首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the first detailed sedimentological study of annual moraines formed by an alpine valley glacier. The moraines have been forming since at least AD 1980 by a subsidiary lobe of Gornergletscher, Switzerland that advances up a reverse bedrock slope. They reach heights of 0.5–1.5 m, widths of up to 6 m and lengths of up to several hundreds of metres. Sediments in these moraines are composed of proglacial outwash and debris flow units; subglacial traction till is absent entirely. Based on four representative sections, three genetic process combinations have been identified: (i) inefficient bulldozing of a gently sloping ice margin transfers proglacial sediments onto the ice, causing differential ablation and dead‐ice incorporation upon retreat; (ii) terrestrial ice‐contact fans are formed by the dumping of englacial and supraglacial material from point sources such as englacial conduit fills; debris flows and associated fluvial sediments are stacked against a temporarily stationary margin at the start, and deformed during glacier advance in the remainder, of the accumulation season; (iii) a steep ice margin without supraglacial input leads to efficient bulldozing and deformation of pre‐existing foreland sediments by wholesale folding. Ice‐surface slope appears to be a key control on the type of process responsible for moraine formation in any given place and year. The second and third modes result in stable and higher moraines that have a higher preservation potential than those containing dead ice. Analysis of the spacing and climatic records at Gornergletscher reveals that winter temperature controls marginal retreat and hence moraine formation. However, any climatic signal is complicated by other factors, most notably the presence of a reverse bedrock slope, so that the extraction of a clear climatic signal is not straightforward. This study highlights the complexity of annual moraine formation in high‐mountain environments and suggests avenues for further research.  相似文献   

2.
Approximately 35 parallel, discontinuous glacial ridges occur in an area of about 100 km2 in north‐central Wisconsin. The ridges are located between about 6 and 15 km north (formerly up‐ice) of the maximum extent of the Wisconsin Valley Lobe of the Laurentide Ice Sheet. The ridges are between 1 and 4 m high, up to 1 km long, and spaced between 30 and 80 m apart. They are typically asymmetrical with a steep proximal (ice‐contact) slope and gentle distal slope. The ridges are composed primarily of subglacial till on their proximal sides and glacial debris‐flow sediment on the distal sides. In some ridges the till and debris‐flow sediment are underlain by sorted sediment that was deformed in the former direction of ice flow. We interpret the ridges to be recessional moraines that formed as the Wisconsin Valley Lobe wasted back from its maximum extent, with each ridge having formed by a sequence of (1) pushing of sorted ice‐marginal sediment, (2) partial overriding by the glacier and deposition of subglacial till on the proximal side of the ridge, and (3) deposition of debris‐flow sediment on the distal side of the ridge after the frozen till at the crest of the ridge melted. The moraines are similar to annual recessional moraines described at several modern glaciers, especially the northern margin of Myrdalsjokull, Iceland. Thus, we believe the ridges probably formed as a result of minor winter advances of the ice margin during deglaciation. Based on this assumption, we calculate the net rate of ice‐surface lowering of the Wisconsin Valley Lobe during the period when the moraines formed. Various estimates of ice‐surface slope and rates of ice‐margin retreat yield a wide range of values for ice‐surface lowering (1.7–14.5 m/yr). Given that ablation rates must exceed those of ice‐surface lowering, this range of values suggests relatively high summer temperatures along the margin of the Wisconsin Valley Lobe when it began retreating from its maximum extent. In addition, the formation of annual moraines indicates that the glacier toe was thin, the ice surface was clean, and the ice margin experienced relatively cold winters.  相似文献   

3.
Glacier thermal regime is shown to have a significant influence on the formation of ice‐marginal moraines. Annual moraines at the margin of Midtdalsbreen are asymmetrical and contain sorted fine sediment and diamicton layers dipping gently up‐glacier. The sorted fine sediments include sands and gravels that were initially deposited fluvially directly in front of the glacier. Clast‐form data indicate that the diamictons have a mixed subglacial and fluvial origin. Winter cold is able to penetrate through the thin (<10 m) ice margin and freeze these sediments to the glacier sole. During winter, sediment becomes elevated along the wedge‐shaped advancing glacier snout before melting out and being deposited as asymmetrical ridges. These annual moraines have a limited preservation potential of ~40 years, and this is reflected in the evolution of landforms across the glacier foreland. Despite changing climatic conditions since the Little Ice Age and particularly within the last 10 years when frontal retreat has significantly speeded up, glacier dynamics have remained relatively constant with moraines deposited via basal freeze‐on, which requires stable glacier geometry. While the annual moraines on the eastern side of Midtdalsbreen indicate a slow steady retreat, the western foreland contains contrasting ice‐stagnation topography, highlighting the importance of local forcing factors such as shielding, aspect and debris cover in addition to changing climate. This study indicates that, even in temperate glacial environments, restricted or localised areas of cold‐based ice can have a significant impact on the geomorphic imprint of the glacier system and may actually be more widespread within both modern and ancient glacial environments than previously thought.  相似文献   

4.
Only a few chronological constraints on Lateglacial and Early Holocene glacier variability in the westernmost Alps have hitherto been obtained. In this paper, moraines of two palaeoglaciers in the southern Écrins massif were mapped. The chronology of the stabilization of selected moraines was established through the use of 10Be cosmic ray exposure (CRE) dating. The equilibrium line altitude (ELA) during moraine deposition was reconstructed assuming an accumulation area ratio (AAR) of 0.67. Ten pre‐Little Ice Age (LIA) ice‐marginal positions of the Rougnoux palaeoglacier were identified and seven of these have been dated. The 10Be CRE age of a boulder on the lowermost sampled moraine indicates that the landform may have been first formed during a period of stable glaciers at around 16.2±1.7 ka (kiloyears before AD 2017) or that the sampled boulder experienced pre‐exposure to secondary cosmic radiation. The moraine was re‐occupied or, alternatively, shaped somewhat before 12.2±0.6 ka when the ELA was lowered by 230 m relative to the LIA ELA. At least six periods of stable ice margins occurred thereafter when the ELA was 220–160 m lower than during the LIA. The innermost dated moraine stabilized at or before 10.9±0.7 ka. Three 10Be CRE ages from a moraine of the Prelles palaeoglacier indicate a period of stationary ice margins at or before 10.9±0.6 ka when the ELA was lowered by 160 m with respect to the end of the LIA. The presented 10Be CRE ages are in good agreement with those of moraines that have been attributed to the Egesen stadial. Assuming unchanged precipitation, summer temperature in the southern Écrins massif at ~12 ka must have been at least 2 °C lower relative to the LIA.  相似文献   

5.
Englacial debris structures, morphology and sediment distribution at the frontal part and at the proglacial area of the Scott Turnerbreen glacier have been studied through fieldwork and aerial photograph interpretation. The main emphasis has been on processes controlling the morphological development of the proglacial area. Three types of supraglacial ridges have been related to different types of englacial debris bands. We suggest that the sediments were transported in thrusts, along flow lines and in englacial meltwater channels prior to, and during a surge in, the 1930s, before the glacier turned cold. Melting-out of englacial debris and debris that flows down the glacier front has formed an isolating debris cover on the glacier surface, preventing further melting. As the glacier wasted, the stagnant, debris-covered front became separated from the glacier and formed icecored moraine ridges. Three moraine ridges were formed outside the present ice-front. The further glacier wastage formed a low-relief proglacial area with debris-flow deposits resting directly on glacier ice. Melting of this buried ice initiated a second phase of slides and debris flows with a flow direction independent of the present glacier surface. The rapid disintegration of the proglacial morphology is mainly caused by slides and stream erosion that uncover buried ice and often cause sediments to be transported into the main river and out of the proglacial area. Inactive stream channels are probably one of the morphological elements that have the best potential for preservation in a wasting ice-cored moraine complex and may indicate former ice-front positions.  相似文献   

6.
Iceland's glaciers are particularly sensitive to climate change, and their margins respond to trends in air temperature. Most Icelandic glaciers have been in retreat since c. 1990, and almost all since 1995. Using ice‐front measurements, photographic and geomorphological evidence, we examined the record of ice‐front fluctuations of Virkisjökull–Falljökull, a steep high‐mass‐turnover outlet glacier in maritime SE Iceland, in order to place recent changes in a longer‐term (80‐year) context. Detailed geomorphological mapping identifies two suites of annual push moraines: one suite formed between c. 1935 and 1945, supported by lichenometric dating; the other between 1990 and 2004. Using moraine spacing as a proxy for ice‐front retreat rates, we show that average retreat rates during the 1930s and 1940s (28 m a?1) were twice as high as during the period from 1990 to 2004 (14 m a?1). Furthermore, we show that both suites of annual moraines are associated with above‐average summer temperatures. Since 2005, however, retreat rates have increased considerably – averaging 35 m a?1 – with the last 5 years representing the greatest amount of ice‐front retreat (~190 m) in any 5‐year period since measurements began in 1932. We propose that this recent, rapid, ice‐front retreat and thinning in a decade of unusually warm summers has resulted in a glaciological threshold being breached, with subsequent large‐scale stagnation of the glacier terminus (i.e. no forward movement) and the cessation of annual push‐moraine formation. Breaching this threshold has, we suggest, caused further very rapid non‐uniform retreat and downwasting since 2005 via a system feedback between surface melting, glacier thinning, decreased driving stress and decreased forward motion.  相似文献   

7.
Holocene glacier variations pre‐dating the Little Ice Age are poorly known in the western Alps. Studied for two centuries, the Miage morainic amphitheatre (MMA) is composed of three subconcentric sets of c. 25 moraines. Because of its location and of a dominant mode of morainic accretion, the MMA is a well‐preserved marker of the glacier dynamics during the Neoglacial. Radiocarbon dates were obtained by digging and coring in inter‐ morainic depressions of the MMA and through a deep core drilling in a dammed‐lake infill (Combal); complementary data for the inner MMA were obtained by lichenometry and dendrochronology. Radiocarbon chronology shows that (i) the MMA not only pre‐dates the Little Ice Age (LIA), but was built at least since 5029–4648 cal. yr BP (beginning of the Neoglacial); (ii) outer sets of moraines pre‐date 2748–2362 cal. yr BP; (iii) the MMA dammed the Lake Combal from 4.8 to 1.5 cal. kyr BP, while lakes/ponds formed inside the moraines (e.g. from 2147–1928 to 1506–1295 cal. yr BP). The ‘Neoglacial model’ proposed here considers that the MMA formed during the whole Neoglacial by a succession of glacier advances at 4.8–4.6 cal. ky BP (early Neoglacial), around 2.5 cal. ky BP (end of Göschener I), at AD 600–900 (end of Göschener II) and during the LIA, separated by raising phases of the right‐lateral moraine by active dumping because of the Miage debris cover.  相似文献   

8.
The position of the Inland Ice margin during the late Wisconsin-Würm glaciation (ca. 15,000 yr BP) is probably marked by offshore banks (submarine moraines?) in the Davis Strait. The history of the Inland Ice since the late Wisconsin-Würm can be divided into four principal phases: (1) Relatively slow retreat from the offshore banks occurred at an average rate of approximately 1 km/100 yr until ca. 10,000 yr BP (Younger Dryas?) when the Taserqat moraine system was formed by a readvance. (2) At ca. 9500 yr BP, the rate of retreat increased markedly to about 3 km/100 yr, and although nearly 100 km of retreat occurred by ca. 6500 yr BP, it was punctuated by frequent regional reexpansions of the Inland Ice that formed extensive moraine systems at ca. 8800-8700 yr BP (Avatdleq-Sarfartôq moraines), 8400-8100 yr BP (Angujârtorfik-Fjord moraines), 7300 yr BP (Umîvît moraines), and 7200-6500 yr BP (Keglen-Mt, Keglen moraines). (3) Between 6500 and 700 yr BP, discontinous ice-margin deposits and ice-disintegration features were formed during retreat, which may have continued until the ice margin was near or behind its present position by ca. 6000 yr BP. Most of the discontinuous ice-margin deposits occur within 5–10 km of the present ice margin, and may have been formed by two main phases of readvance at ca. 4800-4000 yr BP and 2500-2000 yr BP. (4) Since a readvance at ca. 700 yr BP, the Inland Ice margin has undergone several minor retreats and readvances resulting in deposition of numerous closely spaced moraines within about 3 km of the present ice margin. The young moraines are diffieulto to correlate regionally, but several individual moraines have the following approximate ages: A.D. 1650, 1750, and 1880–1920.Inland Ice fluctuations in West Greenland were very closely paralleled by Holocene glacial events in East Greenland and the eastern Canadian Aretic. Such similarity of glacier behavior over a large area strongly suggests that widespread climatic change was the direct cause of Holocene glacial fluctuations. Moreover, historical advances of the Inland Ice margin followed slight temperature decreases by no more than a few decades, and 18O data from Greenland ice cores show that slight temperature decreases occurred frequently throughout the Holocene. Therefore, we conclude that construction of the major Holocene moraine systems in West Greenland was caused by slight temperature decreases, which decreased rates of ablation and thereby produced practically immediate advances of the ice sheet margin, but did not necessarily affect the long-term equilibrium of the ice sheet.  相似文献   

9.
Controlled moraines are supraglacial debris concentrations that become hummocky moraine upon de-icing and possess clear linearity due to the inheritance of the former pattern of debris-rich folia in the parent ice. Linearity is most striking wherever glacier ice cores still exist but it increasingly deteriorates with progressive melt-out. As a result, moraine linearity has a low preservation potential in deglaciated terrains but hummocky moraine tracts previously interpreted as evidence of areal stagnation may instead record receding polythermal glacier margins in which debris-rich ice was concentrated in frozen toe zones. Recent applications of modern glaciological analogues to palaeoglaciological reconstructions have implied that: (a) controlled moraine development can be ascribed to a specific process (e.g. englacial thrusting or supercooling); and (b) controlled moraine preservation potential is good enough to imply the occurrence of the specific process in former glacier snouts (e.g. ancient polythermal or supercooled snouts). These assumptions are tested using case studies of controlled moraine construction in which a wide range of debris entrainment and debris-rich ice thickening mechanisms are seen to produce the same geomorphic features. Polythermal conditions are crucial to the concentration of supraglacial debris and controlled moraines in glacier snouts via processes that are most effective at the glacier–permafrost interface. End moraines lie on a process–form continuum constrained by basal thermal regime. The morphological expression of englacial structures in controlled moraine ridges is most striking while the moraines retain ice cores, but the final deposits/landforms tend to consist of discontinuous transverse ridges with intervening hummocks, preserving only a weak impression of the former englacial structure. These are arranged in arcuate zones of hummocky moraine up to 2 km wide containing ice-walled lake plains and lying down flow of streamlined landforms produced by warm-based ice. A variety of debris entrainment mechanisms can produce the same geomorphic signature. Spatial and temporal variability in process–form relationships will lead to the sequential development of different types of end moraines during the recession of a glacier or ice sheet margin.  相似文献   

10.
Eyles, N., Eyles, C., Menzies, J. & Boyce, J. 2010: End moraine construction by incremental till deposition below the Laurentide Ice Sheet: Southern Ontario, Canada. Boreas, 10.1111/j.1502‐3885.2010.00171.x. ISSN 0300‐9483. Just after 13 300 14C a BP in central Canada, the retreating Ontario lobe of the Laurentide Ice Sheet briefly re‐advanced westwards through the Lake Ontario basin to build a large end moraine. The Trafalgar Moraine (27 km long, 4 km wide) is composed of a distinctly red‐coloured silt‐rich till (Wildfield Till, up to 16.5 m thick) formed by the reworking of proglacial lake deposits and soft shale bedrock. The moraine has a pronounced ramp‐like longitudinal form passing upglacier into fluted till resting on exposed shale. Analysis of water well stratigraphic data, drilled sediment cores, downhole gamma‐ray logs and exposures in deep test pits shows that within the moraine the Wildfield Till is built of superposed beds up to 7 m in thickness. These are inferred to result from the repeated incremental deposition of fine‐grained debris being moved towards the ice margin as a deforming bed such as identified at modern glaciers. A total till volume of 0.81 km3 was produced in a very brief time‐span along a transport path probably no greater than 10 km in length. Subglacial mixing of pre‐existing sediment and soft shale was clearly a very effective process for generating and moving large volumes of till to the ice margin. Similar till‐dominated end moraines occur widely around the margins of the Great Lake basins, where the markedly lobate margin of the retreating Laurentide Ice Sheet re‐advanced repeatedly into proglacial lakes and over fine‐grained sediment. This suggests the wider applicability of the till transport and incremental depositional model presented here.  相似文献   

11.
Moraine sequences in front of seven relatively low‐altitude glaciers in the Breheimen region of central southern Norway are described and dated using a ‘multi‐proxy’ approach to moraine stratigraphy. Lichenometric dating, based on the Rhizocarpon subgenus, is used to construct a composite moraine chronology, which indicates eight phases of synchronous moraine formation: AD 1793–1799, 1807–1813, 1845–1852, 1859–1862, 1879–1885, 1897–1898, 1906–1908 and 1931–1933. Although the existence of a few cases of older moraines, possibly dating from earlier in the eighteenth or late in the seventeenth centuries cannot be ruled out by lichenometry, Schmidt hammer R‐values from boulders on outermost moraine ridges suggest an absence of Holocene moraines older than the Little Ice Age. Twenty‐three radiocarbon dates from buried soils and peat associated with outermost moraines at three glaciers—Tverreggibreen, Storegrovbreen and Greinbreen—also indicate that the ‘Little Ice Age’ glacier maximum was the Neoglacial maximum at most if not all glaciers. Several maximum age estimates for the Little Ice Age glacier maximum range between the fifteenth and seventeenth centuries, with the youngest from a buried soil being AD 1693. A pre‐Little Ice Age maximum cannot be ruled out at Greinbreen, however, where the age of buried peat suggests the outermost moraine dates from AD 981–1399 (at variance with the lichenometric evidence). Glaciofluvial stratigraphy at Tverreggibreen provides evidence for minor glacier advances about AD 655–963 and AD 1277–1396, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Neoglacial and Little Ice Age (LIA) limits occur within 2km of the Inland Ice margin in the Kangerlussuaq area on west Greenland. The LIA limit is clearly demarcated by ice-cored and non-ice-cored moraines, out-wash surfaces and trimlines. Rhizocarpon sp. thalli of ≥16mm on these landforms indicate a 1-2km retreat of the Inland Ice in the past c. 100 years, coincident with peripheral thinning of the ice. An older neoglacial moraine host of Rhizocarpon sp. thalli <40 mm indicates a minimum limiting age of <400 BP, whereas Optically Stimulated Luminescence (OSL) ages on aeolian silt capping the moraine yield close limiting ages of c. 2000 BP. Aeolian silt deposition beyond neoglacial limits yields OSL ages of c. 3000 BP, potentially coeval with advance of the Inland Ice. Aeolian sedimentation and the inferred age of the moraine are coincident with pronounced cooling inferred from palaeolimnological records from west and south Greenland. This neoglacial event at c. 2000 BP is probably of similar extent to the LIA maximum, because of the paucity of preserved moraine remnants.  相似文献   

13.
We present a chronology of late Pleistocene deglaciation and Neoglaciation for two valleys in the north‐central Brooks Range, Alaska, using cosmogenic 10Be exposure dating. The two valleys show evidence of ice retreat from the northern range front before ~16–15 ka, and into individual cirques by ~14 ka. There is no evidence for a standstill or re‐advance during the Lateglacial period, indicating that a glacier advance during the Younger Dryas, if any, was less extensive than during the Neoglaciation. The maximum glacier expansion during the Neoglacial is delimited by moraines in two cirques separated by about 200 km and dated to 4.6 ± 0.5 and 2.7 ± 0.2 cal ka BP. Both moraine ages agree with previously published lichen‐inferred ages, and confirm that glaciers in the Brooks Range experienced multiple advances of similar magnitude throughout the late Holocene. The similar extent of glaciers during the middle Holocene and the Little Ice Age may imply that the effect of decreasing summer insolation was surpassed by increasing aridity to limit glacier growth as Neoglaciation progressed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Many moraines formed between Daduka and Chibai in the Tsangpo River valley since Middle Pleistocene. A prominent set of lacustrine and alluvial terraces on the valley margin along both the Tsangpo and Nyang Rivers formed during Quaternary glacial epoch demonstrate lakes were created by damming of the river. Research was conducted on the geological environment, contained sediments, spatial distribution, timing, and formation and destruction of these paleolakes. The lacustrine sediments 14C (10537±268 aBP at Linzhi Brick and Tile Factory, 22510±580 aBP and 13925±204 aBP at Bengga, 21096±1466 aBP at Yusong) and a series of ESR (electron spin resonance) ages at Linzhi town and previous data by other experts, paleolakes persisted for 691~505 kaBP middle Pleistocene ice age, 75–40 kaBP the early stage of last glacier, 27–8 kaBP Last Glacier Maximum (LGM), existence time of lakes gradually shorten represents glacial scale and dam moraine supply potential gradually cut down, paleolakes and dam scale also gradually diminished. This article calculated the average lacustrine sedimentary rate of Gega paleolake in LGM was 12.5 mm/a, demonstrates Mount Namjagbarwa uplifted strongly at the same time, the sedimentary rate of Gega paleolake is more larger than that of enclosed lakes of plateau inland shows the climatic variation of Mount Namjagbarwa is more larger and plateau margin uplifted more quicker than plateau inland. This article analyzed formation and decay cause about the Zelunglung glacier on the west flank of Mount Namjagbarwa got into the Tsangpo River valley and blocked it for tectonic and climatic factors. There is a site of blocking the valley from Gega to Chibai. This article according to moraines and lacustrine sediments yielded paleolakes scale: the lowest lake base altitude 2850 m, the highest lake surface altitude 3585 m, 3240 m and 3180 m, area 2885 km2, 820 km2 and 810 km2, lake maximum depth of 735 m, 390 m and 330 m. We disclose the reason that previous experts discovered there were different age moraines dividing line of altitude 3180 m at the entrance of the Tsangpo Grand Canyon is dammed lake erosive decay under altitude 3180 m moraines in the last glacier era covering moraines in the early ice age of late Pleistocene, top 3180 m in the last glacier moraine remained because ancient dammed lakes didn’t erode it under 3180 m moraines in the early ice age of late Pleistocene exposed. The reason of the top elevation 3585 m moraines in the middle Pleistocene ice age likes that of altitude 3180 m. There were three times dammed lakes by glacier blocking the Tsangpo River during Quaternary glacial period. During other glacial and interglacial period the Zelunglung glacier often extended the valley but moraine supplemental speed of the dam was smaller than that of fluvial erosion and moraine movement, dam quickly disappeared and didn’t form stable lake.  相似文献   

15.
We reconstructed a chronology of glaciation spanning from the Late Pleistocene through the late Holocene for Fish Lake valley in the north‐eastern Alaska Range using 10Be surface exposure dating and lichenometry. After it attained its maximum late Wisconsin extent, the Fish Lake valley glacier began to retreat ca. 16.5 ka, and then experienced a readvance or standstill at 11.6 ± 0.3 ka. Evidence of the earliest Holocene glacial activity in the valley is a moraine immediately in front of Little Ice Age (LIA) moraines and is dated to 3.3–3.0 ka. A subsequent advance culminated at ca. AD 610–900 and several LIA moraine crests date to AD 1290, 1640, 1860 and 1910. Our results indicate that 10Be dating from high‐elevation sites can be used to help constrain late Holocene glacial histories in Alaska, even when other dating techniques are unavailable. Close agreement between 10Be and lichenometric ages reveal that 10Be ages on late Holocene moraines may be as accurate as other dating methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A difference in the size of Neoglacial lateral moraines on either side of a valley axis (within-valley asymmetry of lateral moraine development) is described. Analysis of clast roundness has revealed subangular material in latero-terminal and terminal moraines; lateral moraines, however, exhibit a compositional gradient of increasing angularity with distance from the former glacier snout. Comparisons with clasts of known origin suggest that this 'roundness gradient' may be explained with reference to either or both of two hypotheses: (1) a variable proportion of supraglacial (or englacial) to subglacial transported material; and (2) the variable composition of regolith incorporated by a push mechanism from the valley sides. Within-valley asymmetry is inferred to result where the supply of debris to lateral moraines from these sources is unequal either side of a valley axis. Both interpretations are also consistent with the relatively large size of latero-terminal sections of end moraines. In order to account for the discrepancy between moraine size and apparent debris supply rates, it is suggested that the largest lateral moraines may have been formed over a longer time scale than the 'Little Ice Age', and that reworking of deposits may have occurred. The supply of debris to the north-facing lateral moraine at Nordre Illåbreen has been so great that it has developed into a rock glacier; this suggests the possibility that subglacial material and valley-side regolith, as well as supraglacial material, contributes to the formation of ice-cored rock glaciers.  相似文献   

17.
Despite a long history of glaciological research, the palaeo‐environmental significance of moraine systems in the Kebnekaise Mountains, Sweden, has remained uncertain. These landforms offer the potential to elucidate glacier response prior to the period of direct monitoring and provide an insight into the ice‐marginal processes operating at polythermal valley glaciers. This study set out to test existing interpretations of Scandinavian ice‐marginal moraines, which invoke ice stagnation, pushing, stacking/dumping and push‐deformation as important moraine forming processes. Moraines at Isfallsglaciären were investigated using ground‐penetrating radar to document the internal structural characteristics of the landform assemblage. Radar surveys revealed a range of substrate composition and reflectors, indicating a debris‐ice interface and bounding surfaces within the moraine. The moraine is demonstrated to contain both ice‐rich and debris‐rich zones, reflecting a complex depositional history and a polygenetic origin. As a consequence of glacier overriding, the morphology of these landforms provides a misleading indicator of glacial history. Traditional geochronological methods are unlikely to be effective on this type of landform as the fresh surface may post‐date the formation of the landform following reoccupation of the moraine rampart by the glacier. This research highlights that the interpretation of geochronological data sets from similar moraine systems should be undertaken with caution.  相似文献   

18.
Burki, V., Hansen, L., Fredin, O., Andersen, T. A., Beylich, A. A., Jaboyedoff, M., Larsen, E. & Tønnesen, J.‐ F. 2009: Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway. Boreas, Vol. 39, pp. 551–566. 10.1111/j.1502‐3885.2009.00133.x. ISSN 0300‐9483 Bødalsbreen is an outlet glacier of the Jostedalsbreen Ice Field in western Norway. Nine moraine ridges formed during and after the maximum extent of the Little Ice Age (LIA). The stratigraphy of proglacial sediments in the Bødalen basin inside the LIA moraines is examined, and corresponding sediment volumes are calculated based on georadar surveys and seismic profiling. The total erosion rates (etot) by the glacier are determined for the periods AD 1650–1930 and AD 1930–2005 as 0.8 ± 0.4 mm/yr and 0.7 ± 0.3 mm/yr, respectively. These rates are based on the total amount of sediment delivered to the glacier margin. The values are almost one order of magnitude higher than total erosion rates previously calculated for Norwegian glaciers. This is explained by the large amount of pre‐existing sediment that was recycled by Bødalsbreen. Thus, the total erosion rate must be considered as a composite of eroded bedrock and of removed pre‐existing sediments. The total erosion rate is likely to vary with time owing to a decreasing volume of easily erodible, unconsolidated sediment and till under the glacier. A slight increase in the subglacial bedrock erosion is expected owing to the gradually increasing bedrock surface area exposed to subglacial erosion.  相似文献   

19.
In the Schiantala Valley of the Maritime Alps, the relationship between a till-like body and a contiguous rock glacier has been analyzed using geomorphologic, geoelectric and ice-petrographic methodologies. DC resistivity tomographies undertaken in the till and in the rock glacier show the presence of buried massive ice and ice-rich sediments, respectively. Ice samples from a massive ice outcrop show spherical gas inclusions and equidimensional ice crystals that are randomly orientated, confirming the typical petrographic characteristics of sedimentary ice. The rock glacier formation began after a phase of glacier expansion about 2550 ± 50 14C yr BP. Further ice advance during the Little Ice Age (LIA) overrode the rock glacier root and caused partial shrinkage of the pre-existing permafrost. Finally, during the 19th and 20th centuries, the glacial surface became totally debris covered. Geomorphological and geophysical methods combined with analyses of ice structure and fabric can effectively interpret the genesis of landforms in an environment where glaciers and permafrost interact. Ice petrography proved especially useful for differentiating ice of past glaciers versus ice formed under permafrost conditions. These two mechanisms of ice formation are common in the Maritime Alps where many sites of modern rock glaciers were formerly occupied by LIA glaciers.  相似文献   

20.
Understanding the processes that deposit till below modern glaciers provides fundamental information for interpreting ancient subglacial deposits. A process‐deposit‐landform model is developed for the till bed of Saskatchewan Glacier in the Canadian Rocky Mountains. The glacier is predominantly hard bedded in its upper reaches and flows through a deep valley carved into resistant Palaeozoic carbonates but the ice margin rests on a thick (<6 m) soft bed of silt‐rich deformation till that has been exposed as the glacier retreats from its Little Ice Age limit reached in 1854. In situ tree stumps rooted in a palaeosol under the till are dated between ca 2900 and 2700 yr bp and record initial glacier expansion during the Neoglacial. Sedimentological and stratigraphic observations underscore the importance of subglacial deformation of glaciofluvial outwash deposited in front of the advancing glacier and mixing with glaciolacustrine carbonate‐rich silt to form a soft bed. The exposed till plain has a rolling drumlinoid topography inherited from overridden end moraines and is corrugated by more than 400 longitudinal flute ridges which record deformation of the soft bed and fall into three genetically related types: those developed in propagating incipient cavities in the lee of large subglacial boulders embedded in deformation till, and those lacking any originating boulder and formed by pressing of wet till up into radial crevasses under stagnant ice. A third type consists of U‐shaped flutes akin to barchan dunes; these wrap around large boulders at the downglacier ends of longitudinal scours formed by the bulldozing of boulders by the ice front during brief winter readvances across soft till. Pervasive subglacial deformation during glacier expansion was probably facilitated by large boulders rotating within the soft bed (‘glacioturbation’).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号