies. In relative abundance terms, the dominant lithofacies and their interpretation are sandy boulder gravel (ice-marginal), sandy gravel (glaciofluvial), angular gravel (supraglacial) and diamicton (basal glacial). Proglacial water bodies are currently developing between the receding glacier and its frontal and lateral moraines. The presence of folded sand and laminites in moraine ridges in front of the glacier suggests that, during a previous advance, Soler Glacier over-rode a former proglacial lake, reworking lacustrine deposits. Post-depositional modification of the landform/sediment assemblage includes melting of the ice-core beneath the sediment cover, redistribution of finer material across the proglacial area by aeolian processes and fluvial reworking. Overall, the preservation potential of this landform/sediment assemblage is high on the centennial to millennial timescale.  相似文献   

3.
Ice‐cored lateral and frontal moraine complexes, formed at the margin of the small, land‐based Rieperbreen glacier, central Svalbard, have been investigated through field observations and interpretations of aerial photographs (1936, 1961 and 1990). The main focus has been on the stratigraphical and dynamic development of these moraines as well as the disintegration processes. The glacier has been wasting down since the ‘Little Ice Age’ (LIA) maximum, and between 1936 and 1990 the glacier surface was lowered by 50–60 m and the front retreated by approximately 900 m. As the glacier wasted, three moraine ridges developed at the front, mainly as melting out of sediments from debris‐rich foliation and debris‐bands formed when the glacier was polythermal, probably during the LIA maximum. The disintegration of the moraines is dominated by wastage of buried ice, sediment gravity‐flows, meltwater activity and some frost weathering. A transverse glacier profile with a northward sloping surface has developed owing to the higher insolation along the south‐facing ice margin. This asymmetric geometry also strongly affects the supraglacial drainage pattern. Lateral moraines have formed along both sides of the glacier, although the insolation aspect of the glacier has resulted in the development of a moraine 60 m high along its northern margin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Englacial debris structures, morphology and sediment distribution at the frontal part and at the proglacial area of the Scott Turnerbreen glacier have been studied through fieldwork and aerial photograph interpretation. The main emphasis has been on processes controlling the morphological development of the proglacial area. Three types of supraglacial ridges have been related to different types of englacial debris bands. We suggest that the sediments were transported in thrusts, along flow lines and in englacial meltwater channels prior to, and during a surge in, the 1930s, before the glacier turned cold. Melting-out of englacial debris and debris that flows down the glacier front has formed an isolating debris cover on the glacier surface, preventing further melting. As the glacier wasted, the stagnant, debris-covered front became separated from the glacier and formed icecored moraine ridges. Three moraine ridges were formed outside the present ice-front. The further glacier wastage formed a low-relief proglacial area with debris-flow deposits resting directly on glacier ice. Melting of this buried ice initiated a second phase of slides and debris flows with a flow direction independent of the present glacier surface. The rapid disintegration of the proglacial morphology is mainly caused by slides and stream erosion that uncover buried ice and often cause sediments to be transported into the main river and out of the proglacial area. Inactive stream channels are probably one of the morphological elements that have the best potential for preservation in a wasting ice-cored moraine complex and may indicate former ice-front positions.  相似文献   

5.
Terminal-moraine ridges up to 6 m high have been forming at the snout of Styggedalsbreen for two decades. Based on intermittent observations during this period, combined with a detailed study of ridge morphology, sedimentary structures and composition during the 1993 field season, a model of terminal-moraine formation that involves the interaction of glacial and glacio-fluvial processes at a seasonally oscillating ice margin is presented. In winter, subglacial debris is frozen-on to the glacier sole; in summer, ice-marginal and supraglacial streams deposit sediments on the wasting ice tongue. The ice tongue overrides an embryonic moraine ridge during a late-winter advance and a double layer of sediment (diamicton overlain by sorted sands and gravels) is added to the moraine ridge during the subsequent ablation season. Particular ridges grow incrementally over many years and exert positive feedback by enhancing snout up-arching during the winter advance and constraining the course of summer meltwater streams close to the ice margin. The double-layer annual-meltout model is related to moraine formation by the stacking of subglacial frozen-on sediment slabs (Krüger 1993). Moraine ridges of this type have a complex origin. are not push moraines, and may be characteristic of dynamic high-latitude and high-altitude temperate glaciers.  相似文献   

6.
Glacier thermal regime is shown to have a significant influence on the formation of ice‐marginal moraines. Annual moraines at the margin of Midtdalsbreen are asymmetrical and contain sorted fine sediment and diamicton layers dipping gently up‐glacier. The sorted fine sediments include sands and gravels that were initially deposited fluvially directly in front of the glacier. Clast‐form data indicate that the diamictons have a mixed subglacial and fluvial origin. Winter cold is able to penetrate through the thin (<10 m) ice margin and freeze these sediments to the glacier sole. During winter, sediment becomes elevated along the wedge‐shaped advancing glacier snout before melting out and being deposited as asymmetrical ridges. These annual moraines have a limited preservation potential of ~40 years, and this is reflected in the evolution of landforms across the glacier foreland. Despite changing climatic conditions since the Little Ice Age and particularly within the last 10 years when frontal retreat has significantly speeded up, glacier dynamics have remained relatively constant with moraines deposited via basal freeze‐on, which requires stable glacier geometry. While the annual moraines on the eastern side of Midtdalsbreen indicate a slow steady retreat, the western foreland contains contrasting ice‐stagnation topography, highlighting the importance of local forcing factors such as shielding, aspect and debris cover in addition to changing climate. This study indicates that, even in temperate glacial environments, restricted or localised areas of cold‐based ice can have a significant impact on the geomorphic imprint of the glacier system and may actually be more widespread within both modern and ancient glacial environments than previously thought.  相似文献   

7.
The Kuannersuit Glacier surged 11 km between 1995 and 1998. The surge resulted in the formation of an ice cored thrust moraine complex constructed by subglacial and proglacial glaciotectonic processes. Four main thrust zones are evident in the glacier snout area with phases of compressional folding and thrusting followed by hydrofracture in response to the build-up of compressional stresses and the aquicludal nature of submarginal permafrost and naled. Various types of stratified debris-rich ice facies occur within the marginal zone: The first (Facies I) comprises laterally continuous strata of ice with sorted sediment accumulations, and is reworked and thrust naled ice. The second is laterally discontinuous stratified debris-rich ice with distinct tectonic structures, and is derived through subglacial extensional deformation and localised regelation (Facies II), whilst the third type is characterised by reworked and brecciated ice associated with the reworking and entrainment of meteoric ice (Facies III). Hydrofracture dykes and sills (Facies IV) cross-cut the marginal ice cored thrust moraines, with their sub-vertically frozen internal contact boundaries and sedimentary structures, suggesting supercooling operated as high-pressure evacuation of water occurred during thrusting, but this is not related to the formation of basal stratified debris-rich ice. Linear distributions of sorted fines transverse to ice flow, and small stratified sediment ridges that vertically cross-cut the ice surface up-ice of the thrust zone relate to sediment migration along crevasse traces and fluvial infilling of crevasses. From a palaeoglaciological viewpoint, marginal glacier tectonics, ice sediment content and sediment delivery mechanisms combine to control the development of this polythermal surge valley landsystem. The bulldozing of proglacial sediments and the folding and thrusting of naled leads to the initial development of the outer zone of the moraine complex. This becomes buried in bulldozed outwash sediment and well-sorted fines through surface ablation of naled. Up-ice of this, the heavily thrust margin becomes buried in sediment melted out from basal debris-rich ice and subglacial diamicts routed along thrusts. These mechanisms combine to deliver sediment to supraglacial localities, and promote the initial preservation of structurally controlled moraines through insulation, and the later development of kettled dead ice terrain.  相似文献   

8.
Large and complete glaciotectonic sequences formed by marine‐terminating glaciers are rarely observed on land, hampering our understanding of the behaviour of such glaciers and the processes operating at their margins. During the Late Weichselian in western Iceland, an actively retreating marine‐terminating glacier resulted in the large‐scale deformation of a sequence of glaciomarine sediments. Due to isostatic rebound since the deglaciation, these formations are now exposed in the coastal cliffs of Belgsholt and Melabakkar‐Ásbakkar in the Melasveit district, and provide a detailed record of past glacier dynamics and the inter‐relationships between glaciotectonic and sedimentary processes at the margin of this marine‐terminating glacier. A comprehensive study of the sedimentology and glaciotectonic architecture of the coastal cliffs reveals a series of subaquatic moraines formed by a glacier advancing from Borgarfjörður to the north of the study area. Analyses of the style of deformation within each of the moraines demonstrate that they were primarily built up by ice‐marginal/proglacial thrusting and folding of marine sediments, as well as deposition and subsequent deformation of ice‐marginal subaquatic fans. The largest of the moraines exposed in the Melabakkar‐Ásbakkar section is over 1.5 km wide and 30 m high and indicates the maximum extent of the Borgarfjörður glacier. Generally, the other moraines in the series become progressively younger towards the north, each designating an advance or stillstand position as the glacier oscillated during its overall northward retreat. During this active retreat, glaciomarine sediments rapidly accumulated in front of the glacier providing material for new moraines. As the glacier finally receded from the area, the depressions between the moraines were infilled by continued glaciomarine sedimentation. This study highlights the dynamics of marine‐terminating glaciers and may have implications for the interpretation of their sedimentological and geomorphological records.  相似文献   

9.
An assemblage of subglacial, ice-terminal and proglacial landforms and sediments provides evidence for the relationship between ice-marginal glacitectonics, sedimentary processes and subglacial and proglacial hydraulic processes at a retreating late Devensian ice margin in north-central Ireland. Deltas were deposited in glacial lakes impounded between the retreating ice margin and the southern Sperrin Mountains, followed by outwash and end moraine formation as the ice margin retreated south. Sediments within the moraines show evidence for ice margin oscillation from two opposing ice margins, including subglacial bedrock rafts and breccias which are separated by glacitectonic shears with silty partings. In adjacent outwash, vertically-disturbed proglacial sands, gravels and silts located in front of moraine positions attest to high hydraulic pressure and subsurface water flow during ice oscillation. The relationship between sedimentary and hydraulic processes in the ice margin region is described by a depositional model which links glacitectonic thrusting and subsurface water flow during ice oscillation to formation of subglacial, ice-terminal and proglacial sediments. The evidence presented in this paper shows that subglacial and proglacial morphosedimentary processes and patterns of sediment deposition are mediated by the presence of proglacial permafrost, which helps direct processes and patterns of groundwater flow.  相似文献   

10.
The sediment–landform associations of the northern Taymyr Peninsula in Arctic Siberia tell a tale of ice sheets advancing from the Kara Sea shelf and inundating the peninsula, probably three times during the Weichselian. In each case the ice sheet had a margin frozen to its bed and an interior moving over a deforming bed. The North Taymyr ice‐marginal zone (NTZ) comprises ice‐marginal and supraglacial landsystems dominated by thrust‐block moraines 2–3 km wide and large‐scale deformation of sediments and ice. Large areas are still underlain by remnant glacier ice and a supraglacial landscape with numerous ice‐walled lakes and kames is forming even today. The proglacial landsystem is characterised by subaqueous (e.g. deltas) or terrestrial (e.g. sandar) environments, depending on location/altitude and time of formation. Dating results (OSL, 14C) indicate that the NTZ was initiated ca. 80 kyr BP during the retreat of the Early Weichselian ice sheet and that it records the maximum limit of a Middle Weichselian glaciation (ca. 65 kyr BP). During both these events, proglacial lakes were dammed by the ice sheets. Part of the NTZ was occupied by a thin Late Weichselian ice sheet (20–12 kyr BP), resulting in subaerial proglacial drainage. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Glacigenic sediments exposed in coastal cliffs cut through undulatory terrain fronting the Last Glacial Maximum laterofrontal moraine at Waterville on the Iveragh Peninsula, southwest Ireland, comprise three lithofacies. Lithofacies 1 and 2 consist of interdigitated, offlapping and superimposed ice‐proximal subaqueous outwash and stacked sequences of cohesionless and cohesive subaqueous debris flows, winnowed lag gravels and coarse‐grained suspension deposits. These are indicative of sedimentation in and around small grounding line fans that prograded from an oscillating glacier margin into a proglacial, interlobate lake. Lithofacies 3 comprises braided river deposits that have undergone significant syn‐sedimentary soft‐sediment deformation. Deposition was likely related to proglacial outwash activity and records the reduction of accommodation space for subaqueous sedimentation, either through the lowering of proglacial water levels or due to basin infilling. The stratigraphic architecture and sedimentology of the moraine at Waterville highlight the role of ice‐marginal depositional processes in the construction of morphostratigraphically significant ‘end moraine’ complexes in Great Britain and Ireland. Traditional ‘tills’ in these moraines are often crudely stratified diamictons and gravelly clinoforms deposited in ice‐proximal subaqueous and subaerial fans. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The melt-out of material contained within englacial thrust planes has been proposed to result in the formation of stacked moraine sequences with characteristic proximal rectilinear slopes. This model has been applied to explain the formation of Scottish Younger Dryas ice-marginal ('hummocky') moraines on the basis of these morphological characteristics. However, no sedimentological data exist to support this proposal. This article reviews hitherto proposed models of 'hummocky' moraine formation and presents detailed geomorphological and sedimentological results from the NW Scottish Highlands with the aims of reconstructing the dynamics of Younger Dryas glaciers and of testing the applicability of the englacial thrusting model. Exposures demonstrate that moraines represent terrestrial ice-contact fans throughout, with a variety of postdepositional deformation structures being identified in most cases, indicating that glacier retreat was incremental and oscillatory; proximal rectilinear slopes are interpreted as ice-contact faces formed after ice support was withdrawn during retreat. This evidence strongly suggests a temperate glacier regime and short glacier response times similar to those in present-day SW Norway or Iceland. It contradicts the thrusting model and the proposal that Svalbard might form a suitable analogue for Younger Dryas moraines in Scotland.  相似文献   

13.
This study describes changes to the proglacial drainage network of Skaftafellsjökull, Iceland from 1998 to 2011. Proglacial landscapes are highly sensitive to glacier retreat, and the retreat of glaciers around the world has accelerated since the mid‐1990s. Skaftafellsjökull has retreated at an average rate of 53 m per year since 1999. From 1999 to 2003, the river incised and formed a sequence of now abandoned channels and fluvial terraces extending ~1 km downstream from the glacier. Retreat of the glacier from an over‐deepened ice‐contact slope meant that there was a positive correlation between the distance of glacier retreat and the amount of fluvial incision. Incision was episodic, occurring annually in response to drainage reactivation and reorganization. On an annual basis, the rate of retreat is moderately negatively correlated with the rate of incision. This is partly because the ice‐contact slope decreases away from the position of maximum glacier extent, and also because more sediment is released with faster retreat, counteracting the effect of retreat down an ice‐contact slope. From 2003 onwards, proximal terrace formation ceased, as a proglacial lake became established. Downstream of the lake outlet further incision deepened the channel, with most change occurring during a flood in 2006, where incision in the upstream confined reach was accompanied by downstream aggradation and terrace formation. These observations indicate that proglacial changes in response to glacier retreat are a result of the interactions of river channel incision and terrace formation, aggradation, lake development, and flooding, which together control river channel changes, sediment redistribution and sandur stratigraphy.  相似文献   

14.
A difference in the size of Neoglacial lateral moraines on either side of a valley axis (within-valley asymmetry of lateral moraine development) is described. Analysis of clast roundness has revealed subangular material in latero-terminal and terminal moraines; lateral moraines, however, exhibit a compositional gradient of increasing angularity with distance from the former glacier snout. Comparisons with clasts of known origin suggest that this 'roundness gradient' may be explained with reference to either or both of two hypotheses: (1) a variable proportion of supraglacial (or englacial) to subglacial transported material; and (2) the variable composition of regolith incorporated by a push mechanism from the valley sides. Within-valley asymmetry is inferred to result where the supply of debris to lateral moraines from these sources is unequal either side of a valley axis. Both interpretations are also consistent with the relatively large size of latero-terminal sections of end moraines. In order to account for the discrepancy between moraine size and apparent debris supply rates, it is suggested that the largest lateral moraines may have been formed over a longer time scale than the 'Little Ice Age', and that reworking of deposits may have occurred. The supply of debris to the north-facing lateral moraine at Nordre Illåbreen has been so great that it has developed into a rock glacier; this suggests the possibility that subglacial material and valley-side regolith, as well as supraglacial material, contributes to the formation of ice-cored rock glaciers.  相似文献   

15.
De Geer moraine ridges occur in abundance in the coastal zone of northern Sweden, preferentially in areas with proglacial water depths in excess of 150 m at deglaciation. From detailed sedimentological and structural investigations in machine‐dug trenches across De Geer ridges it is concluded that the moraines formed due to subglacial sediment advection to the ice margin during temporary halts in grounding‐line retreat, forming gradually thickening sediment wedges. The proximal part of the moraines were built up in submarginal position as stacked sequences of deforming bed diamictons, intercalated with glaciofluvial canal‐infill sediments, whereas the distal parts were built up from the grounding line by prograding sediment gravity‐flow deposits, distally interfingering with glaciolacustrine sediments. The rapid grounding‐line retreat (ca. 400 m yr?1) was driven by rapid calving, in turn enhanced by fast iceflow and marginal thinning of ice due to deforming bed conditions. The spatial distribution of the moraine ridges indicates stepwise retreat of the grounding line. It is suggested that this is due to slab and flake calving of the ice cliff above the waterline, forming a gradually widening subaqueous ice ledge which eventually breaks off to a new grounding line, followed by regained sediment delivery and ridge build‐up. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
We present results from three geophysical campaigns using high‐resolution sub‐bottom profiling to image sediments deposited in Loch Ness, Scotland. Sonar profiles show distinct packages of sediment, providing insight into the loch's deglacial history. A recessional moraine complex in the north of the loch indicates initial punctuated retreat. Subsequent retreat was rapid before stabilisation at Foyers Rise formed a large stillstand moraine. Here, the calving margin produced significant volumes of laminated sediments in a proglacial fjord‐like environment. Subsequent to this, ice retreated rapidly to the southern end of the loch, where it again deposited a sequence of proglacial laminated sediments. Sediment sequences were then disturbed by the deposition of a thick gravel layer and a large turbidite deposit as a result of a jökulhlaup from the Spean/Roy ice‐dammed lake. These sediments are overlain by a Holocene sheet drape. Data indicate: (i) a former tributary of the Moray Firth Ice Stream migrated back into Loch Ness as a major outlet glacier with a calving margin in a fjord‐like setting; (ii) there was significant sediment supply to the terminus of this outlet glacier in Loch Ness; and (iii) that jökulhlaups are important for sediment supply into proglacial fjord/lake environments and may compose >20% of proglacial sedimentary sequences. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Burki, V., Hansen, L., Fredin, O., Andersen, T. A., Beylich, A. A., Jaboyedoff, M., Larsen, E. & Tønnesen, J.‐ F. 2009: Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway. Boreas, Vol. 39, pp. 551–566. 10.1111/j.1502‐3885.2009.00133.x. ISSN 0300‐9483 Bødalsbreen is an outlet glacier of the Jostedalsbreen Ice Field in western Norway. Nine moraine ridges formed during and after the maximum extent of the Little Ice Age (LIA). The stratigraphy of proglacial sediments in the Bødalen basin inside the LIA moraines is examined, and corresponding sediment volumes are calculated based on georadar surveys and seismic profiling. The total erosion rates (etot) by the glacier are determined for the periods AD 1650–1930 and AD 1930–2005 as 0.8 ± 0.4 mm/yr and 0.7 ± 0.3 mm/yr, respectively. These rates are based on the total amount of sediment delivered to the glacier margin. The values are almost one order of magnitude higher than total erosion rates previously calculated for Norwegian glaciers. This is explained by the large amount of pre‐existing sediment that was recycled by Bødalsbreen. Thus, the total erosion rate must be considered as a composite of eroded bedrock and of removed pre‐existing sediments. The total erosion rate is likely to vary with time owing to a decreasing volume of easily erodible, unconsolidated sediment and till under the glacier. A slight increase in the subglacial bedrock erosion is expected owing to the gradually increasing bedrock surface area exposed to subglacial erosion.  相似文献   

18.
《Quaternary Science Reviews》2007,26(5-6):743-758
Detailed examination of the Tekapo Formation in the Tasman Valley, New Zealand has identified 20 facies, and five facies associations. These associations are delta foresets and bottomsets, sediment density flows, ice-contact lake sediments with ice-rafted debris and resedimentation deposits, and outwash gravels. Interpretation of the sediment-landform associations informed by observations at modern glacier termini suggests that the Late Pleistocene Tekapo Formation moraines have been formed by downwasting of a more expanded Tasman Glacier. During the early stages of glacier retreat, ponds on the glacier surface develop into thermokarst lakes which enlarge and coalesce to form a large supraglacial lake. Continued downwasting causes the lake outlet river to entrench into the impounding latero-frontal ice-cored moraine, lowering the lake level. This exposes lake-bottom sediments and forms shorelines on the proximal slopes of the ice-cored moraine. As the ice-cored moraine melts, these lake sediments are deformed and deposited against the Mt. John moraine. The observations and interpretations reported here suggest the Late Pleistocene end moraine is a constructional feature not a structural (glaciotectonic) feature as suggested by previous studies.  相似文献   

19.
Approximately 35 parallel, discontinuous glacial ridges occur in an area of about 100 km2 in north‐central Wisconsin. The ridges are located between about 6 and 15 km north (formerly up‐ice) of the maximum extent of the Wisconsin Valley Lobe of the Laurentide Ice Sheet. The ridges are between 1 and 4 m high, up to 1 km long, and spaced between 30 and 80 m apart. They are typically asymmetrical with a steep proximal (ice‐contact) slope and gentle distal slope. The ridges are composed primarily of subglacial till on their proximal sides and glacial debris‐flow sediment on the distal sides. In some ridges the till and debris‐flow sediment are underlain by sorted sediment that was deformed in the former direction of ice flow. We interpret the ridges to be recessional moraines that formed as the Wisconsin Valley Lobe wasted back from its maximum extent, with each ridge having formed by a sequence of (1) pushing of sorted ice‐marginal sediment, (2) partial overriding by the glacier and deposition of subglacial till on the proximal side of the ridge, and (3) deposition of debris‐flow sediment on the distal side of the ridge after the frozen till at the crest of the ridge melted. The moraines are similar to annual recessional moraines described at several modern glaciers, especially the northern margin of Myrdalsjokull, Iceland. Thus, we believe the ridges probably formed as a result of minor winter advances of the ice margin during deglaciation. Based on this assumption, we calculate the net rate of ice‐surface lowering of the Wisconsin Valley Lobe during the period when the moraines formed. Various estimates of ice‐surface slope and rates of ice‐margin retreat yield a wide range of values for ice‐surface lowering (1.7–14.5 m/yr). Given that ablation rates must exceed those of ice‐surface lowering, this range of values suggests relatively high summer temperatures along the margin of the Wisconsin Valley Lobe when it began retreating from its maximum extent. In addition, the formation of annual moraines indicates that the glacier toe was thin, the ice surface was clean, and the ice margin experienced relatively cold winters.  相似文献   

20.
A model for sedimentation by surging glaciers is developed from analysis of the debris load, sedimentary processes, and proglacial stratigraphy observed at the Icelandic surging glacier, Eyjabakkajökull. Three aspects of the behavior of surging glaciers explain the distinctive landformsediment associations which they may produce: (a) sudden loading of proglacial sediments during rapid glacier advances results in the buildup of excess pore pressures, failure, and glacitectonic deformation of the overridden sediments; (b) reactivation of stagnant marginal ice by the downglacier propagation of surges is associated with large longitudinal compressive stresses. These induce intense folding and thrusting during which basal debris-rich ice is elevated into an englacial position in a narrow marginal zone. As the terminal area of the glacier stagnates between surges, debris from this ice is released supraglacially and deposited by meltout and sediment flows; (c) local variations in overburden pressure beneath stagnant, crevassed ice cause subglacial lodgement tills, which are sheared during surges, to flow into open crevasses and form “crevasse-fill” ridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号